
GoldMine API Guide

Release 2026.1

Copyright Notice
This document is provided strictly as a guide. No guarantees can be provided or expected. This document contains
the confidential information and/or proprietary property of Ivanti, Inc. and its affiliates (referred to collectively as
“Ivanti”), and may not be disclosed or copied without prior written consent of Ivanti.

Ivanti retains the right to make changes to this document or related product specifications and descriptions, at any
time, without notice. Ivanti makes no warranty for the use of this document and assumes no responsibility for any
errors that can appear in the document nor does it make a commitment to update the information contained
herein. For the most current product information, please visit www.ivanti.com.

Copyright © 2026, Ivanti. All rights reserved.

Ivanti and its logos are registered trademarks or trademarks of Ivanti, Inc. and its affiliates in the United States
and/or other countries. Other brands and names may be claimed as the property of others.

Protected by patents, see http://www.ivanti.com/patents

Updated: Feb, 2026

GoldMine API Guide Page 2 of 463

http://www.ivanti.com/patents

Contents
Contents 3
Introduction to Integrating with GoldMine 32
Introduction 32
Methods of Integrating with GoldMine 32

Integrating via Dynamic Data Exchange 33
Integrating via GMXS32.DLL 33
Integrating via the GoldMine XML API (GMXMLAPI.DLL) 33
Interacting with GoldMine via the GoldMine COM Server 33
Integrating via GoldMine Plug-ins 33
Integrating via a Database Engine 34
Comparing Integration Methods 34
Resources and Support 35
Technology Partner Program 35
Open Developer Community 35
Technology Partner Program 36
Integration Tools 36

Working with Dynamic Data Exchange (DDE) 37
Overview 37
Using DDE in GoldMine 37

Merging Data into a Document 37
Updating Database Information 38
Querying for Data 38
Identifying Telephone Numbers Automatically 38
Linking Contact Records to an Accounting Application 38
Inserting Incoming E-mail 38
Linking GoldMine to MS Word for Windows 39
Entering Application, Topic, and Item Names 39

DDE Parameters, Functions, Expressions, Macros 39
Establishing a DDE Conversation 40
To Initiate a DDE Conversation 40
To Request Data 41

Working with DDE Functions 41
Accessing Data Files 41
Adding an Empty Record 42
Parameters 42
Return Value 42
Example 42

Closing an Opened File 43
Parameters 43
Return Value 43
Example 43

Deleting the Current Record 43
Parameters 43
Example 43

Creating a Subset of Records 43
Parameters 44
Example 44

Checking for an Xbase or SQL Table 45
Parameters 45

GoldMine API Guide Page 3 of 463

Return Values 45
Moving to a Specified Record 45
Parameters 45
Return Value 47
Example 47

Opening a Data File 48
Parameters 49
Return Value 49
Example 49

Limiting GoldMine Search Range 49
Parameters 50
Example 50

Reading a Field Value 50
Parameters 50
Return Value 50

Checking the Current Record Number or Record ID 50
Parameters 51
Return Value 51
Example 51

Changing a Field Value 51
Parameters 51
Return Value 52
Example 52

Performing a Sequential Search 52
Parameters 52
Return Value 53
Search Return Values 53
Example 53

Unlocking a Record 54
Parameters 54
Return Value 54
Example 54

Accessing Contact Records 54
Linking GoldMine Fields with an External Application 54
Parameters 55
Valid RecordObj Functions 55
Return Value 58
Example 58

Accessing Specialized DDE Functions 59
Retrieving Login Credentials for Use with the GMXS32.DLL 59
Example 59

Retrieving the RecID of the Current Opportunity 60
Return Value 60
Example 60

Completing a Calendar Activity 60
Parameters 60
Return Value 61
Example 61

Displaying the Contact Record of an Incoming Caller 61
Parameters 62
CallerID Parameters 62
Return Values 62
CallerID Return Values 62

GoldMine API Guide Page 4 of 463

Example 63
Running a Counter 63
Parameters 63
Return Value 63
Example 63

Returning GoldMine Record Data 63
Record Selection 64
Parameters 64
Return Value 64
Parameters 65
Example 1 65
Example 2 65
Return Packet 65
Performance 66
Example 3 66
Example 5 67

Processing a Web Import Instruction File 67
Reading an Xbase Expression Without Opening a File 67
Parameters 67
Return Value 67
Example 67

Adding Merge Fields to a Form 68
Parameters 68
Example 68

Deleting Fields from a Form 69
Parameters 69
Return Value 70
Example 70

Closing a Form Profile 70
Parameters 70
Example 70

Creating an Xbase File with Registered Fields 70
Parameters 70
Examples of WhichRec Parameter 71
Return Value 71
Example 71

Returning a Field Name for an Expression 71
Parameters 71

Returning a Value for Unattached Fields 71
Example 71

Counting the Number of Exported Records 71
Parameters 72
Return Value 72
Example 72

Creating a History Record 72
Parameters 72
InsHistory Valid Values (2nd parameter) 72
Return Value 73
Example 73

Creating or Updating a Document Link 74
Parameters 74
Return Value 74
Example 75

GoldMine API Guide Page 5 of 463

Displaying a Message Dialog Box 75
Parameters 75
Return Value 76
Example 76

Adding a Merge Form 77
Parameters 77
Return Value 78
Example 78

Creating a Group 79
Parameters 79
Return Value 79
Example 79

Adding a Group Member 80
Parameters 80
Example 80

Creating a Macro 80
Parameters 81
Identifying a Macro by Number 81
Identifying a Macro by File Name 81
Return Value 81
Example 81
To Play a Macro from the Command Line 82

Creating and Sending a Pager Message 82
Return Value 83
SendPage Return Values 83
Example 83

Displaying a Message in the GoldMine Status Bar 83
Parameters 83
Example 84

Converting TLog Timestamps 84
Parameter 84
Return Values 84
Example 1 84
Example 2 84

DDE Macros 84
DDE Macros for Merge Forms 91
&PARAM2 Parameters 92
&PARAM4 Parameters 92
&PARAM5 Parameters 93

DDE Macros for the GoldMine License 93
Using GMXS32.DLL for Database Access and Sync Log Updates 95
Overview 95
Passing Multiple Parameters to a Function 95
Comparing Low Level/DDE Methodology to Business Logic Methodology 96

Method 1: Updating a Contact Record using the low level functions or DDE 96
Method 2: Updating a Contact Record using the Business Logic 96

Loading GMXS32.DLL and Logging In 96
For GoldMine Version 6.7 or Lower 97

Setting the SQL Database Login Name and PasswordGoldMine 6.7 or lower only) 97
Syntax 97
Parameters 97
Return Values 97
Example 97

GoldMine API Guide Page 6 of 463

Loading an API Session (GoldMine 7.0 or higher) 98
Parameters 98
Return Values 98
Notes 99
Example 99

Loading a BDE Session (GoldMine 6.7 or lower) 99
Syntax 99
Parameters 99
Return Values 100
Notes 100
Example 100

Logging in a User 100
Syntax 101
Parameters 101
Return Values 101
Example 101

Closing an API Session (GoldMine 7.0 or higher) 101
Syntax 101
Return Values 102
Notes 102
Example 102

Closing a BDE Session (GoldMine 6.7 or lower) 102
Syntax 102
Return Values 102
Notes 102
Example 102

Logging in Multiple Users through the API 103
Logging In 103

Syntax 103
Parameters 103
Return Values 103

Logging Out 104
Syntax 104
Parameters 104
Returns 104

Switching Between Login Sessions 104
Syntax 104
Parameters 104
Returns 104

Special Consideration for Multi-Threaded Applications 105
Syntax 105

Working with Business Logic Functions using the Name/Value Pair Method 105
Notes 105

Creating an NV Container 105
Syntax 106
Example 106
Return Value 106

Creating an NV Container with Copied Values 106
Syntax 106
Example 106
Return Value 106
Syntax 106
Parameters 106

GoldMine API Guide Page 7 of 463

Example 107
Return Value 107

Deleting an NV Container 107
Syntax 107
Example 107
Return Value 107
Syntax 107
Parameters 107
Example 108
Return Values 108

Storing NV Pairs in a Container 108
Syntax 108
Parameters 108
Example 108
Return Value 108

Searching for an NV Pair 108
Syntax 108
Parameters 108
Example 109
Return Values 109

Removing one NV Pair 109
Syntax 109
Parameters 109
Example 109
Return Value 109

Removing all NV Pairs from a Container 109
Syntax 109
Parameter 110
Example 110
Return Value 110

Totaling NV Pairs in a Container 110
Syntax 110
Parameter 110
Example 110
Return Value 110

Finding an NV Name 110
Syntax 110
Parameters 110
Example 111
Return Value 111

Finding an NV Value 111
Syntax 111
Parameters 111
Example 111
Return Value 111
Syntax 111
Parameters 111
Example 112
Return Value 112

Executing Business Logic Methods 112
Syntax 112
Parameters 112
Example 112

GoldMine API Guide Page 8 of 463

Return Values 112
Working with Multi-Value Name/Value Pairs 112

Determining the Type of a Name/Value Pair 113
Syntax 113
Parameters 113
Return Values 113

Determining the Position of an NV Container in an NV Hierarchy 113
Syntax 113
Parameters 114
Example 114
Syntax 114
Parameters 114
Example 114
Syntax 114
Parameters 114
Example 114

Getting the Number of Values in a Multi-Value Pair 114
Syntax 115
Parameters 115
Example 115

Retrieving Containers from an NV Pair 115
Syntax 115
Parameters 115
Example 115
Syntax 115
Parameters 116
Example 116

Retrieving the Values in a Multi-Value Pair 116
Syntax 116
Parameters 116
Example 116

Deleting Values from a Multi-Value Pair 116
Assigning a Container to a Parent 117

Syntax 117
Parameters 117
Example 117
Syntax 117
Parameters 117
Example 117
Syntax 118
Parameters 118
Example 118
Syntax 118
Parameters 118
Example 118

Appending String Values to a Multi-Value Pair 118
Syntax 119
Parameters 119
Example 119

Low-level Data Access & Manipulation 119
Reading Security and Rights for a DLL User 119

Syntax 119
Parameters 119

GoldMine API Guide Page 9 of 463

iOption values 120
Return Values 120
Syntax 120
Parameters 121
Return Values 121
Syntax 121
Parameters 121
Return Values 121

Returning GoldMine Licensing Information 121
Syntax 121
Parameters 121
Return Values 121
Notes 122
GMW_GetLicenseInfo Structure 122
Example 122

Returning Calendar Data 122
Syntax 123

Retrieving Data with DataStream 123
Advantages of Using DataStream 123
DataStream Record Selection 123
GMW_DS_Range 124
Syntax 124
Parameters 124
Return Values 124
GMW_DS_Range Field Selection 125

GMW_DS_Query 125
Syntax 125
Parameters 125
Return Values 125

GMW_DS_Fetch 126
Syntax 126
GMW_DS_Fetch Return Packet 126

GMW_DS_Close 127
Syntax 127

Accessing Low-Level Data Using Work Areas 127
GMXS32.DLL Low-Level Access Functions 128

Opening a Data File 129
Syntax 129
Parameter 129
Return Values 129
GMW_DB_Open Return Values 129

Closing a Data File 129
Syntax 130
Parameters 130
Return Values 130
GMW_DB_Close Return Values 130

Checking for an SQL Table 130
Syntax 130
Parameter 130
Return Values 130
GMW_DB_IsSQL Return Values 130

Adding a Record 131
Syntax 131

GoldMine API Guide Page 10 of 463

Parameters 131
Return Value 131

Deleting the Current Record 131
Syntax 131
Parameter 131
Return Values 132
GMW_DB_Delete Return Values 132

Querying for a Field Value 132
Syntax 132
Parameters 132

Checking the Current Record Number or Record ID 132
Syntax 132
Parameters 133
Return Value 133
Changing a Field Value 133
Syntax 133
Parameters 133
Return Values 133

Unlocking a Record 133
Syntax 134
Parameter 134
Return Values 134
GMW_DB_Unlock Return Values 134

Creating a Subset of Records 134
Syntax 134
Parameters 134
Return Values 134

Limiting Search Scope 135
Syntax 135
Parameters 135
Return Values 135
GMW_DB_Range Return Values 135

Performing a Sequential Search 135
Syntax 135
Parameters 135
Return Values 136

Moving to the First Record Match 136
Syntax 136
Parameters 136
Return Values 136
GMW_DB_Seek Return Values 136

Setting the Current Index Tag 136
Syntax 137
Parameters 137
Return Values 137
GMW_DB_SetOrder Return Values 137

Positioning the Record Pointer 137
Syntax 137
Parameters 137
GMW_DB_Move Commands and Function Equivalents 137
Return Values 138
GMW_DB_Move Return Values 138

Moving to a Specified Record 138

GoldMine API Guide Page 11 of 463

Syntax 138
Parameters 138
Return Values 138
GMW_DB_Goto Return Values 138

Moving to the First Record 139
Syntax 139
Parameter 139
Return Values 139
GMW_DB_TopReturn Values 139

Moving to the Previous or Following Record 139
Syntax 139
Parameters 139
Return Values 140
GMW_DB_Skip Return Values 140

Moving to the Last Record 140
Syntax 140
Parameter 140
Return Values 140
GMW_DB_Bottom Return Values 140

Seeking a Record 140
Syntax 141
Parameters 141
Return Values 141

Reading a Field Value 141
Syntax 141
Parameters 141
Return Values 142

Replacing a Field Value 142
Syntax 142
Parameters 142
Return Values 142

Updating Sync Logs with GMXS32.DLL 143
Updating the Sync Log File 143
Syntax 143
Parameters 143
Return Values 144
GMW_UpdateSyncLog Return Values 144
Example 144

Importing a Prepared TLog Import File 144
Syntax 144
Parameters 144
Return Values 145
Notes 145
TLog Import Structure 145
Example 145

Getting a New Record ID 145
Syntax 145
Parameters 146
Return Value 146
Notes 146
Example 146

Converting the Sync Stamp 146
Syntax 146

GoldMine API Guide Page 12 of 463

Parameters 146
Return Values 146
GMW_SyncStamp Return Values 146
Notes 147
Example 147

Working with the XML API 148
Overview 148
Executing Your XML Document 148

Example 148
Creating Your XML Document 148

Loading the API (GoldMine 7.0 or higher) 149
Parameters 149
LoadAPI Return Values 150

Loading BDE (GoldMine 6.7) 150
Parameters 151
LoadBDE Return Values 151

Logging in Subsequent Users 152
Parameters 152
Login Return Values 153

Logging Out 153
Syntax 153
Parameters 153
Return 153

Unloading the API (GoldMine 7.0 or higher) 153
Unloading BDE (GoldMine 6.7) 153
Accessing Data with Business Logic Functions 154
Accessing Nested Nodes of Data 154
Business Logic Function Return Values 154
Input XML: 154
Returned XML: 155

Accessing Low-level Data Manipulation Functionality 155
Retrieving Data with DataStream 155
Advantages of Using DataStream 155
DataStream Record Selection 156
DS_Range 156
Syntax 156
Parameters 156
Return Values 157
GMW_DS_Range Return Values 157
DS_Range Field Selection 157

DS_Query 157
Syntax 157
Parameters 157
Return Values 158

DS_Fetch 158
Syntax 158
Parameters 158
Optional Parameters 158
The XML Return packet 158
Return 159
DS_Fetch Return Packet 160

DS_Close 161
Syntax 161

GoldMine API Guide Page 13 of 463

Accessing Low-Level Data Using Work Areas 161
GMXS32.DLL Low-Level Access Functions 161
GMXS32.DLL Low-Level Access Functions 162

Opening a Data File 163
Syntax 163
Parameter 163
Return Values 163
DB_Open Code Attribute Values 163

Closing a Data File 163
Syntax 163
Parameters 163
Return Values 164

Checking for an SQL Table 164
Syntax 164
Parameter 164
Return Value 164
DB_IsSQL Code Attribute Values 164

Adding a Record 164
Syntax 164
Parameters 165
Return Value 165

Deleting the Current Record 165
Syntax 165
Parameter 165
Return Value 165
DB_Delete Code Attribute Values 165

Reading a Field Value 166
Syntax 166
Parameters 166
Return Value 166
DB_Range Code Attribute Values 166

Checking the Current Record Number or Record ID 166
Syntax 166
Parameters 166
Return Value 167

Changing a Field Value 167
Syntax 167
Parameters 167
Return Value 167

Unlocking a Record 168
Syntax 168
Parameter 168
Return Value 168

Creating a Subset of Records 168
Syntax 168
Note 168
Parameters 168
Return Value 169
DB_Filter Code Attribute Values 169

Limiting Search Scope 169
Syntax 169
Parameters 169
Return Value 169

GoldMine API Guide Page 14 of 463

DB_Range Code Attribute Values 170
Performing a Sequential Search 170
Syntax 170
Parameters 170
Return Value 170
DB_Search Code Attribute Values 170

Moving to the First Record Match 170
Syntax 171
Parameters 171
Return Value 171
DB_Seek Return Values 171

Setting the Current Index Tag 171
Syntax 171
Parameters 171
Return Value 172
DB_SetOrder Code Attribute Values 172

Positioning the Record Pointer 172
Syntax 172
Parameters 172
DB_Move Commands and Function Equivalents 172
Return Value 173
DB_Move Code Attribute Values 173

Moving to a Specified Record 173
Syntax 173
Parameters 173
Return Value 173
DB_Goto Code Attribute Values 174

Moving to the First Record 174
Syntax 174
Parameter 174
Return Value 174
DB_Top Code Attribute Values 174

Moving to the Previous or Following Record 174
Syntax 175
Parameters 175
Return Value 175
DB_Skip Code Attribute Values 175

Moving to the Last Record 175
Syntax 175
Parameter 175
Return Value 175
DB_Bottom Code Attribute Values 176

Seeking a Record 176
Syntax 176
Parameters 176
Return Value 176
DB_QuickSeek Code Attribute Values 176

Reading a Field Value 177
Syntax 177
Parameters 177
Return Value 177
DB_QuickRead Code Attribute Values 177

Replacing a Field Value 177

GoldMine API Guide Page 15 of 463

Syntax 178
Parameters 178
Return Value 178
DB_QuickReplace Code Attribute Values 178

Returning Calendar Data 178
Syntax 179
Return Value 179

Updating Sync Logs 180
Updating the Sync Log File 180
Syntax 180
Parameters 180
Return Value 180
UpdateSyncLog Code Attribute Values 181

Importing a Prepared TLog Import File 181
Syntax 181
Parameters 181
Return Value 181
ReadImpTLog Code Attribute Values 181
Notes 182
TLog Import Structure 182

Getting a New Record ID 182
Syntax 182
Parameters 182
Return Value 182
Notes 182

Converting the Sync Stamp 182
Syntax 182
Parameters 183
Return Value 183
SyncStamp Code Attribute Values 183
Notes 183

Using MSXML to Handle GoldMine API XML 183
Getting Started 183
Defining the Root Element 183
Setting Attributes 184
Referencing an Attribute 184

Creating Child Elements 184
Executing the XML Document 185
Reading the Results 186
Reading the Code Attribute 186
Reading the Returned Data 186

Accessing the Current GoldMine Instance with COM 188
Overview 188
Getting Started 188

Executing Commands 189
Logging In to GoldMine 189

GoldMine.UI Class 190
Accessing Data Files 190
Adding an Empty Record 190
Parameters 190
Return Value 190
Returned XML 190

Closing an Opened File 191

GoldMine API Guide Page 16 of 463

Parameters 191
Return Value 191
Returned XML 191

Deleting the Current Record 191
Parameters 191
Returned XML 191

Creating a Subset of Records 191
Parameters 192

Checking for an Xbase or SQL Table 192
Parameters 192
Return Value 192
Returned XML 192

Moving to a Specified Record 192
Parameters 193
Return Value 194
Move Return Values 194
Returned XML 194

Opening a Data File 194
Parameters 195
Open Valid Parameters 195
Return Value 195
Returned XML 195

Limiting GoldMine Search Range 195
Parameters 196
Returned XML 196
Parameters 196
Returned XML 196

Reading a Field Value 196
Parameters 196
Return Value 197
Returned XML 197

Checking the Current Record Number or Record ID 197
Parameters 197
Return Value 197
Returned XML 197

Changing a Field Value 198
Parameters 198
Return Value 198

Performing a Sequential Search 199
Parameters 199
Return Value 199
Returned XML 199
Parameters 200
Return Value 200
Returned XML 200

Accessing Contact Records 200
Differences in Accessing Contact Information 201
Parameters 201
Valid RecordObj Functions 201
Return Value 205
Returned XML 205

Accessing Specialized GoldMine.UI Functions 205
Retrieving a List of Active Plug-Ins (GoldMine 7.0 or higher) 205

GoldMine API Guide Page 17 of 463

Returned XML 205
Running a Plug-In (GoldMine 7.0 or higher) 206
Returned XML 206

Retrieving Login Credentials for Use with the GMXS32.DLL 206
Returned XML 206

Retrieving the RecID of the Current Opportunity 207
Return Value 207
Returned XML 207

Completing a Calendar Activity 207
Parameters 207
Return Value 208
Returned XML 208

Displaying Edit Windows for Calendar and History Items 208
General Messages 208
Return Value 208

Displaying the Contact Record of an Incoming Caller 209
Parameters 209
Return Value 210
CallerID Return Values 210
Returned XML 210

Running a Counter 210
Parameters 210
Return Value 210
Example 211

Returning GoldMine Record Data 211
Record Selection 212
Datastream Range Parameters 212
Datastream Query Parameters 212
Datastream Fetch Parameters 213
Datastream Close Parameters 213
The XML Return Packet 213
Returns 213
Return Packet 214
Performance 215

Processing a Web Import Instruction File 215
Reading an Xbase Expression Without Opening a File 216
Parameters 216
Return Value 216
Returns: 216

Adding Merge Fields to a Form 216
Parameters 216

Deleting Fields from a Form 217
Parameters 217
Return Value 217

Closing a Form Profile 217
Parameters 217

Creating an Xbase File with Registered Fields 217
Parameters 217
WhichRec Values 218
Return Value 218

Returning a Field Name for an Expression 218
Parameters 218

Returning a Value for Unattached Fields 218

GoldMine API Guide Page 18 of 463

Return Value 219
Counting the Number of Exported Records 219
Parameters 219
FormQueryCreate Parameters 219
Return Value 219

FormPrintedDoc 219
Parameters 219

Creating a History Record 220
Parameters 220
Return Value 221
Returned XML 221

Creating or Updating a Document Link 221
Parameters 221
Sync Valid Values 222
Return Value 222
Returned XML 222

Displaying a Message Dialog Box 222
Parameters 222
MsgBox Style Values 222
Return Value 223
Returned XML 223

Adding a Merge Form 224
Parameters 224
Document Types 224
Flag Values 225
Return Value 225

Playing a Toolbar Macro 225
Parameters 225
Identifying a Macro by Number 225
Identifying a Macro by File Name 225
Return Value 226
PlayMacro Return Values 226
Optional switches include: 226

Creating and Sending a Pager Message 226
Return Value 227

Displaying a Message in the GoldMine Status Bar 227
Parameters 227
Returned XML 227

Converting TLog Timestamps 227
Parameter 228
Return Value 228
Returned XML 228

Updating the Sync Log File 228
Parameters 228
Return Value 228
UpdateSyncLog Code Attribute Values 228

Importing a Prepared TLog Import File 229
Syntax 229
Parameters 229
Return Value 229
ReadImpTLog Code Attribute Values 229
Notes 229
TLog Import Structure 229

GoldMine API Guide Page 19 of 463

Forcing Logout 230
Syntax 230
Parameters 230

Reading Security and Rights 230
Syntax 230
Permissions Returned by UserAccess 230
Returned XML 231
Retrieving Calendar Permissions 232
Syntax 232
Parameters 232
Return Value 232
Retrieving History Access 232
Syntax 232
Parameters 232
Return Value 232

Macros 233
Executing Macros 233
Returned XML 233

Available Data-Related Macros 233
Macros for Merge Forms 241
&PARAM2 Parameters 241
&PARAM3 Parameters 242
&PARAM4 Parameters 242
&PARAM5 Parameters 243

Macros for the GoldMine License 243
Controlling the GoldMine User Interface 244
Getting Window Information 244
GetAvailableWindowsList 244
Syntax 244
Returned XML 245
GetActiveWindowsList 245
Syntax 245
Returned XML 245

Registering for Events 246
RegisterVetoWindowLaunch 247
Syntax 247
Parameters 247
Returned XML 247
RegisterWindowUpDown 247
Syntax 247
Parameters 248

REturned XML 248
RegisterCommandExec 248
Syntax 248
Parameters 248
Returned XML 248
RegisterTabDetailsEvent 249
Syntax 249
Parameters 249

AdditionalContactClick 250
AdditionalContactClick 250
Returned XML 250
Parameters 250

GoldMine API Guide Page 20 of 463

DetailsClick 250
Returned XML 250
Parameters 251
PendingClick 251
Returned XML 251
Parameters 251
HistoryClick 251

Returned XML 251
Parameters 251
LinkedDocClick 252
Returned XML 252
Parameters 252

Handling GoldMine.UI Events 252
NotifyControlCommand 252
Parameters 252
VetoWindow 253
Parameters 253
Example 253
WindowUpDown 254
Parameters 254
GMEvent 254
Returns 255

Manipulating Controls Programatically 256
PressButton 256
Syntax 257
Parameters 257
SetControlText 257
Syntax 258
Parameters 258
SetCheckBox 258
Syntax 258
Parameters 259
SelectRadio 259
Syntax 259
Parameters 260
SetListBox/SetComboBox 260
Syntax 260
Parameters 260
SelectTab 261
Syntax 261
Parameters 261
EnableCtrl 261
Syntax 262
Parameters 262

Executing a Menu Command 262
Syntax 262

Returned XML 265
Opening a Mail Record 265
Syntax 265
Parameters 265
Returned XML 266

Setting a Selected Record in a GoldMine Grid (GoldMine 8.0 or higher) 266
Parameters 266

GoldMine API Guide Page 21 of 463

Returned XML 267
Returning Selected Records in a GoldMine Grid (8.0.1 or higher) 267
Syntax (Example) 267
Parameters 267
Returned XML 267

GoldMine.RecObj Class 268
RecordObjectHasChanged 268
Parameters 268
RecordFieldHasUpdated 268
Parameters 268
RecordTabHasChanged 268
Parameters 268

GoldMine.GMSystemEvents Class 268
GoldMineshutDown 268

Business Logic Methods 270
Overview 270
Business Logic Functions and Name/Value Pairs 270
Controlling Database Session Handling 270

Creating or Updating a Contact Record 270
Required Name/Value Pairs 271
Optional Name/Value Pairs 271
Special Name/Value Pairs 271
Output Name/Value Pairs 271
WriteCONTACT Error Codes 271

Updating an E-mail Address 272
Required Name/Value Pairs 272
Optional Name/Value Pairs 272

Updating a Web Site Record 273
Name/Value Pairs 273

Updating Notes of a Primary Contact Record 273
Required Name/Value Pairs 273
Optional Name/Value Pairs 273
Output Name/Value Pairs 273

Creating or Updating a Note in a Table 273
Required Name/Value Pairs 274
Optional Name/Value Pairs 274
Output Name/Value Pairs 274
WriteNote Error Codes 274

Creating or Updating an Additional Contact Record 275
Required Name/Value Pairs 275
Optional Name/Value Pairs 275
Special Name/Value Pairs 276
Error Codes 276
Output Name/Value Pairs 276

Creating or Updating a Detail Record 277
Required Name/Value Pairs 277
Optional Name/Value Pairs 277
Special Name/Value Pairs 277
Output Name/Value Pairs 277
Error Codes 277

Creating or Updating a Linked Document 278
Required Name/Value Pairs 278
Optional Name/Value Pairs 278

GoldMine API Guide Page 22 of 463

Special Name/Value Pairs 278
Output Name/Value Pairs 278
Error Codes 278

Creating or Updating a Referral 279
Required Name/Value Pairs 279
Optional Name/Value Pairs 279
Special Name/Value Pairs 279
Output Name/Value Pairs 279

Creating or Updating Activities 280
Required Name/Value Pairs 280
GoldMine 6.0 NV Pairs 282
Optional WriteSchedule NV Pairs 282
Output Name/Value Pairs 284
Error Codes 284

Creating or Updating a History Record 284
Required Name/Value Pairs 284
WriteHistory Optional Name/Value Pairs 284
WRITE HISTORY Special Name/Value Pairs 285
Output Name/Value Pairs 285

Creating or Updating a Case Record (GoldMine 8.0 or higher) 285
Required Name/Value Pairs 285
Optional Name/Value Pairs 286
Error Codes 287
Output Name/Value Pairs 287

Creating or Updating a Case Attachment (GoldMine 8.0 or higher) 287
Required Name/Value Pairs 287
Optional Name/Value Pairs 287
Error Codes 288
Output Name/Value Pairs 288

Adding a GoldMine User as a Case Team Member (GoldMine 8.0 or higher) 288
Required Name/Value Pairs 288
Error Codes 289
Output Name/Value Pairs 289

Attaching an Automated Process 289
ATTACHTRACK Required Name/Value Pairs 289
Output Name/Value Pairs 290

Executing an SQL Query 290
Required Name/Value Pairs 290
Optional Name/Value Pairs 290
Output Name/Value Pairs 290

Creating a Cont act Group 291
Required Name/Value Pairs 291
Optional Name/Value Pairs 291
Output Name/Value Pairs 291
Return Codes 291

Adding Contacts to a Contact Group 292
Required Name/Value Pairs 292
Members NV Pair Child Container Name/Value Pairs 292
Output Name/Value Pairs (parent container) 292
Return Codes 292

Using AddContactGrpMembers 293
Reading a Record 293

Required Name/Value Pairs 293

GoldMine API Guide Page 23 of 463

Optional Name/Value Pairs 294
Special NVs 294
Output Name/Value Pairs 294
Return Codes 294

Reading a Contact1 or Contact2 Record 294
Required Name/Value Pairs 294
Optional Name/Value Pairs 295
Special NVs 295
Output Name/Value Pairs 295
Return Codes 295

Returning Alerts Attached to a Contact Record 295
Required Name/Value Pairs 295
Output Name/Value Pairs 296
Return Codes 296

Attaching an Alert 296
Required Name/Value Pairs 296
Output Name/Value Pairs 297

Returning All Alerts 297
Required Name/Value Pairs 297
Output Name/Value Pairs 297
Required Name/Value Pairs 298
Output Name/Value Pairs 298

Returning a User Group Member List 298
Required Name/Value Pairs 298
Output Name/Value Pairs 298

Returning Group Memberships for a Specified User 298
Required Name/Value Pair 298
Output Name/Value Pairs 299

Saving a User Group 299
Required Name/Value Pairs 299
Output Name/Value Pair 299

Retrieving the Names of User Groups 299
Required Name/Value Pairs 299
Return Name/Value Pairs 299
Example 300

Evaluating an Xbase Expression on a Contact Record 300
Name/Value Pairs 300
Return Values 301

Encrypting Text 301
Required Name/Value Pairs 301

Decrypting Encoded Text 302
Required Name/Value Pairs 302
Returned Name/Value Pairs 302

Retrieving the Default Contact Automated Process 302
Deleting Calendar Items 302
Deleting History Items 303

Required Name/Value Pairs 303
Return Values 303

Handling GoldMine Security 304
Creating a New GoldMine Login 304

Name/Value Pairs 304
Return Values 304

Reading a GoldMine Login 304

GoldMine API Guide Page 24 of 463

Output Name/Value Pairs 304
Return Values 305

Retrieving Security Access 305
Retrieving Field-Level Access Rights 307

Required Name/Value Pairs 307
Example NV Container Returned from FieldAccessRights 307

Retrieving Visible Fields 307
Checking for Record Curtaining 308

Required Name/Value Pairs 308
Output Name/Value Pair 308
Name/Value Pairs 308
Return Name/Value Pairs 309

Removing a Remote License 309
Name/Value Pairs 309
Return Name/Value Pairs 309

E-mail Name/Value Functions 310
Reading a Mail Message 310

Required Name/Value Pairs 310
Optional Name/Value Pairs 310
READMAIL Output Name/Value Pairs 310

Queuing a Message for Delivery 313
QueueMail Optional NV Pairs 313
Return Name/Value Pairs 314
Required Name/Value Pairs 315
Optional Name/Value Pairs 315
Optional Name/Value Pairs 315
Return Codes 316

Deleting a Message 316
Required Name/Value Pairs 316

Filing a Message in History 316
Required Name/Value Pairs 317
Optional Name/Value Pairs 317
Return Codes 317

Preparing the NV Container for a New Mail Message 317
Required Name/Value Pairs 317
Optional Name/Value Pairs 318
Return Name/Value Pairs 318

Preparing the NV Container to Reply to a Mail Message 318
Required Name/Value Pairs 318
Optional Name/Value Pairs 318
Return Name/Value Pairs 319

Preparing an NV Container to Forward a Mail Message 319
Required Name/Value Pairs 319
Optional Name/Value Pairs 319
Return Name/Value Pairs 320

Adding an E-mail Center Folder 320
Name/Value Pairs 320

Deleting an E-Mail Center Folder 320
Name/Value Pairs 320

Obtaining a List of E-Mail Center Folders 320
Return Name/Value Pairs 320
Return Name/Value Pairs 321

Accessing E-mail Templates 321

GoldMine API Guide Page 25 of 463

Optional Name/Value Pairs 321
Return Name/Value Pairs 321

Retrieving E-mail Account Information 322
Return Name/Value Pairs 322

Retrieving a List of Messages Waiting Online 323
Required Name/Value Pairs 323
Return Name/Value Pairs 324
Return Values 325

Retrieving Messages 325
Required Name/Value Pairs 325
Return Name/Value Pairs 325
Return Values 326

Deleting Online E-mail Messages 326
Required Name/Value Pairs 326

Return Name/Value Pairs 326
Return Values 327

Saving a Manual List of Recipients 327
Retrieving a Manual List of Recipients 327
Managing Internet E-mail Preferences 327

Optional input (SetEmailPrefs) and Output (GetEmailPrefs) Name/Value Pairs 328
Profiles child containers have the following NV Pairs. 331
Required Name/Value Pairs 333
Special Name/Value Pairs 333
Output Name/Value Pairs 333
Notes 333

Manipulating User-Defined Fields and Views 333
Reading All Field Views 334

Output Name/Value Pairs 334
VIEW Name/Value Pairs 334
Field Name/Value Pairs 335
GetContactViews Return Values 336

Deleting a Contact View 336
DeleteContactViews Return Values 336

Creating or Modifying a Contact View 336
input Name/Value Pairs 337
Field Name/Value Pairs 337
WriteContactView output NV pairs 338
WriteContactView Return Values 339

Reading Custom Fields 339
ReadCustomFields input NV pairs 339
Field NV Pair Container 339
ReadCustomfields Return Values 340

Modifying the Structure of Custom Fields 340
EditCustomField Input NV pairs 340
EditCustomField Return Values 340

Reading Calendar Preferences 341
READCALENDARPREFS Input NV pairs 341
READCALENDARPREFS OUTPUT NV pairs 341
READCALENDARPREFS RETURN VALUES 348

Modifying Calendar Preferences 348
WRITECALENDARPREFS Input NV pairs 348
WRITECALENDARPREFS OUTPUT NV pairs 349
WRITECALENDARPREFS RETURN VALUES 355

GoldMine API Guide Page 26 of 463

Reading Personal Preferences 355
READPERSONALPREFS Input NV pairs 355
READPERSONALPREFS OUTPUT NV pairs 355
READPERSONALPREFS RETURN CODES 356

Updating Personal Preferences 356
WRITEPERSONALPREFS Input NV pairs 356
WRITEPERSONALPREFS OUTPUT NV pairs 356
WRITEPERSONALPREFS RETURN CODES 356

Reading Record Preferences 357
READRECORDPREFS Input NV pairs 357
READRECORDPREFS OUTPUT NV pairs 357
READRECORDPREFS RETURN CODES 358

Updating Record Preferences 358
WRITERECORDPREFS Input NV pairs 358
WRITERECORDPREFS RETURN CODES 359

Reading Schedule Preferences 359
READSCHEDULEPREFS Input NV pairs 359
READSCHEDULEPREFS OUTPUT NV pairs 359
READSCHEDULEPREFS RETURN CODES 360

Updating Schedule Preferences 360
WRITESCHEDULEPREFS Input NV pairs 360
WRITESCHEDULEPREFS RETURN CODES 360

Reading Alarm Preferences 361
READALARMPREFS Input NV pairs 361
READALARMPREFS OUTPUT NV pairs 361
READALARMPREFS RETURN CODES 361

Updating Alarm Preferences 362
WRITEALARMPREFS Input NV pairs 362
WRITEALARMPREFS RETURN CODES 362

Reading Lookup Preferences 362
READLOOKUPPREFS Input NV pairs 362
READLOOKUPPREFS OUTPUT NV pairs 363
READLOOKUPPREFS RETURN CODES 363

Updating Alarm Preferences 363
WRITELOOKUPPREFS Input NV pairs 363
WRITELOOKUPPREFS Return Codes 364

Reading Pager Preferences 364
READPAGERPREFS Input NV pairs 364
READPAGERPREFS OUTPUT NV pairs 364
READPAGERPREFS Return Codes 365

Updating Pager Preferences 365
WRITEPAGERPREFS Input NV pairs 365
WRITEPAGERPREFS Return Codes 365

Reading Miscellaneous Preferences 366
READMISCPREFS Input NV pairs 366
READMISCPREFS OUTPUT NV pairs 366
READMISCPREFS Return Codes 366

Updating Miscellaneous Preferences 366
WRITEMISCPREFS Input NV pairs 367
WRITEMISCPREFS Return Codes 367

Reading the Database Engine Type (7.0 or higher) 367
GETDBENGINETYPE Return Codes 367

Reading a List of GoldMine User Groups 368

GoldMine API Guide Page 27 of 463

GETGMUSERGROUPS OUTput NV pairs 368
GETGMUSERGROUPS Return Codes 368

Creating or Updating GoldMine User Groups 368
WRITEGMUSERGROUP Input NV pairs 368
WRITEGMUSERGROUP Return Codes 369

Adding a GoldMine User to a Group 369
ADDGMGROUPUSER Input NV pairs 369
ADDGMGROUPUSER Return Codes 369

Removing a GoldMine User from a Group 370
REMOVEGMGROUPUSER Input NV pairs 370
REMOVEGMGROUPUSER Return Codes 370

Creating or Updating an Opportunity or Project 370
WRITEOPPROJ Input NV pairs 370
WRITEOPPROJ Return Codes 371

Working with GoldMine Plug-ins 373
Overview 373
Using ActiveX Plug-in Support 373
Using HTML Plug-in Support 374
Plug-In Description File 374

HTML Plug-in Description File 374
ActiveX Plug-in Description File 376

Security and Plug-in Directories 378
Security 378
Adding a Local Plug-in Directory 379

Sample Plug-ins 379
gmail.gme 379
External.gme 380
gmplus.asp 380

Using Xbase Expressions 384
Overview 384
Function/Parameter Types 384
Conditionals, Operators, and Logical Evaluators 385

Conditionals 385
Operators 387
Logical Evaluators 388

Xbase Functions 388
String Functions 389
Date Functions 392
Numeric Functions 394
Miscellaneous Functions 396

Xbase Database Structures 398
Overview 398

CAL.DBF 399
CAL Indexes 399
CAL Structure 399
Rectype 400

CONTACT1.DBF 401
CONTACT1 Indexes 401
CONTACT1 Relations 401
CONTACT1 Structure 402
Account Number 403
Internal Status 403

CONTACT2.DBF 404

GoldMine API Guide Page 28 of 463

CONTACT2 Index 404
CONTACT2 Structure 404

CONTGRPS.DBF 405
CONTGRPS Indexes 405
CONTGRPS Structure (header records) 405
Header Info 406
CONTGRPS Structure (member records) 406

CONTHIST.DBF 406
CONTHIST Indexes 406
CONTHIST Structure 406
Record Type 407

CONTSUPP.DBF 408
CONTSUPP Indexes 408
CONTSUP Structure 408
Record Type 409

INFOMINE.DBF 410
INFOMINE Indexes 410
INFOMINE Structure 410

LOOKUP.DBF 411
LOOKUP Indexes 411
LOOKUP Structure 411

MAILBOX.DBF 411
MAILBOX Indexes 411
MAILBOX Structure 412
Flags 412
Folder 412

OPMGR.DBF 413
OPMGR Structure 413
Record Type 414

PERPHONE.DBF 414
PERPHONE Indexes 414
PERPHONE Structure 415

RESITEMS.DBF 415
RESITEMS Indexes 415
RESITEMS Structure 415

SPFILES.DBF 416
SPFILES Index 416
SPFILES Structure 416

SQL Database Structures 417
Overview 417

CAL Table 417
CAL Indexes 418
CAL Structure 418
Record Type 419

CONTACT1 Table 419
CONTACT1 Indexes 419
CONTACT1 Relations 420
CONTACT1 Structure 420
Account Number 422
Internal Status 423

CONTACT2 Table 423
CONTACT2 Index 423
CONTACT2 Structure 423

GoldMine API Guide Page 29 of 463

CONTGRPS Table 424
CONTGRPS Indexes 424
CONTGRPS Structure (header records) 424
Header Info 425
CONTGRPS Structure (member records) 425

CONTHIST Table 425
CONTHIST Indexes 425
CONTHIST Structure 426
Record Type 427

CONTSUPP Table 427
CONTSUPP Indexes 427
CONTSUPP Structure 427
Record Type 428

INFOMINE Table 429
INFOMINE Indexes 429
INFOMINE Structure 429

LOOKUP Table 430
LOOKUP Indexes 430
LOOKUP Structure 430

MAILBOX Table 430
MAILBOX Indexes 430
MAILBOX Structure 431
Flags 431
Folder 431

OPMGR Table 432
OPMGR Indexes 432
OPMGR Structure 432
Record Type 433

PERPHONE Table 433
PERPHONE Indexes 433
PERPHONE Structure 434

RESITEMS Table 434
RESITEMS Indexes 434
RESITEMS Structure 434

SPFILES Table 434
SPFILES Index 435
SPFILES Structure 435

Appendix: Code Examples 436
Overview 436
GMXS32.DLL Code Examples 436

C++ Examples 436
Function prototypes 436
Logging In 438
Creating a Contact with Business Logic/Enumerating a Name Value Container/DataStream 439
Low-Level Work Area 441

Visual Basic Examples 442
Function prototypes 442
Logging In 445
Creating a Contact 445
Enumerating a Container 446
DataStream 446
Low-Level WorkArea 447

Delphi Examples 448

GoldMine API Guide Page 30 of 463

Function prototypes 449
Creating a Contact 452
Enumerating a Container 452
DataStream 453
Low-Level Work Area 453

Resources 455
Additional Documentation 455
Contact Us 455

Support Site 455
Contact Information 455

Index 456

GoldMine API Guide Page 31 of 463

Introduction to Integrating with GoldMine

Introduction
Integrating with GoldMine is designed as a comprehensive resource for developers to integrate GoldMine with
their applications. For best results, we recommend that you become an experienced GoldMine user before
taking on an integration project. For example, understanding what types of data are better stored as a detail
record instead of a history record will ensure greater success for your project.

In addition to gaining experience with GoldMine, you should be familiar with the development environment you
plan to use. This manual may not provide programming examples for your preferred development environment.
With a good working knowledge of your chosen programming language, you could learn from another
language’s examples.

This manual provides information to:

■ Use one of several methods to integrate with GoldMine.
■ Work with either Xbase or SQL database structures to integrate with GoldMine up to version 6.7.
■ Work with either Firebird or MSSQL database structures to integrate with GoldMine version 7.0.
■ Access a variety of support resources to get help from other developers and GoldMine technicians.

IMPORTANT:

As of GoldMine 2018.2, and the introduction of forced password complexity, any integration that passes the
GoldMine password via the GoldMine API must provide it "as-is." For previous versions (2018.1 and lower), the
password had to be provided in UPPERCASE. This is not the case with GoldMine 2018.2 onward.

For example, with the user password of Access!123: In versions of GoldMine 2018.1 and lower, it was necessary
to enter it as ACCESS!123. With GoldMine 2018.2 onward, it is necessary to pass the password as-is (i.e.,
Access!123).

Methods of Integrating with GoldMine
There are several methods for integrating with GoldMine:

○ Dynamic Data Exchange (DDE)
○ GMXS32.DLL

○ GMXMLAPI.DLL

Page 32 of 463

Page 33 of 463

○ GoldMine COM Server
○ GoldMine Plug-ins (GoldMine 7.0 or higher)
○ Database engine

Integrating via Dynamic Data Exchange
This method is supported by many programming environments, such as C++, Delphi, Visual Basic, VBA (Office 97—
Access, Word, and Excel), WordBasic, FoxPro, and many others. DDE commands can be sent to GoldMine to make
GoldMine perform a large variety of functions.

Integrating via GMXS32.DLL
You can also integrate with GoldMine using the GMXS32.DLL (The X represents the main version of GoldMine
being used (i.e., 6 for GoldMine 6.0). Using the DLL method, you can access or maintain your GoldMine data
without running GoldMine.

This DLL has enough functions for data access and synchronization maintenance to allow nearly full control of all
databases and their fields. High-level “business logic” functions streamline and simplify performing common tasks,
such as adding a contact, scheduling an activity, and so forth. GMXS32.DLL is placed into your Windows\System
directory, and is updated automatically when you update GoldMine. This DLL does not require a separate license
to use.

NOTE: This method of integration is highly recommended as it automates the task of adhering to GoldMine
business logic rules, security, and synchronization.

Integrating via the GoldMine XML API (GMXMLAPI.DLL)
Another integration method, introduced in GoldMine 6.7, is the GoldMine XML API. This DLL allows the
programmer to pass the GoldMine API an XML document to integrate with GoldMine. This API is another access
method to the high-level business logic methods and the lower level data functions. The XML API is a COM object
that can easily be used in various programming languages, including in the development of web applications.
Using the versatile XML standard, integrating with GoldMine has never been easier.

Interacting with GoldMine via the GoldMine COM Server
With the release of GoldMine 6.7, a new method of interacting with a running GoldMine was introduced, the
user-interface API. GoldMine is now a COM server. This method of interaction with GoldMine replaces the DDE
functionality. DDE is still present in GoldMine for legacy integrations, but the new improved COM server capability
adds a wealth of functionality that enables the programmer to control the GoldMine user-interface like never
before. In addition, accessing GoldMine as a COM server is much easier than DDE in a .Net programming
environment.

Integrating via GoldMine Plug-ins
GoldMine 7.0 contains a new mechanism to support ActiveX controls and HTML based integrations as if they were
a part of GoldMine. These structures allow for rapid integration, ease of use, and security.

Page 34 of 463

Integrating via a Database Engine
The most difficult method of integration involves writing to GoldMine databases via a database engine. Using this
method also involves some work with DLL or DDE to keep GoldMine synchronization information intact. We do
not recommend using this method because there is a higher likelihood of incorrect implementation, which could
damage GoldMine data.

TIP: For best results, do not integrate via a database engine.

Comparing Integration Methods
The following table summarizes the integration methods and whether they require loading the Borland Database
Engine, if GoldMine needs to be running, and if they require a GoldMine seat. Use this table to help determine the
integration methods that best suits your application needs.

API Method
Requires
BDE to be
loaded?

Requires
GoldMine to
be running?

Uses
seat?

Best used for

GMXS32.DLL Yes No No
Perhaps highest speed, broad range of
functionality

DDE No Yes No

Minimal coding, slow speed, less
functionality, only way in older
GoldMine’s of interfacing with GoldMine
user interface

GoldMine COM Server
(GoldMine.UI,
GoldMine.RecObj, &
GoldMine.SysEvents

No Yes No

Used for interacting with GoldMine user
interface and also provides lower level
functions. DDE replacement with much
enhanced user interface control.
Requires GoldMine to be running.

GoldMine COM Server
(GoldMine.GoldMineData)

No Yes No

Broader range of functionality with
business logic and lower level functions.
Does not require BDE to be loaded.
Alleviates SharedMemLocation errors
commonly found with the GMXS32.DLL.

GMXMLAPI.DLL Yes No Yes
Provides same functionality as the
GMXS32.DLL, but provides easier XML
interface

Page 35 of 463

API Method
Requires
BDE to be
loaded?

Requires
GoldMine to
be running?

Uses
seat?

Best used for

GoldMine Plug-ins No Yes No

Provides a platform for developing
GoldMine applications. Supports
integrations developed using ActiveX
Controls or HTML. Very powerful when
used in conjunction with GoldMine APIs.

Direct Access through data
engine (ex. ADO)

No No No

NOT RECOMMENDED!!
Does not respect GoldMine security,
does not automatically log
synchronization information, does not
have functionality to generate
AccountNo’s or Recid’s, does not return
encrypted GoldMine data in a readable
format, requires intimate knowledge of
GoldMine data rules.

NOTE: As of GoldMine Version 7.0, the Borland Database Engine is no longer used. References to BDE in
the following table apply to integrations developed in GoldMine Version 6.7 or lower.

NOTE: As of GoldMine 2018.2, and the introduction of forced password complexity, GoldMine passwords
must now be passed in proper case or "as-is" in the code when integrating with GoldMine. Any references
that the user’s password must be in UPPERCASE or case insensitive only apply to integrations developed in
GoldMine versions 2018.1 or lower.

Resources and Support
In addition to this manual, GoldMine provides a variety of free resources to support developers, including:

○ API/Programming topics on the GoldMine Forum
○ Open Developer Community

Technology Partner Program
For specific questions and additional information, go to the GoldMine Community Forum at:

https://www.goldmine.com/community/

Experienced developers can offer advice or programming help. The newsgroup also contains advanced or hard-to-
find information. This newsgroup is a self-serve resource and is not monitored or contributed to by GoldMine.

Open Developer Community
This online self-service resource provides technical documents, code samples, development tools, the most up-to-
date documentation, and a searchable knowledgebase containing integration information.

https://www.goldmine.com/community/

Page 36 of 463

Technology Partner Program
The Certified Technology Partner Program is intended for developers who wish to create and market products
that integrate with our GoldMine and Ivanti products. These partners seek a close development, marketing, and
sales relationship with GoldMine Inc.

Members of the Certified Technology Partner Program pay an annual fee and receive additional benefits over the
Open Developer Community, including:

○ Certification of your integrated solution (additional fees may apply for multiple certifications)
○ Use of GoldMine and Ivanti Technology Partner logos to promote your product
○ Listing on the Ivanti.com website
○ Right to participate in beta programs
○ Not-for-resale (NFR) licenses of GoldMine and Ivanti products
○ Discounted product training
○ Free and fee-based marketing programs

Integration Tools
The following tools can help when integrating with GoldMine:

■ DDERequestor: A Windows-based freeware that allows you to send DDE commands to GoldMine in real-time.
This utility can help to diagnose problems you may have when using DDE to integrate with GoldMine.

■ XMLSPY: A development environment for modeling, editing, debugging, and transforming all XML technologies,
then automatically generating runtime code in multiple programming languages.

NOTE: Technical support for these programs is not available from GoldMine.

Working with Dynamic Data Exchange
(DDE)

Overview
Dynamic Data Exchange (DDE) is the term for the Windows functionality that allows GoldMine to exchange
commands and information with other applications. Using DDE, one application, referred to as the client
application, can request information from or send commands to another application—referred to as the server
application. The server application then processes the request from the client application. In response to a
client’s request, the server performs a task such as updating or returning data housed by the server application

GoldMine is designed to act as both a DDE client as well as a DDE server. DDE topics included in this chapter
describe using GoldMine as a DDE server. These topics are provided for programmers who wish to interface
their programs with GoldMine. If you are not familiar with working with DDE, this technical section may be of
limited value to you.

Using DDE in GoldMine
GoldMine can perform a variety of tasks using DDE commands, including:

○ Merging data into a document
○ Updating database information
○ Querying for data
○ Identifying telephone numbers automatically
○ Linking contact records to an accounting application
○ Inserting incoming e-mail

Merging Data into a Document
GoldMine uses DDE to communicate with your word processor. When you perform a merge, GoldMine uses
DDE to send contact information to the word processor of the selected document template. The word processor
receives this information from GoldMine, places the information from the contact record in appropriate places
in the document, and then prints the document.

Page 37 of 463

Page 38 of 463

GoldMine acts as a DDE client and a DDE server during the document merging process. First, GoldMine must send
a DDE request to the word processor to request that the word processor open a particular document template.
Once the document is open, the word processor will recognize that the document contains DDE linkage fields and
will ask GoldMine for data to place in these fields. GoldMine, now acting as a DDE server, will return this
information to the word processor, and the word processor will update its display with the information. Finally,
the document can be printed.

This type of merging can also be performed with other Windows applications, such as spreadsheets (for example,
Microsoft Excel) or database programs (for example, Microsoft Access).

Updating Database Information
DDE can also be used to update GoldMine databases from another application. For example, a magnetic card
reader application that supports DDE can be interfaced with GoldMine in such a way that new contact records are
automatically entered into the contact database. Therefore, whenever a trade show attendee’s badge is swiped
through the reader, GoldMine is automatically updated.

Querying for Data
The DDE macros and other functions can query the GoldMine tables and return the contents to the caller. The
[DataStream] command is a high-performance feature that can return large blocks of data very quickly. Retrieving
data from large databases may take longer, causing your DDE request to time-out.

Identifying Telephone Numbers Automatically
GoldMine DDE functionality can be used with CallerID or ANI equipment to automatically identify incoming
telephone calls. GoldMine can display the contact record that matches the telephone number of the incoming call,
saving the user time in looking up the caller.

Linking Contact Records to an Accounting Application
DDE applications can be created to automatically transfer prospect information to an accounting application when
the prospect decides to purchase, saving data entry time and reducing errors.

Inserting Incoming E-mail
DDE can be used to insert incoming e-mail into GoldMine, allowing GoldMine users to remain linked with their
external e-mail systems.

Page 39 of 463

Linking GoldMine to MS Word for Windows
The GoldMine DDE interface works with any Windows application that supports DDE; however, every application
uses a unique format for executing DDE calls and for responding to DDE requests. Explaining all of the various
methods to use DDE is beyond the scope of this manual. Instead, this document explores the use of DDE between
GoldMine and another popular Windows application, Word 97 for Windows. The examples presented should
provide a framework for creating DDE links to other applications.

NOTE: For details on installing the GoldMine DDE link to Word for Windows, see related material at:
http://www.goldmine.com.

Entering Application, Topic, and Item Names
To establish a DDE conversation with an application that supports DDE, you must know the application’s service
name. The GoldMine service name is GoldMine.

GoldMine supports two service topics:

○ SYSTEM: Queries a DDE server on supported data formats—for more information, see your Microsoft DDE
documentation.

○ DATA: Accesses all GoldMine DDE functions.

Specific GoldMine DDE functions are accessed by passing a DDE item string to GoldMine. The item can be a macro,
a command, or an expression.

DDE Parameters, Functions, Expressions, Macros

Service Topic Item

GOLDMINE SYSTEM <item>

GOLDMINE DATA &<macro>

GOLDMINE DATA <expression>

GOLDMINE DATA [<function>]

GoldMine DDE functions can process a variety of tasks, including database query and manipulation. Commands
are always passed surrounded by brackets. DDE functions are listed in Working with DDE Functions.

GoldMine can evaluate Xbase expressions by passing the expression as a DDE function call. For example, the
expression CONTACT1->CONTACT will return the contact name of the current contact record displayed in the
currently active contact record.

When a DDE item begins with an ampersand (&), GoldMine assumes that this item is a macro, and performs a
lookup into an internal macro expansion table. If a match is found, GoldMine evaluates the macro and returns the
result.

TIP: For a list of GoldMine DDE macros and their functions, see DDE Macros.

http://www.goldmine.com/goldmine-incredible-support/

Page 40 of 463

Establishing a DDE Conversation
The following example illustrates using Visual Basic for Applications (VBA) to establish a DDE conversation.

ch = DDEInitiate("GOLDMINE","DATA")

The DDEINITIATE function is used to establish the DDE link. The first parameter is the GoldMine service name; the
second parameter is the service topic on which this DDE conversation is based. If the call is successful, the
function returns a nonzero channel number to be used for all subsequent DDE requests to that channel. This
channel number should not be confused with the work area pointer that GoldMine uses for many DDE functions.

If the DDEINITIATE function returns 0, the conversation could not be established.

Note that the examples within this chapter are written in Visual Basic for Applications, and the DDEInitiate and
DDERequest functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest
method in a textbox. The following example illustrates how the DDE conversation is initiated and requests are
made in Visual Basic 6.0. The code can be written into a form that never gets displayed (only loaded) and be
included in any of your VB projects.

To Initiate a DDE Conversation

Public Function DDEInitiate() As Integer

On Error GoTo Err_DDE

With txtGMDDE
.LinkMode = vbLinkNone
.LinkTopic = "GoldMine|Data"
.LinkMode = vbLinkManual
End With

DDEInitiate = 1

Exit Function

Err_DDE:
If Err = 282 Then
DDEInitiate = 282
Else
Err.Description = "DDE Error:" & Err & " :" & Err.Description
DDEInitiate = 0
End If

End Function

Page 41 of 463

To Request Data

Public Function DDERequest(sExpr As String) As String

With txtGMDDE
.LinkItem = sExpr
.LinkRequest
DDERequest = .Text
End With

End Function

With these functions declared in your project, you may then call them where needed in your code.

Working with DDE Functions
GoldMine supports a variety of DDE functions, which are described in this section. Each function description
includes calling format, description of operation, and an example of a VBA subroutine using the function.

GoldMine DDE functions allow access to other files or functions. Three categories of DDE functions provide access
to the following:

○ Data files
○ Records
○ Specialized functions

Depending on the type of application involved, you would typically select one of these three access methods;
however, you can mix all three access methods within the same application. The function categories are described
on the following pages.

Accessing Data Files
GoldMine provides a complete set of DDE functions that allow low-level access to the data files. These functions
allow you to:

○ Open particular data files,
○ Query the values of the fields in the records in the data files,
○ Add records to the files, and
○ Replace data in the records.

This suite of functions is usually used for database applications that need varied access to GoldMine data.

Page 42 of 463

Adding an Empty Record

Syntax [APPEND(<work area>)]

The Append function is used to add an empty record to a GoldMine data file. Before using Append, you must open
a data file using the Open function. After executing the Append function, the record pointer is positioned at the
new empty record, and the record is locked and ready to accept field replacements.

When a CONTACT1 record is appended, GoldMine automatically propagates the new record with the appropriate
ACCOUNTNO and CREATEBY values. For all other records, you must replace the ACCOUNTNO field with the value
from the CONTACT1 record with which the new record is to be linked. For records that require remote
synchronization initialization, GoldMine will automatically propagate the value of the RECID field when these
records are appended.

Parameters

The Append function accepts one parameter, the work area handle of the file to Append. The work area handle is
returned by the Open file when the file is opened.

Return Value

○ Xbase: The Append function returns the record number of the new record, or 0 if the file could not be
locked.

○ SQL: The Append function returns the record ID.

Example

The following example demonstrates how to add a contact record in GoldMine via DDE.

Sub Main()
Dim sQ
Dim sWorkArea As String
Dim lChannel As Long
Dim sRet As String
sQ = Chr(34)
'Open a DDE channel
lChannel = DDEInitiate("GoldMine", "Data")
sWorkArea = DDERequest(lChannel, "[Open(Contact1)]")
If sWorkArea <> "0" Then 'Database was opened
'Append a new record to Contact1
sRet = DDERequest(lChannel, "[Append(" + sWorkArea + ")]")
If sRet <> "0" Then 'Record was Appended
StatusBar = "New Record Added"
'Replace Company name with "New Record"
sRet = DDERequest(lChannel, "[Replace(" + sWorkArea + "," + sQ(34) +

"Company" + sQ(34) + "," + sQ + "NewRecord" + sQ + ")]")
If sRet = "1" Then
StatusBar = "Replaced complete"
Else
StatusBar = "Replaced Failed"
End If
'Unlock and Close the record

Page 43 of 463

sRet = DDERequest(lChannel, "[Unlock(" + sWorkArea + ")]")
sRet = DDERequest(lChannel, "[Close(" + sWorkArea + ")]")
Else
StatusBar = "Error Opening Contact1"
End If
End If
'Terminate the DDE Channel
DDETerminate (lChannel)
End Sub

Closing an Opened File

Syntax [CLOSE(<work area>)]

The Close function is used to release a previously OPENed file when processing is complete. When access is
complete, a file must be CLOSEd to release memory used by GoldMine to maintain database work areas.

Parameters

The Close function accepts one parameter—the work area handle of the file to close. The Open file returns the
work area handle when the file is opened.

Return Value

The Close value returns 1 if the function was able to successfully close the work area, 0 if an invalid work area
handle was passed.

Example

See Adding an Empty Record .

Deleting the Current Record

Syntax [Delete(<work area>)]

The Delete function deletes the current record in the specified work area. The record pointer is not advanced to
the next record.

Parameters

The Delete function takes one parameter—the work area value obtained from the Open function.

Example

DDERequest(lChannel, "[Delete(" + sWorkArea + ")]")

Creating a Subset of Records

Syntax [FILTER(<work area>,<expression>)]

The Filter function limits access to data in a GoldMine database by creating a subset of records based on
expression criteria.

Page 44 of 463

Parameters

The Filter function takes two parameters. Enclose each parameter in quotation marks (“).

The first parameter is the work area handle of the file that you want to read. The Open function provides this
value when the data file is opened.

The second parameter is a valid Xbase expression.

TIP: To remove the filter from the database, use a Filter function with an empty string, such as
[FILTER(<work area>,"")].

Example

This example will scan the current contact’s history for all activities completed by a specific user. It works by first
setting the Range of history to a specific contact via the AccountNo. Once the range is set, the Filter is applied to
“see” only records for a specific user within that range.

Sub Main()
Dim lChannel As Long
Dim sRet As String
Dim sWorkArea As String
Dim sQ As String
Dim sAccNo As String
Dim sUser As String
Dim bEOF As Boolean
Dim Counter As Integer

'Initialize some variables
Counter = 0
sQ = Chr(34)

'Get user input
sUser = InputBox("Enter a GoldMine username below.")
'Uppercase and pad the username
sUser = UCase(Left$(sUser + " ", 8))
'Start DDE Conversation with GoldMine
lChannel = DDEInitiate("GoldMine", "Data")
'Get the current AccountNo
sAccNo = DDERequest(lChannel, "Contact1->AccountNo")
'Open the ContHist file
sWorkArea = DDERequest(lChannel, "[Open(CONTHIST)]")
'If WorkArea is valid then do our thing
If sWorkArea <> "0" Then
'Set the hi/lo range to the AccountNo
sRet = DDERequest(lChannel, "[Range(" + sQ + sWorkArea + sQ + "," + sQ +

sAccNo + sQ + "," + sQ + sAccNo + sQ + ", 33)]")
'Set the filter to only return matches where user is a match
sRet = DDERequest(lChannel, "[Filter(" + sQ + sWorkArea + sQ + "," + sQ +

"USERID='" + sUser + "'" + sQ + ")]")
'Go to the Top record
sRet = DDERequest(lChannel, "[Move(" + sQ + sWorkArea + sQ + ", TOP)]")
'Determine if we have at least one match

Page 45 of 463

If sRet <> "1" Then 'no matches
bEOF = True
Else 'We have at least one match
Do
'Increment the counter
Counter = Counter + 1
'Go to the next record
sRet = DDERequest(lChannel, "[Move(" + sQ + sWorkArea + sQ + ", SKIP)]")
'Determine if we have run out of matching records
If sRet <> "1" Then bEOF = True
Loop Until bEOF = True 'Loop until no more matching records
End If
'Close WorkArea
sRet = DDERequest(lChannel, "[Close(" + sQ + sWorkArea + sQ + ")]")
'Display results
MsgBox (Str$(Counter) + " history records for this contact have a User =

'" + sUser + "'")
End If
'Close DDE channel
DDETerminate (lChannel)
End Sub

Checking for an Xbase or SQL Table

Syntax [IsSQL (<work area>)]

The IsSQL function returns the table type (Xbase or SQL) that is open in a work area. Using this DDE command, you
can determine the most appropriate method to retrieve information when working with DataStream—see
Returning GoldMine Record Data . For example, when your routine starts, you can open Contact1 and Cal, issue an
IsSQL command to determine the GoldDir and CommonDir database types, and then close both work areas. You
can then send the appropriate DataStream calls.

Parameters

The IsSQL function takes work area as the only parameter.

Return Values

IsSQL returns 1 for an SQL database table, or 0 for an Xbase file.

Moving to a Specified Record

Syntax [MOVE(<work area>,<subfunction>,<scope>)]

The Move function will position the record pointer to a particular record in a data file. Before using Move, you
must open a data file using the Open function.

Parameters

The Move function requires either two or three parameters.

Page 46 of 463

The first parameter is the work area handle of the file whose record pointer you want to position. The Open
function provides this value when the data file is opened.

The second parameter is the name of the Move subfunction that you want to perform.

Depending on the subfunction, a third parameter can be required. The following table lists the Move subfunctions
and the requirements for the third parameter:

Valid Move Subfunctions

Subfunction Description 3rd Parameter

TOP Move to first logical record Not required

BOTTOM Move to last logical record Not required

SKIP Skip records Optional, records to skip

GOTO Go to a specific record Record number (Xbase), Record ID (SQL)

SEEK Seek a specific record by key Search key value

SETORDER Select an index Index name

Top Positions the record pointer at the first logical record according to the current index order. For
example, if the data file open in the selected work area is CONTACT1.DBF, and the index order
is set to Company, a call to TOP will result in the record pointer being positioned at a record
with a company name, such as AAA Cleaners.

Bottom Positions the record pointer at the last logical record according to the current index order. For
example, if the data file open in the selected work area is CONTACT1.DBF, and the index order
is set to Company, a call to BOTTOM will result in the record pointer being positioned at a
record with a company name, such as Z-best Bakery.

Skip

Moves the record pointer record by record. If SKIP is called without the third parameter, it will
move the record pointer to the next logical record according to the current index order. If SKIP
is called with a string numeric as the third parameter, the record pointer will be moved
forward by the indicated number if the value is positive, or backward if the value is negative.
Negative numbers must be passed in quotation marks, for example “-1”.

Goto
Positions the record pointer at the record number (Xbase) or record ID (SQL) specified by a
string numeric passed as the third parameter.

Seek Attempts to locate a record in the data file with an index key that matches the string passed as
the third parameter. Partial key searches are allowed; GoldMine will position the record
pointer at the record with the key that most closely matches the passed value.

Setorder Selects an active index for ordering and seeking the data file. See SQL Database Structures for
the appropriate values and collating sequence for each data file index.

Page 47 of 463

TIP: If an invalid index is selected for the data file, none of the MOVE subfunctions will operate
properly.

Return Value

The Move function can return several values.

Move Return Values

Return Description

0 Error occurred

1 Record pointer successfully moved, or index selected

2 Exact match not found, pointer positioned at closest match

3 Record pointer positioned at end-of-file (EOF)

4 Record pointer positioned at beginning-of-file (BOF)

An error can be returned under any of the following conditions:

○ Invalid work area handle is passed to the function.
○ Invalid subfunction is passed.
○ Out-of-range record number is passed.
○ Nonnumeric value is passed as a third parameter when a numeric value is expected.

Example

The following example will open Contact1, perform various Move operations, and display the resulting contact
name between Moves.

Note that the example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()
Dim lChannel As Long
Dim sWorkArea As String
Dim sRet As String
Dim iX As Integer
Dim sSeekVal As String
Dim sQ As String

sQ = Chr(34)
lChannel = DDEInitiate("GoldMine", "Data")
sWorkArea = DDERequest(lChannel, "[Open(Contact1)]")

'Goto Top of Database
sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ",Top)]")
MsgBox ("Top: Contact=" + DDERequest(lChannel, "[Read(" + sWorkArea + ",

Contact)]"))
'Skip forward 1 record

Page 48 of 463

sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ", SKIP)]")
MsgBox ("SKIP: Contact=" + DDERequest(lChannel, "[Read(" + sWorkArea + ",

Contact)]"))

'Skip X record (x=5)
iX = 5
sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ",SKIP," + Str(iX) +

")]")
MsgBox ("Skip 5: Contact=" + DDERequest(lChannel, "[Read(" + sWorkArea +

", Contact)]"))

'Goto Bottom of Database
sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ", Bottom)]")
MsgBox ("Bottom: Contact=" + DDERequest(lChannel, "[Read(" + sWorkArea +

", Contact)]"))

'Skip back 1 record (Note: the -1 must be enclosed in quotes)
sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ", Skip, " + sQ + "-1"

+ sQ + ")]")
MsgBox ("Skip -1: Contact=" + DDERequest(lChannel, "[Read(" + sWorkArea +

", Contact)]"))

'Goto Record 10
sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ", Goto, 10)]")
MsgBox ("Goto: Contact=" + DDERequest(lChannel, "[Read(" + sWorkArea + ",

Contact)]"))

'Seek for a Company
sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ",SetOrder, 16)]")
sSeekVal = UCase(InputBox("Enter a Company to search for"))
sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ",Top)]")
sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ", Seek, " + sQ +

sSeekVal + sQ + ")]")
MsgBox ("Seek: Contact=" + DDERequest(lChannel, "[Read(" + sWorkArea + ",

Contact)]"))

ret = DDERequest(lChannel, "[Close(" + sWorkArea + ")]")
DDETerminate (lChannel)
End Sub

Opening a Data File

Syntax [OPEN(<tablename>)]

The Open function is used to open a GoldMine data file for processing by another application. This function must
be called before calling any GoldMine DDE functions that work with an individual data file. It is not necessary to
use this function when calling the RecordObj function, because this function opens the necessary data files
automatically.

Page 49 of 463

Parameters

The Open function takes one parameter—the name of the file to open. The following values are valid for this
parameter:

Open Valid Parameters

File Description

CAL Calendar activities file

CONTACT1 Primary contact information file

CONTACT2 Primary contact information file

CONTGRPS Groups file

CONTHIST History records file

CONTSUPP Supplementary records file

INFOMINE InfoCenter file

LOOKUP Lookup file

MAILBOX E-mail Center mailbox file

OPMGR Opportunity Manager file

PERPHONE Personal Rolodex file

RESOURCE Resources file

SPFILES Contact files directory

Return Value

The Open function returns an integer value representing the handle to the file’s work area. This value is required
for all subsequent access to the file. If the file could not be opened, or an invalid parameter is passed, the function
will
return 0.

Example

See Adding an Empty Record .

Limiting GoldMine Search Range

Syntax [RANGE(<work area>,<minimum>,<maximum>,<tag>)]

The Range function activates the index in a table and sets a range of values to limit the scope of data that
GoldMine will search.

Page 50 of 463

Parameters

The Range function requires four parameters.

The first parameter is the work area handle of the file that you want to read. The Open function provides this
value when the data file is opened.

The second parameter is the minimum value of the range. Enclose this parameter in quotation marks (“).

The third value is the maximum value of the range. Enclose this parameter in quotation marks (“).

The fourth value is the tag that corresponds to the index file. For details about tags, see SQL Database Structures.

Example

See Creating a Subset of Records

Reading a Field Value

Syntax [READ(<work area>,<field>)]

The Read function is used to query a data file for the value of a field. Before using Read, you must open a data file
using the Open function. In addition, you will probably want to position the record pointer to the record you want
to query by using the Move function.

Parameters

The Read function requires two parameters.

The first parameter is the work area handle of the file that you want to read. The Open function provides this
value when the data file is opened.

The second parameter is the name of the field in the data file whose value you want to query. You will normally
pass only a single field name, such as CONTACT as the second parameter. However, if you pass a field expression,
such as “COMPANY + CONTACT” GoldMine will attempt to evaluate the expression and return the value of the
expression. When an expression is passed as the second parameter, the expression must be surrounded by
quotation marks.

Return Value

The Read function returns a character string containing the value in the specified field, or the value of the
specified expression. If an error occurs, the Read function returns a null string. The error could be caused by an
invalid work area handle, an invalid field being passed, or an expression that GoldMine could not evaluate.

Example

See Moving to a Specified Record

Checking the Current Record Number or Record ID

Syntax [RECNO(<work area>)]

○ Xbase: RecNo function is used to determine current record number position.
○ SQL: RecNo function is used to determine the record ID.

Page 51 of 463

Parameters

The RecNo function accepts one parameter—the work area handle of the file. The work area handle is returned by
the Open file when the file is opened.

Return Value

The RecNo function returns the current record number position, 0 if an invalid work area handle was passed.

Example

The following example will get the current Contact1 RecNo and display it in the GoldMine status bar.

Note that the example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()
Dim lChannel As Long
Dim sWorkArea As String
Dim sRet As String
Dim sRecNo As String
Dim sQ As String

sQ = Chr(34)
lChannel = DDEInitiate("GoldMine", "data")
sWorkArea = DDERequest(lChannel, "[Open(Contact1)]")
sRecNo = DDERequest(lChannel, "[RecNo(" + sWorkArea + ")]")
sRet = DDERequest(lChannel, "[Close(" + sWorkArea + ")]")
sRet = DDERequest(lChannel, "[StatusMsg(" + sQ + "RecNo=" + sRecNo + sQ +

")]")
MsgBox ("GoldMine's status bar should now display the RecNo ")
End Sub

Changing a Field Value

Syntax [REPLACE(<work area>,<field>,<value>,<append>)]

The Replace function is used to change the value in a particular field in one GoldMine data file. Before using
Replace, you must open a data file using the Open function. In addition, you will probably want to position the
record pointer to the record you want to change either by using the Move function, or by adding a new record
with the Append function.

After executing the Replace function, GoldMine will update the specified field with the new value, and update the
appropriate remote synchronization data structures to indicate that the field was changed.

In a network environment, GoldMine automatically locks the record before performing the replacement. The
record is not automatically unlocked, allowing for fast multiple field replacements. The record is automatically
unlocked when a Close, Move, or Unlock command is issued on the work area.

Parameters

The Replace function requires three parameters and has an optional fourth parameter.

Page 52 of 463

The first parameter is the work area handle of the file in which you want to perform the replacement. The Open
function provides this value when the data file is opened.

The second parameter is the name of the field to be replaced. See SQL Database Structures for information on the
name of fields in each GoldMine data files. If you attempt to replace a field that does not exist in the file open in
the specified work area, the Replace function will fail.

The third parameter is the value to replace. This value must be enclosed in quotation marks. The replace value
must be a string value. If the replacement field is a date or numeric field, GoldMine will convert the string data to
the appropriate data type prior to performing the replacement.

The fourth parameter will add data instead of replacing data. Using this parameter, you can insert large amount of
text into a notes field. To append instead of replace incoming data from the third parameter, pass 1 as the fourth
parameter. You can set up a loop to feed notes in 256-byte segments to override the 256-byte limit for inbound
DDE requests.

Return Value

If the file was replaced, the Replace function returns 1. If the field could not be replaced, 0 is returned. The failure
can be caused under any of the following conditions:

○ Invalid parameter, such as an invalid work area handle.
○ Invalid field name.
○ Record already locked by another user.

Example

See Adding an Empty Record .

Performing a Sequential Search

Syntax [SEARCH(<work area>,<expression>,<index>)]

The Search function is used to perform a sequential search on a file. Unlike Move, Search scans the table, one
record at a time, looking for a record that satisfies the search condition. The search condition can be any Xbase
expression that GoldMine understands, but is usually an expression that tests the value of one or more fields in
the file. When a match is found, the record pointer is located at the matching record.

Search starts with the record that immediately follows the current record (the next logical record according to the
selected index order) and continues until a match is found or the end of file is encountered. Because of this,
Search can be called repeatedly to return a list of records that satisfy the search condition.

Parameters

The Search function takes three parameters.

The first parameter is the work area handle of the file you want to search. The Open function provides this value
when the data file is opened.

The second parameter is the search expression, such as "CITY='Los Angeles'"
The expression must be surrounded by quotation marks, and any string literal characters with the expression must
be surrounded by single quotes (').

Page 53 of 463

The third parameter is the optional index order to use when searching the data file. When this parameter is not
specified, the data file is searched by record number (physical) order. See Xbase Database Structures for the
appropriate values and collating sequence for each data file’s indexes.

NOTE: If an invalid index is selected for the data file, the Search function will not operate properly.

Return Value

The Search function can return several values.

Search Return Values

Return Description

0 Error occurred or match could not be found

>1
Match found; return value indicated current physical record number (Xbase) or
record ID (SQL)

An error can be returned if an invalid work area handle is passed to the function, or if an invalid search condition
is passed.

Example

The following example will prompt the user for a city name, then display the contact name for the first matching
record.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()
Dim lChannel As Long
Dim sWorkArea As String
Dim sRet As String
Dim sSeekVal As String
Dim sQ As String
sQ = Chr(34)
lChannel = DDEInitiate("GoldMine", "Data")
sWorkArea = DDERequest(lChannel, "[Open(Contact1)]")

'Search for a City
sSeekVal = UCase(InputBox("Enter a City to search for"))
sRet = DDERequest(lChannel, "[Move(" + sWorkArea + ",Top)]")
sRet = DDERequest(lChannel, "[Search(" + sWorkArea + "," + sQ + "Upper

(CITY)='" + sSeekVal + "'" + sQ + ")]")
If sRet = "" Then
MsgBox ("Search: No Match")
Else
MsgBox ("Search: Contact=" + DDERequest(lChannel, "[Read(" + sWorkArea +

", Contact)]"))
End If

Page 54 of 463

ret = DDERequest(lChannel, "[Close(" + sWorkArea + ")]")
DDETerminate (lChannel)
End Sub

Unlocking a Record

Syntax [UNLOCK(<work area>)]

The Unlock function unlocks a record previously locked by a call to either Append or Replace. GoldMine does not
specifically release a lock on a record until you call Unlock, allowing you to perform multiple field replacements
quickly. Before using Unlock, you must open a data file using the Open function.

After calling Unlock, GoldMine will also update the remote synchronization data structures to indicate the date
and time that the record was modified.

Parameters

The Unlock function accepts one parameter—the work area handle of the file to close. The work area handle is
returned by the Open file when the file is opened.

Return Value

The Unlock function returns 1 if the record was unlocked, or 0 if an invalid work area handle was passed to the
function.

Example

See Adding an Empty Record

Accessing Contact Records
For specific applications that need access to the GoldMine contact database at the logical level, the RecordObj
function is the preferred access method. Unlike the low-level DDE functions, the RecordObj function maintains all
of the relationships between the various GoldMine files. This access method is most often used for document
merging functions such as word processor mail merges or placing information into a spreadsheet.

Linking GoldMine Fields with an External Application

Syntax [RECORDOBJ(<subfunction>,<scope>)]

The RecordObj function is a specialized function designed to link DDE fields in a document application, such as a
word processor or spreadsheet. Using RecordObj, an application can access the contact record in a high-level
fashion, rather than opening the CONTACT1.DBF and CONTACT2.DBF files using Open.

Calling RecordObj within a DDE program is equivalent to viewing and manipulating the contact record within
GoldMine. The calling program can control the record pointer in the contact record much the same way a
GoldMine user can move the record pointer. In fact, RecordObj can be called in such a way as to create a
minimized contact record in the GoldMine work area display.

The primary differences between using Open, Move, and Read to access contact information and using RecordObj
are described in the following table.

Differences in Accessing Contact Information

Page 55 of 463

Using Open, Move, Read Using RecordObj

Any filter or group that is active on a contact record
in GoldMine is ignored when files are accessed using
Open and Move

RecordObj can work in conjunction with a filter or group.
Any records that do not match the filter expression, or
are not members of the group, are skipped

The only way to maintain the relationship between
the CONTACT1 and CONTACT2 files, is to manually
reposition CONTACT2 whenever the record pointer
is moved in CONTACT1.DBF.

Automatically maintains the relationship between
CONTACT1 and CONTACT2, and other contact
information such as history.

RecordObj does not contain a method to read specific
fields from the database. It is expected that the
application will use DDE link fields or the Expr function to
query information from the database, and use RecordObj
function calls only to position the record pointer.

When RecordObj is used to move the record pointer, the
contact record screen in GoldMine is updated, and a DDE
Warm Link Advise message is sent to all DDE link fields,
automatically updating these fields with the new contact
information.

Parameters

The RecordObj function requires either one or two parameters.

The first parameter is the name of the RecordObj subfunction that you want to perform.

Depending on the subfunction, a second parameter can be required. The following table lists the RecordObj
subfunctions and the requirements of the second parameter.

Valid RecordObj Functions

Subfunction Description 2nd Parameter

SETOBJECT Create or select contact record Optional object pointer

TOP Move to first logical record Not required

BOTTOM Move to last logical record Not required

SKIP Skip records Optional, recs to skip

SEEK Seek a specific record by key Search key value

SETORDER Select an index Index tag number

GETORDER Return the currently active index name Not required

SETTITLE Set the contact record title Text of title

Page 56 of 463

CLOSEWINDOW Close the contact record None

SETRECORD Change the behavior of SKIP, TOP, and bottom Name of data structure to be queried

REFRESH Repaint the contact record Not required

GETRP Return the point to the current contact record
(Xbase) or the record ID (SQL)

Not required

GETFILTEREXPR Get the activated filter’s expression Not required

GETGROUPNO Get the GroupNo of the activated group Not required

Setobject The SetObject call must be called prior to calling any other RecordObj subfunction to
specify the contact record that subsequent RecordObj calls will manipulate.If
SetObject is called without a second parameter, subsequent calls to RecordObj will
manipulate the currently active contact record. The user can change the active
contact record in GoldMine while the DDE conversation is active, but this will not
affect the contact record that is linked to the RecordObj function.If SetObject is called
with a second parameter of 0, GoldMine will create a minimized contact record in the
work area display, and subsequent calls to RecordObj will manipulate that contact
record. If SetObject is called with a second parameter of 1, GoldMine will create a
minimized contact record in the work area display and copy any filter or group active
on the last used contact record into the newly minimized contact record.If RecordObj
is called with a specific pointer number, GoldMine will attempt to establish a link with
that contact record. A client application can obtain this pointer only when using the
GoldMine document merging feature, when GoldMine, acting as a DDE client, passes
this long pointer as the seventh parameter.

Top Positions the record pointer at the first logical record according to the current index
order. For example, if the contact record index order is set to Company, a call to Top
will result in the record pointer being positioned at a record with a company name
such as “AAA Cleaners.” GoldMine will also update the contact record to display the
new record.

Bottom

Positions the record pointer at the last logical record according to the current index
order. For example, if the contact record index order is set to Company, a call to
Bottom will result in the record pointer being positioned at a record with a company
name such as “Z-best Bakery.” GoldMine will also display the new record.

Page 57 of 463

Skip

The Skip subfunction moves the record pointer on a record-by-record basis.If Skip is
called without the second parameter, it will move the record pointer to the next
logical record according to the current index order.If Skip is called with a string
numeric as the second parameter, the record pointer will be moved forward by the
indicated number of records if the value is positive, or backwards if the value is
negative. Negative numbers must be passed in quotation marks, for example “-1.”
GoldMine will also update the display to show the new record.The Skip subfunction is
sensitive to any filter or group that can be active on the contact record in GoldMine.
For example, if the user applies a filter to the contact record in GoldMine, the Skip
subfunction will skip over any records that do not match the filter expression.

Goto The Goto subfunction positions the record pointer at the record number specified by
a string numeric passed as the second parameter.

Seek Attempts to locate a record in the data file with an index key that matches the string
passed as the second parameter. Partial key searches are allowed, and GoldMine will
position the record pointer at the record with the key that most closely matches the
passed value. GoldMine will update the display to show the new record.

Setorder
Selects an active index for ordering and SEEKing the contact database. Only the twelve
CONTACT1 indexes can be used for this subfunction. See Xbase Database Structures
for the appropriate values and collating sequence for each data file’s indexes.

Getorder
Returns the active index being used to sort the contact records. See Xbase Database
Structures for the appropriate values and collating sequence for each data file’s
indexes.

Settitle Changes both the text in the title bar of the contact record’s window and the text
displayed below a minimized contact record. For example, a DDE application that
merges contact records within a document can modify the contact record title to
indicate the number of records that have been merged. Any text that is passed as the
second parameter must be enclosed in quotation marks, and will be used as the new
title’s text.

Closewindow Closes the contact record when processing is complete. Issuing this call is equivalent
to selecting Close from the contact record’s system menu.

Setrecord

Changes the behavior of the Skip, Top, and Bottom subfunctions to allow ancillary
contact information (such as additional contacts) to be queried using the RecordObj
function. Normally, GoldMine assumes the CONTACT1 data file to be the parent data
file, and when the Skip, Top, or Bottom subfunction is called, the record pointer is
repositioned in this data file. When accessing information in GoldMine tabs, however,
the Skip, Top, and Bottom subfunctions must be able to reposition the record pointer
in the data file that stores these items (CONTSUPP).The SetRecord subfunction
accepts the name of the data structure being queried as the second parameter. Valid
data structure names are listed in the following table.

Setrecord Valid Structure Names

Page 58 of 463

Data Structure Name Description

CONTACTS Additional contacts

PROFILE Profile records

REFERRALS Referral records

LINKS Linked documents

PRIMARY Primary contacts

Using SetRecord changes the behavior of the Skip, Top, and Bottom subfunctions.

The first parameter is the name of the RecordObj subfunction that you want to perform. When Top is called,
GoldMine will position the record pointer in the supplementary data file so that the first record containing the
selected information is the current record. For example, if SetRecord is used to select CONTACTS, Top will position
the record pointer on the first additional contact record for the current contact. The record pointer in the primary
information data file (CONTACT1) will not be moved, so the name of the current company will remain the same.
Bottom behaves in a similar manner.

Skip will position the record pointer in the supplementary file on the next record of the selected type. For example, if
SetRecord is used to select CONTACTS, Skip will position the record pointer in the supplementary file on the next
additional contact record for the current contact. The record pointer in the primary information data file
(CONTACT1) will not be moved, unless the record pointer in the supplementary file was already positioned at the
last record of the selected type; then GoldMine will reposition the record pointer in the primary information data
file (CONTACT1) to the next contact record and reset the record pointer in the supplementary file to the first
supplemental record of the selected type. DDE macros are also sensitive to the setting of the SetRecord subfunction
(see DDE Macros.)

Refresh Repaints the contact record

GetRP Obtains a pointer of the currently selected contact record

GetGroupNo Returns the group number (if a group is activated)

GetFilterExpr Returns the filter expression (if a filter is activated)

Return Value

All RecordObj subfunctions return 1 if the function was completed successfully or 0 if an internal error occurred.

Example

The following example will count the number of additional contacts for the current contact.

Note that the example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()
Dim lChannel As Long

Page 59 of 463

Dim sAccountNo As String
Dim sRet As String
Dim sANRT As String
Dim iAddCount As Integer

lChannel = DDEInitiate("GoldMine", "Data")
sAccountNo = DDERequest(lChannel, "Contact1->AccountNo")
sRet = DDERequest(lChannel, "[RecordObj(SetObject, 1)]")
sRet = DDERequest(lChannel, "[RecordObj(SetRecord, Contacts)]")
sRet = DDERequest(lChannel, "[RecordObj(Top)]")
sANRT = DDERequest(lChannel, "Trim(ContSupp->AccountNo)+Trim(ContSupp-

>RecType)")
iAddCount = 0
While sANRT = sAccountNo + "C"
iAddCount = iAddCount + 1
sRet = DDERequest(lChannel, "[RecordObj(Skip)]")
sANRT = DDERequest(lChannel, "Trim(ContSupp->AccountNo)+Trim(ContSupp-

>RecType)")
Wend
sRet = DDERequest(lChannel, "[RecordObj(CloseWindow)]")
MsgBox (Str(iAddCount) + " Additional Contacts")
DDETerminate (lChannel)
End Sub

Accessing Specialized DDE Functions
GoldMine provides a set of specialized functions for performing specific tasks, such as adding document links to
the contact database or sending GoldMine a CallerID message.

Retrieving Login Credentials for Use with the GMXS32.DLL

Syntax [GetLoginCredentials]

GoldMine Version 5.70.20222

The GetLoginCredentials function is used to retrieve a string containing login credentials to be used for logging
into the GMXS32.DLL through the GMW_LoadAPI, GMW_LoadBDE or GMW_Login functions. Using this option, it is
not necessary to prompt the integration user for login information if GoldMine is running. The login credentials
received are only valid for 30 seconds, so do not store them and attempt to use them at a later time. The string
returned by this command should be used as the password to the appropriate login function, where the username
is “*DDE_LOGIN_CREDENTIALS*”.

Example

This example retrieves various parameters from GoldMine and passes them to the GMW_LoadAPI or GMW_
LoadBDE function in the GMXS32.DLL.

The following example is written in Visual Basic 6.0 using the DDEInitiate and DDERequest functions defined in
Establishing a DDE Conversation.

With frmDDE

iResult = .DDEInitiate

Page 60 of 463

If iResult Then

frmPaths.txtSysFolder = .DDERequest("&SysDir")

frmPaths.txtGoldDir = .DDERequest("&GoldDir")

frmPaths.txtCommonDir = .DDERequest("&CommonDir")

sLoginCredentials = .DDERequest("[GetLoginCredentials]")
lResult = GMW_LoadBDE(frmPaths.txtSysFolder, frmPaths.txtGoldDir, _

frmPaths.txtCommonDir, “*DDE_LOGIN_CREDENTIALS*", _

sLoginCredentials)
End With

Retrieving the RecID of the Current Opportunity

Syntax [GetActiveOppty]

GoldMine Version 5.70.20222

The GetActiveOppty function is used to retrieve the RecID of the currently selected Opportunity in the
Opportunity Manager.

Return Value

The GetActiveOppty function returns the record ID of the currently selected opportunity. If no opportunity is
available, an empty string is returned.

Example

The following example reads the currently selected Opportunity’s record ID and displays the value in a message
box.

The following example is written in Visual Basic 6.0 using the DDEInitiate and DDERequest functions defined in
Establishing a DDE Conversation.

With frmDDE

iResult = .DDEInitiate

If iResult Then

sResult = .DDERequest("[GetActiveOppty]")

MsgBox sResult

End If

End With

Completing a Calendar Activity

Syntax [CalComplete(<RecNo>,<ActvCode>,<ResultCode>, <User>,<Ref>,<Notes>,<RetainDate>)]

The CalComplete function is used to complete an activity from the Calendar.

Parameters

The CalComplete function takes up to seven parameters. All parameters must be passed in quotation marks.

The first parameter is the record number of the calendar activity to be completed.

The second parameter is the Activity Code. This parameter is optional.

Page 61 of 463

The third parameter is the Result Code. This parameter is optional.

The fourth parameter is the User. If this parameter is not specified, the User field defaults to the currently logged
user.

The fifth parameter is the history Reference. This parameter is optional.

The sixth parameter is the Notes for the history record. This parameter is optional.

The seventh parameter indicates whether the function should retain its original date, or use the current
date/time. To retain the original date, set this value to 1.

Return Value

The CalComplete function returns the record number (Xbase) or record ID (SQL) of the new history record created.

Example

This example will open the CAL file, read the current RecNo (Xbase), or RecID (SQL), and complete the record to
History.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()
Dim lChannel As Long
Dim sRet As String
Dim sRecNo As String
Dim sHRecNo As String
Dim sWorkArea As String
Dim sQ As String

sQ = Chr(34)
lChannel = DDEInitiate("GoldMine", "Data")

sWorkArea = DDERequest(lChannel, "[Open(CAL)]")
sRecNo = DDERequest(lChannel, "[RecNo(" + sQ + sWorkArea + sQ + ")]")
sHRecNo = DDERequest(lChannel, "[CalComplete(" + sQ + sRecNo + sQ + ")]")
MsgBox ("New History Record Number: " + sHRecNo)
DDETerminate (lChannel)
End Sub

Displaying the Contact Record of an Incoming Caller

Syntax [CALLERID(<telephone>,<message>,<display dialog>)]

[CallerIDAll(<phone>, <message>, <displayDlg>, <bUPhone>)]

The CallerID and CallerIDAll functions are used to inform the GoldMine user that an incoming call has been
identified by Automatic Number Identification (ANI) equipment attached to the telephone system. By using the
caller ID functions, GoldMine can perform a lookup on the contact database, and attempt to locate a contact
record with a telephone number that matches the telephone number extracted by the ANI device.

Page 62 of 463

With the caller ID functions, GoldMine can automatically display the contact record of the caller. A dialog box is
displayed, allowing the user to select an action. A CallerID function parameter is used to specify the message in
the dialog box.

The two functions perform the same functionality with the difference of the CallerIDAll command will search all
phone numbers for the contact record (except FAX), instead of just the Phone1 field.

Parameters

The caller ID functions accept three parameters. The CallerIDAll function accepts a fourth parameter that the
CallerID function does not:

The first parameter is the telephone number of the caller as captured by the ANI device. The calling application is
responsible for formatting the telephone number that appears in the Phone1 field in GoldMine. Enclose this
parameter in quotation marks (“).

The second parameter is the optional message to be displayed in the dialog box in GoldMine. Enclose this
parameter in quotation marks (“).

The third parameter specifies whether the dialog box is displayed. This parameter is the sum of the required
options. For example, to display the caller’s contact record in the current window if the record is found, or to
display the contact listing if the caller’s phone number is not found, specify 6 (2+4) as the <display dialog>
parameter. The following table lists valid parameter values.

CallerID Parameters

Value Description

0 Dialog box is displayed (default when third parameter is not passed)

1 Dialog box is not displayed, and contact record is displayed in a new contact record

2 Dialog box is not displayed, and contact record is displayed in the current contact record

4 Contact Listing is displayed when GoldMine cannot find the contact’s telephone number. To
activate this option, add this value to the third parameter value.

8 Restores input focus to the window that had input focus just before CALLERID is called—used by
applications that control the entire interface.

The fourth parameter that is only accepted by the CallerIDAll function is whether or not to search the UPhone
fields stored in Contact2. Set to 1 to search the UPhone fields, or 0 to omit the UPhone fields.

Return Values

CallerID Return Values

Return Description

0 Error occurred

1 Contact record found

Page 63 of 463

2 Contact record not found

Example

The following example demonstrates the CallerID function.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()

Dim lChannel As Long

Dim sRet As String

Dim sPhone As String

Dim sQ As String
sQ = Chr(34)

lChannel = DDEInitiate("GoldMine", "Data")

sPhone = InputBox("Enter Phone to Look Up. Format:(###)###-####")

sRet = DDERequest(lChannel, "[CallerID(" + sQ + sPhone + sQ + ")]")

End Sub

Running a Counter

Syntax [COUNTER(<string>,<inc>,<start>,<action>)]

The Counter function returns a sequence of consecutive numbers each time the expression is evaluated.

Parameters

The counter name must be unique, and can be a maximum of 10 characters. Each evaluation of the Counter
function increments the counter by the <inc> value.

The <start> and <action> parameters are optional. When <action> is 1, the start value resets the counter. When
<action> is 2, the counter is deleted. Counter stores the count value between GoldMine sessions, and it is shared
by all GoldMine users.

GoldMine can track an unlimited number of uniquely named counters. The counter values are stored in the
LOOKUP table.

Return Value

The Counter function returns a number incremented by <inc>.

Example

[Counter(“InvoiceNo”,1,1000)]

Returning GoldMine Record Data

Syntax [DATASTREAM(<subcommand>,<parameter>)]

Page 64 of 463

DataStream returns the data of ordered records from any GoldMine table using the most efficient method
possible. The caller can specify the fields and expressions to return, as well as the range of records to return. A
filter can optionally be applied to the data set.

The DataStream method allows for many useful applications. One example would be to publish the contents of
GoldMine data on the Internet by merging HTML templates with the data returned by DataStream. Web pages can
be created to display GoldMine data requested by a visitor. Based on the visitor’s selections, a company could
dynamically present a variety of HTML pages, such as:

○ Addresses of product dealers in a particular city
○ Financial numbers stored in Contact2
○ Seating availability of upcoming conferences

With a fast Internet connection and a strong SQL server, the GoldMine client could simultaneously respond to
dozens of requests.

Record Selection

The DataStream command consists of four subcommands. Each subcommand takes different parameters. The
subcommands are shown below, in the order in which they must be called:

[DataStream("range", sTable, sTag, sTopLimit, sBotLimit, sFields, sFilter, sFDlm, sRDlm)]
[DataStream("query", sSQL, sFilter, sFDlm, sRDlm)]
[DataStream("fetch", nRecords, iHandle)]
[DataStream("close", iHandle)]

The “range” or “query” subcommands must be called first to request the data. The “range” and “query”
subcommands return an integer handle, iHandle, which must be passed to the “fetch” and “close” subcommands.
You must use either “range” or “query”—not both.

[DataStream("range", sTable, sTag, sTopLimit, sBotLimit, sFields, sFilter, sFDlm, sRDlm)]

Parameters

The sTable, sTag, sTopLimit, and sBotLimit parameters determine the range of records to scan, similar to the DDE
SETRANGE command. The sFields parameter specifies the requested fields and expression to return.

The sField parameter passed to the “range” subcommand should consist of the field names and Xbase expressions
to evaluate against each record in the data set. Each field must be terminated with the semicolon (;) character.
Xbase expressions must be prefixed with the ampersand (&) character and terminated with a semicolon.

The other “range” parameters are optional.

Return Value

The “range” subcommand returns a range of records based on an index.

[DataStream("query", sSQL, sFilter, sFDlm, sRDlm)]

The “query” subcommand sends the sSQL query for evaluation on the server.

Page 65 of 463

Parameters

The SQL query can join multiple tables and return any number of fields. The optional sFilter parameter can specify
a Boolean Xbase filter expression to apply to the data set (even on SQL tables), similar to the DDE SETFILTER
command. The optional sFDlm and sRDlm parameters can override the return packet’s default field and record
delimiters of CR and LF.

[DataStream("fetch", nRecords, iHandle)]

The “fetch” subcommand returns a single packet string that contains the requested data from all records
processed by the current “fetch” command, as specified by the second nRecords parameter. iHandle must be the
value returned from “range” or “query.” The “fetch” command can be issued multiple times, with positive and
negative values, to scroll down or up the cursor. See “Return Packet” below.

[DataStream("close", iHandle)]

The “close” subcommand must be called when the operation is complete. Unclosed data streams will leak
memory and leave the database connections needlessly open. Passing an iHandle of 0 closes all open DataStream
objects (of all DDE conversations).

Example 1

The following commands request the first 100 cities from the Lookup file, including the city name and record
number (RecID under SQL):

[DataStream("range", "lookup", "lookup", "CITY", "CITYZ", "Entry; &RecNo

();")]

[DataStream("fetch", 100, iHandle)]

[DataStream("close", iHandle)]

Example 2

The following commands request the first 10 profiles of the current contact record, followed by a request for the
next 50:

[DataStream("range","contsupp","contspfd", sAccNo+"P", sAccNo+"P",

"Contact;ContSupRef;")]

[DataStream("fetch", 10, iHandle)]

[DataStream("fetch", 50, iHandle)]

[DataStream("close", iHandle)]

Return Packet

The “fetch” command returns a single packet string containing the data from all requested records. The packet
includes a header record, followed by one record for each record evaluated by “fetch.” Within each record in the
packet, the fields are separated by a Field Delimiter, the carriage return character by default (13 or 0x0D). The
records in the packet are separated by the Record Delimiter, the line feed character by default (10 or 0x0A). These
delimiters are convenient when the requested data does not contain notes from blob fields. Otherwise, you must
override the default delimiters by passing other delimiter values to the “range” and “query” commands. The
characters 1 and 2 would probably make good delimiters for packets with notes.

The City Lookup example from above might return a packet of data similar to:

3000-0004

Page 66 of 463

Boston|23
London|393
Los Angeles|633
New York|29

The packet header record consists of two sections. The first byte can be 0, 3
or 4. Zero indicates that more records are available, which could be fetched with another “fetch” command. A
value of 3 indicates the end-of-file (EOF), and 4 indicates the beginning-of-file (BOF). The number following the
dash indicates the total number of data records contained in the packet.

Packets should be designed to be 8K to 32K. DataStream takes about as much time to read three records as it
does to read 30. For best performance, adjust the number to records requested by the “fetch” command to return
packets of 8K to 32K.

Performance

DataStream is the fastest way to read data from GoldMine tables. Used correctly, the GoldMine DataStream will
return the data faster than most development environments would directly. DataStream offers the following
advantages:

1. DataStream issues a single, efficient SQL query or Xbase seek to retrieve the records from the back-end
database to the local client. On SQL databases, requests of a few hundred records could be sent from the
server to the client with a single network transaction, thereby minimizing network traffic.

2. All fields and expressions are parsed initially by the “range” and “query” commands, then quickly evaluated
against each record in the “fetch” command. Other DDE methods (and development environments) require
that each field be parsed and evaluated each time the field’s data is read. This can save a significant amount
of time when reading hundreds or thousands of records.

3. Only three DDE calls are required to read all the data. Using traditional record-by-record querying would
require one DDE call for each field of each record (reading 10 fields from 50 records would require 500 DDE
calls).

4. All the work to gather and format the data is done in fast and efficient C. The caller needs only to parse the
resulting packet string.

The “range” and “query” commands execute equally fast on SQL databases. The “range” command executes much
faster on Xbase tables than the “query” command.

Example 3

The following DataStream command returns all e-mail addresses in the current contact file.

[DataStream("range", "contsupp","contspfd","PINTERNET A","PINTERNET

B","ContSupRef;")]
[DataStream("fetch", 999, 1)]
[DataStream("close", 1)]

To return only the e-mail addresses of people at GoldMine, add a filter to the “range” command:

[DataStream("range", "contsupp","contspfd","PINTERNET A","PINTERNET AZ",

"ContSupRef;AccountNo;&Recno();", "'@goldmine.com' $ lower(ContSupRef)")]

Example 4

The following DataStream returns all entries from all F2 lookups. The fields are delimited with a comma, and the
records with the default LF.

Page 67 of 463

[DataStream("range", "lookup", "lookup", "A",

"Z","FieldName;Entry;","",",")]
[DataStream("fetch", 2000, 1)]
[DataStream("close", 1)]

Example 5

The following DataStream returns the exact packet as the one above, but using an SQL query:

[DataStream("query", "select fieldname, entry from lookup where fieldname

> 'A' order by
fieldname, entry", "",",")]

Processing a Web Import Instruction File

Syntax [ExecIniImp(<filename>)]

GoldMine can send a DDE command to process a Web import instruction file. Using a DDE command allows other
applications to create contact records in GoldMine. To start processing an instruction file via DDE, send the
ExecIniImp(<filename>) command; for example, [ExecIniImp(“c:\goldmine\imp.ini”)].

NOTE: For details about setting up and working with the GoldMine Web Import Gateway, see “Capturing
Web Data” in Maintaining GoldMine.

Reading an Xbase Expression Without Opening a File

Syntax [EXPR(<expression>)]

The Expr function is similar to the Read function in that it attempts to evaluate an Xbase expression and return the
result as a string. The Expr function, however, does not require you to open a specific data file using the Open
function. The expression passed to the Expr function is evaluated against the current operating state of GoldMine
(usually, the currently displayed record), rather than the state of a specific work area. For this reason, you should
be aware that differences between the return values could exist for the same expression passed to Read and Expr.

Parameters

The Expr function takes one parameter—the Xbase expression to be evaluated. GoldMine supports a subset of the
Xbase dialect, so there is substantial flexibility in the application of this function. Enclose this parameter in
quotation marks (“).

When referencing field names within an expression, you should always use an alias; otherwise, GoldMine assumes
CONTACT1 to be the default alias.

Return Value

The Expr function returns a character string containing the value of the specified expression. If an error occurs, or
the expression could not be evaluated, the Expr function will return a null string.

Example

The following expression will return the number of characters in notes file of the current contact.

Page 68 of 463

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()
Dim lChannel As Long
Dim sExpr As String
Dim sRet As String
Dim sQ As String

sQ = Chr(34)
lChannel = DDEInitiate("GoldMine", "Data")
sExpr = "Length(Contact1->Notes)"
sRet = DDERequest(lChannel, "[EXPR(" + sQ + sExpr + sQ + ")]")
MsgBox ("Notes Length = " + sRet + " characters")
End Sub

Adding Merge Fields to a Form

Syntax [FORMADDFIELDS(<FormNo>,<Fields>)]

The FormAddFields function adds merge fields to a form profile.

Parameters

The FormAddFields function takes two parameters. Enclose each parameter in quotation marks (“).

The first parameter is the number of the form.

The second parameter is a string that lists fields, macros, and expressions; each item in the string is separated by a
semicolon (;). GoldMine parses the string, checks for duplication, assigns names to the fields, and then stores the
items.

Example

The following example shows how to export a data file with GoldMine. It uses all of the Formxxxx functions, such
as FORMADDFIELDS, FORMNEWFORM, FORMQUERYCREATE, FORMCLEARFIELDS, FORMCLOSEFORM, and
FORMGETFIELDNAME.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()

Dim lChannel As Long

Dim sRet As String

Dim sFieldList As String

Dim sFormNo As String

Dim sFile As String

Dim sNumRecs As String

Dim sMergeCode As String

Dim sQ As String

Page 69 of 463

sMergeCode = ""

sQ = Chr(34)

'Populate the field list

sFieldList = "&Contact ; Phone1 ; Contact1->State ; SUBSTR(Company,1,5)"

lChannel = DDEInitiate("GoldMine", "Data")

'Get a new Form Number

sFormNo = DDERequest(lChannel, "[FormNewFormNo()]")

'Register the fields

sRet = DDERequest(lChannel, "[FormAddFields(" + sQ + sFormNo + sQ + "'" +

sQ + sFieldList + sQ + ")]")

'Display the field names as assigned by GoldMine
MsgBox ("&Contact=" + FieldName(lChannel, sFormNo, "&Contact"))

MsgBox ("Phone=" + FieldName(lChannel, sFormNo, "Phone1"))

MsgBox ("Contact1->State=" + FieldName(lChannel, sFormNo, "Contact1-

>State"))

MsgBox ("SUBSTR=" + FieldName(lChannel, sFormNo, "SUBSTR(Company,1,5)"))
'Give the output file a name

sFile = "C:\GMDATA.DBF"

'Create the file

sNumRecs = DDERequest(lChannel, "[FormCreateFile(" + sQ + sFormNo + sQ +

"," + sQ + sFile + sQ + "," + sQ + "21" + sQ + ", " + sQ + sMergeCode + sQ

+ ")]")

While DDERequest(lChannel, "[FormQueryCreate(0)]") <> "-1"

'wait until DBF is created

Wend

'Clear the fields since we will not use them again

sRet = DDERequest(lChannel, "FormClearFields(" + sQ + sFormNo + sQ +

")]")

'Close the file when done

sRet = DDERequest(lChannel, "FormCloseForm()")

MsgBox (“Records finished exporting to " + sFile)

End Sub
Function FieldName(lChannel As Long, sFormNo As String, sField As String)

As String

Dim sQ As String
sQ = Chr(34)

FieldName = DDERequest(lChannel, "[FormGetFieldName(" + sQ + sFormNo + sQ

+ "," + sQ + sField + sQ + ")]")

End Function

Deleting Fields from a Form

Syntax [FORMCLEARFIELDS(<FormNo>)]

The FormClearFields function opens an existing form profile and deletes all associated fields.

Parameters

The FormClearFields function takes one parameter—the number of the form. Enclose this parameter in quotation
marks (").

Page 70 of 463

Return Value

The FormClearFields function returns 1 if the profile is open, or 0 if an error occurs.

Example

See Adding Merge Fields to a Form .

Closing a Form Profile

Syntax [FORMCLOSEFORM(<FormNo>)]

The FormCloseForm function closes an open form profile.

Parameters

The FormCloseForm function takes one parameter, which is the number of the form. Enclose this parameter in
quotation marks (").

Example

See Adding Merge Fields to a Form .

Creating an Xbase File with Registered Fields

Syntax [FORMCREATEFILE(<FormNo>,<FileName>,<WhichRec>,<MergeCode>)]

The FormCreateFile function creates an Xbase (DBF) file with all registered fields. Any active filter or group that
applies to the contact record is taken into account. FormCreateFile can be used to export data via DDE.

Parameters

The FormCreateFile function takes four parameters. Enclose all parameters in quotation marks (").

The first parameter is the number of the form.

The second parameter is the name of the .DBF file to be created.

The third parameter indicates which records are to be exported. The WhichRec value is the sum of values for each
available listed below.

WhichRec Values

Value Description

1 Primary

2 Secondary

4 All records

8 Forward to last

16 Return control to the calling program immediately after export has started

Page 71 of 463

Examples of WhichRec Parameter

Current contact 1

All primary contacts 5 (1+4)

Forward to last of primary and additional contacts 11 (1+2+8)

The fourth parameter is the merge code. If any merge code value(s) are included in the function, only records with
the matching merge code(s) will be included. To include multiple merge codes, place a space between each
individual merge code. If the fourth parameter is empty, all records are included.

Return Value

The FORMCREATEFILE function returns the total number of records in the output .DBF file.

Example

See Adding Merge Fields to a Form .

Returning a Field Name for an Expression
Syntax [FORMGETFIELDNAME(<FormNo>,<Field>)]

The FormGetFieldName function returns the field name for an expression, a macro, or a field.

Parameters

The FormGetFieldName function takes two parameters. Enclose both parameters in quotation marks (").

The first parameter is the number of the form. The second parameter is the name of the field, macro, or
expression to be associated with the file name.

Example

See Adding Merge Fields to a Form .

Returning a Value for Unattached Fields

Syntax [FORMNEWFORMNO()]

Return Value

The FormNewFormNo function returns a new, unique FormNo value that can be used to register fields not
attached to a GoldMine form. Enclose this parameter in quotation marks (").

Example

See Adding Merge Fields to a Form

Counting the Number of Exported Records

Syntax [FORMQUERYCREATE(<FLAGS>)]

Page 72 of 463

The FormQueryCreate function provides status information during an export by returning the number of records
exported during the export process.

Parameters

The FormQueryCreate function takes one optional parameter. Enclose this parameter in quotation marks (").

The following table lists values of FormQueryCreate parameters.

FormQueryCreate Parameters

Value Description

0 Export in progress (default)

1 Start process

2 Abort process

Return Value

The FormQueryCreate function returns the number of records created while an export is in progress, or -1 when
the record export process is completed.

Example

See Adding Merge Fields to a Form .

Creating a History Record

Syntax [INSHISTORY(<accno>,<rectype>,<ref>,<notes>,<actv>,<rslt>,<user>)]

The InsHistory function is used to create a history record in GoldMine. The InsHistory function provides a higher
level interface for creating these records than using Open, Append, and Replace.

Parameters

The InsHistory function takes up to seven parameters. All parameters must be passed in quotation marks (").

The first parameter is the account number of the contact record to which the new history record will be linked.

The second parameter is the record type to create. The following values are available:

InsHistory Valid Values (2nd parameter)

Value Record Type Value Record Type

A Appointment U Unknown

C Phone call CC Call back

D To-do CI Incoming call

E Event CM Returned message

Page 73 of 463

L Form CO Outgoing call

M Sent message MG E-mail message

O Other MI Received e-mail

S Sale MO Sent e-mai

T Next action

The third parameter is the history Reference.

The fourth parameter (optional) is the Notes for the history record.

The fifth parameter (optional) is the Activity Code.

The sixth parameter (optional) is the Result Code.

The seventh parameter is the User. If this parameter is not specified, the User field defaults to the currently
logged user.

Return Value

The InsHistory function returns the record number (Xbase) or record ID (SQL) of the new history record if the
function was completed successfully. The function returns 0 if a new record could not be appended to the data
file.

Example

The following example shows how to create a history (incoming call) record for the current contact.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()
Dim lChannel As Long
Dim sAccountNo As String
Dim sRecType As String
Dim sRef As String
Dim sRet As String
Dim sQ As String

sQ = Chr(34)
lChannel = DDEInitiate("GoldMine", "Data")
sAccountNo = DDERequest(lChannel, "Contact1->AccountNo")
sRecType = "CI" 'Incoming Call
sRef = "New History"
sRet = DDERequest(lChannel, "[InsHistory(" + sQ + sAccountNo + Chr$(34) +

"," + Chr$(34) + sRecType + Chr$(34) + "," + Chr$(34) + sRef + sQ + ")]")
If sRet = "0" Then
StatusBar = "History not Created"
End If
DDETerminate (lChannel)

Page 74 of 463

EndSub

Creating or Updating a Document Link
Syntax [LinkDoc(<recno>,<filepath>,<title>,<owner><notes>,<nSync>)]

The LinkDoc function is used to create or update a document link in GoldMine. Document links allow you to
launch directly into an application and load the application with a document by clicking on the desired document
listed in the contact’s Links tab. GoldMine maintains these links as records in the supplementary data file. The
LinkDoc function provides a higher level interface to these records than can be obtained by using Open, Append,
and Replace.

Parameters

The LinkDoc function takes up to six parameters.

The first parameter is the record number of the link record to be updated. If a new link record is to be created,
pass 0 as the first parameter.

NOTE: When GoldMine calls the mail merge macro, the record number of the linked document record is
passed as the sixth parameter.

The second parameter is the fully qualified path and filename of the file to link. Keep in mind that a valid
association must exist for the file’s extension if GoldMine is to automatically launch the file’s application. See
“Installing the GoldMine DDE Link” for information on creating a file association using Windows Explorer. Enclose
this parameter in quotation marks (“).

The third parameter is the document title. Enclose this parameter in quotation
marks (“).

The fourth parameter is the optional document owner. If this field is not passed, the document owner defaults to
the name of the currently logged GoldMine user.

The fifth parameter is optional notes for the linked document record in the Links tab.

The sixth parameter defines the remote synchronization status for the linked document from the values shown in
the following table.

NSync Valid Values

Value Action

-1 Uses the GoldMine default as defined by Allow new documents to sync by default in the Sync tab of
the Preferences window.

0 Does not synchronize the newly linked document.

1 Allows the newly linked document to synchronize.

Return Value

The LinkDoc function returns the new record number (Xbase) or record ID (SQL) if the function was completed
successfully. The function returns any empty string if a new record could not be appended to the data file, or an
existing record could not be locked for update.

Page 75 of 463

Example

The following example prompts the user for a file name and description, then creates a document link to the
current contact.

Note that the example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()
Dim lChannel As Long
Dim sDocPath As String
Dim sTitle As String
Dim sRet As String
Dim sQ As String

sQ = Chr$(34)
lChannel = DDEInitiate("GoldMine", "Data")
sDocPath = InputBox("Enter Full Path of Document to Link")
sTitle = InputBox("Enter Title of Link")
sRet = DDERequest(lChannel, "[LinkDoc(0," + sQ + sDocPath + sQ + "," + sQ

+ sTitle + sQ + ")]")
DDETerminate (lChannel)
End Sub

Displaying a Message Dialog Box

Syntax [MsgBox(<message>,<style>)]

The MsgBox function displays a standard Windows message dialog box.

Parameters

The MsgBox function accepts two parameters.

The first parameter is the message to display within the dialog box. Enclose this parameter in quotation marks (").

The second parameter is the optional style of the message box. This value is the sum of the following options:

MsgBox Style Values (2nd parameter)

Value Meaning

0 Display OK button only

1 Display OK and Cancel buttons

2 Display Abort, Retry, and Ignore buttons

3 Display Yes, No, and Cancel buttons

4 Display Yes and No buttons

Page 76 of 463

5 Display Retry and Cancel buttons

16 Display Stop icon

32 Display Question Mark icon

48 Display Exclamation Mark icon

64 Display Information icon

128 First button is default

256 Second button is default

512 Third button is default

Return Value

The MsgBox function returns the following values:

MsgBox Return Values

Return Description

1 OK button selected

2 Cancel button selected

3 Abort button selected

4 Retry button selected

5 Ignore button selected

6 Yes button selected

7 No button selected

Example

The following example shows how to display a message dialog box in GoldMine and return the result.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()
Dim lChannel As Long
Dim sRet As String
Dim sQ As String

sQ = Chr(34)
lChannel = DDEInitiate("GoldMine", "Data")

Page 77 of 463

sRet = DDERequest(lChannel, "[MsgBox(" + sQ + "Press a Button, Any Button"

+ sQ + ", 4)]")
If ret$ = "6" Then
MsgBox ("Yes was pressed")
Else
MsgBox ("No was pressed")
End If
DDETerminate (lChannel)
End Sub

Adding a Merge Form

Syntax [NEWFORM(<apptype>,<filepath>,<title>,<macro>, <templatetype>,<flags>)]

The NewForm function adds a merge template record into the Merge Forms window in GoldMine. This function is
used primarily by the document merge link installation macro; however, the function can also be used to add
additional merge templates from a user-written application.

Parameters

The NewForm function takes up to six parameters; the first three parameters are required, and the last three
parameters are optional.

The first parameter is the type of document to which the new form record will point. This value must be a valid
Application Identifier, such as Word.Document.6, that corresponds to an entry in the Registration Database.
Enclose this parameter in quotation marks (").

The second parameter is the fully qualified path and filename of the template file.

The third parameter is the title of the document as it should appear in the Merge Forms browse window. Enclose
this parameter in quotation marks (").

The fourth parameter is the name of an optional DDE function to be called after the template is loaded by the
linked application. If this parameter is not specified, the default function is MAINMENU. Enclose this parameter in
quotation
marks (").

The fifth parameter is the optional type of template. If this parameter is not specified, the template type is
assumed to be Document. Enclose this parameter in quotation marks ("). GoldMine accepts the following values
for this parameter:

Document Types

Type Description

0 Document

1 Spreadsheet

2 Other

Page 78 of 463

The sixth parameter is a three-character field corresponding to the values of the Link To Doc, Save History and
Allow Hot Link options on the Form Setup dialog box. To set (check) one of these options, 1 is passed; to reset
(uncheck), 0 is passed. Enclose this parameter in quotation marks (“).

Flag Values

Position Description

0 Link To Doc check box

1 Save History check box

2 Allow Hot Link check box

Return Value

The NewForm function returns a form number.

Example

The following example shows how to create a merge form entry in GoldMine, using the currently active Word
Document.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Public Sub Main()
Dim sQ As String
Dim lChannel As Long
Dim iResult As Integer
Dim sDocTitle As String
Dim sFullName As String
Dim sAppName As String
Dim FSDlg As Dialog

'GoldMine Is Not running.
SQ = Chr(34)
If Not (Tasks.Exists("GoldMine")) Then
MsgBox Prompt:="GoldMine is NOT Running", Buttons:=vbCritical,

Title:="Save As Merge Form"
GoTo Bye
End If
lChannel = DDEInitiate("GoldMine", "Data")
iResult = Dialogs(wdDialogFileSummaryInfo).Show
If iResult = 0 Then
GoTo Bye
End If
sDocTitle = sQ + Dialogs(wdDialogFileSummaryInfo).Title + sQ
iResult = Dialogs(wdDialogFileSaveAs).Show
If iResult = 0 Then
GoTo Bye
End If

Page 79 of 463

ActiveDocument.Save
sFullName$ = sQ + ActiveDocument.FullName + sQ
sAppName = sQ + "[GoldMineLink()]" + sQ
FormNo$ = DDERequest(lChannel, "[NewForm(Word.Document.8," + sFullName$ +

"," + sDocTitle$ + "," + sAppName + ")]")
ActiveDocument.Saved = False
ActiveDocument.SaveAs FileName:=sFullName$, FileFormat:=wdFormatTemplate
StatusBar = "Document has been saved as a GoldMine Merge Form"
Bye:
If lChannel Then
DDETerminate lChannel
End If
End Sub

Creating a Group

Syntax [NEWGROUP(<ref>,<code>,<user>)]

The NewGroup function is used to create an empty group. This function must be called prior to adding group
members with the NewMember function.

Parameters

The NewGroup parameter takes up to three parameters; the first parameter is required, the last two are optional.

The first parameter is the Reference for the new group. Enclose this parameter in quotation marks (“).

The second parameter is the optional sort Code for the group. This parameter must be passed in quotation marks
if it contains any embedded spaces or delimiting marks.

The third parameter is the optional user name to whose groups list the new group will be added. If this parameter
is not passed, the new group will be added to the currently logged user’s list of groups. Enclose this parameter in
quotation marks (“).

Return Value

The NEWGROUP function returns a value representing the GROUP NUMBER of the new group. Zero is returned if
the group could not be added. The GROUP NUMBER value is used by the NewMember function to add members
to the new group.

Example

The following example shows how to create a group called “New Group” and make the current contact a member
of that group.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()
Dim lChannel As Long
Dim sGroupNo As String
Dim sAcountNo As String

Page 80 of 463

Dim sQ As String
Dim sRet As String

sQ = Chr(34)
lChannel = DDEInitiate("GoldMine", "Data")
sGroupNo = DDERequest(lChannel, "[NewGroup(" + sQ + "New Group" + sQ + ","

+ sQ + "New" + sQ + ")]")
If sGroupNo <> “0” Then
sAccountNo = DDERequest(lChannel, "Contact1->AccountNo")
sRet = DDERequest(lChannel, "[NewMember(" + sQ + sGroupNo + sQ + "," + sQ

+ sAccountNo + sQ + "," + sQ + "New Member" + sQ + "," + sQ + "Sort" + sQ

+ ")]")
If sRet = "" Then
StatusBar = "Error Creating New Member"
Else
StatusBar = "Group Created and Member Added. "
End If
Else
StatusBar = "Error Creating New Group"
End If
DDETerminate (lChannel)
End Sub

Adding a Group Member

Syntax [NEWMEMBER(<groupno>,<accno>,<ref>,<code>)]

The NewMember function is used to add a member to a group created with the NewGroup function.

Parameters

The NewMember function takes up to four parameters; the first two parameters are required, and the last two
are optional.

The first parameter is the GROUP NUMBER of the group to which the member will be added. This value is
returned by the NewGroup function. Enclose this parameter in quotation marks (").

The second parameter is the account number of the contact record to add to the group. Enclose this parameter in
quotation marks (").

The third parameter is the optional group member Reference. Enclose this parameter in quotation marks (").

The fourth parameter is the optional group member sort Code. Group members are ordered alphabetically by the
value in this field. Enclose this parameter in quotation marks (").

Example

See Creating a Group .

Creating a Macro

Syntax [PLAYMACRO(<Macro>,<wait>)]

Page 81 of 463

A macro groups together a series of commands, keystrokes, and/or mouse clicks into a one-step operation. You
can create a macro to automate a sequence of tasks that you perform frequently in GoldMine.

Parameters

The PlayMacro function takes two parameters that identify the macro and assign a wait state.

The first parameter identifies the macro. Either the number for the currently logged user or a valid macro
filename can be used to identify a macro.

Identifying a Macro by Number

Each user can create up to 100 macros from the GoldMine toolbar. Each macro can be assigned an optional
numeric identification from 800 to 899. For example, you can assign 800 to identify your first macro, 801 to
identify your second macro, and so on.

TIP: For details about creating a macro from the GoldMine toolbar, see “Customizing Toolbars”
in the online Help.

Identifying a Macro by File Name

You can assign a file name to identify the macro, such as C:\GOLDMINE\MACROS\JOHN.801.

The second parameter assigns a wait state that determines GoldMine availability to process another macro or task
while the current macro executes. To set GoldMine to wait for the currently executing macro to finish before
starting another task, set the parameter to 1. For example, if you are setting up a sequence of macros to run
tutorial lessons, you want GoldMine to wait for each lesson to finish before executing the next macro that will run
the following lesson.

To allow GoldMine to perform background processing, such as indexing, while the macro(s) execute, set the
parameter to 0.

Return Value

The PlayMacro function returns an integer value based on the wait parameter; that is, GoldMine availability to
process a task in addition to the currently running macro. If the wait parameter is 0 (GoldMine does not wait for
the macro to finish to process another task), the PlayMacro function will always return 1. If the wait parameter is
1 (GoldMine will wait for the current macro to finish before processing another macro or task), the PlayMacro
function will return either 0 or 1 under the following conditions:

PlayMacro Return Values

Return Description

0 Error occurred during macro playback

1 Macro played successfully

Example

The following example shows how to play back a macro via DDE.

TIP: To prevent unwanted macros from being executed, some parts of this example have been
commented out.

Page 82 of 463

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()
Dim lChannel As Long
Dim sRet As String
Dim sQ As String

sQ = Chr(34)
'un comment the following line to execute
'lChannel = DDEInitiate("GoldMine", "Data")

'Play macro 800 for current user
sRet = DDERequest(lChannel, "[PlayMacro(800,0)]")

'Play Macro 802 for specified use (BILL)
sRet = DDERequest(lChannel, "[EXPR(" + sQ + "C:\GOLDMINE\MACROS\BILL.802"

+ sQ + ")]")

End Sub

To Play a Macro from the Command Line

You can also play a macro from the command line (DOS prompt). Executing a macro from the command line
can be useful in running functions at night, such as indexing, running an Automated Process, or synchronizing
with remote sites with a transfer set created via macro. You can either identify a macro by an identification
number, like GMW4 /m:801, or by file name like GMW4 /m:c: \index.801. If necessary, the command line
statement can start GoldMine and then, once started, run the macro.
Optional switches include:

/m: Logs in automatically to GoldMine
/u:[username] Provides the username entry to log in to GoldMine
/p:[password] Provides the password entry to log in to GoldMine

If running the Plus! Pack with Windows, you can run a macro from the System Agent by placing a command
line switch for GoldMine in the Program field of the Schedule a New Program dialog box that will run a
macro. For example, to log in John with his username and password, then run John’s first macro, place the
following macro in the System Agent:

GMW5 /u:john /p:pswd /m:800
Where GMW5/ starts Goldmine, u:john/ is login user John, p:pswd/ enters the password password, and
m:800 runs first macro.

Creating and Sending a Pager Message

Syntax [SENDPAGE(<Message>,<From>,<To>)]

The SendPage function allows you to create and send a message to the pager of a GoldMine user. The function
consists of the following components:

Page 83 of 463

<Message> can consist of any text message that you create with this function to send to a pager; most pages
can accept messages of 70–100 characters.
<From> includes the sender’s name as an optional “signature.”
<To> identifies an optional GoldMine user who will receive the pager message. Information about the pager
must be entered in the Edit|Preferences|Pager tab, such as ID code or PIN number, telephone number of the
pager, and maximum message size in characters that the pager can accept.

Return Value

The SendPage function can return one of two values.

SendPage Return Values

Return Description

0 Error occurred during the attempt to send the message to the pager

1 Pager message was transmitted successfully

Example

The following example sends the message “This is a pager message” from John Doe:

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()
Dim lChannel As Long
Dim sMsg As String
Dim sFrom As String
Dim sRet As String
Dim sQ As String

sQ = Chr(34)
lChannel = DDEInitiate("GoldMine", "Data")
sMsg = "This is a pager message"
sFrom = "Jon Doe"
sRet = DDERequest(lChannel, "[SendPage(" + sQ + sMsg + sQ + "," + sQ +

sFrom + sQ + ")]")
End Sub

Displaying a Message in the GoldMine Status Bar

Syntax [StatusMsg(<message>,<delay>)]

The StatusMsg function displays a message in the GoldMine status bar.

Parameters

The StatusMsg function takes two parameters. Enclose each parameter in quotation marks (").

Page 84 of 463

First parameter is the message.

Second parameter is an optional delay, after which time the message is removed from the status bar.

Example

See “RecNo” on page 105.

Converting TLog Timestamps

Syntax [SyncStamp(<stamp>)]

The SyncStamp function converts a TLog timestamp to a date and time representation, and from a date and time
representation back to the TLog time stamp format.

Parameter

The SyncStamp function takes one parameter. Enclose the parameter in quotation marks (").

Return Values

When the <stamp> string parameter is exactly 17 characters long, formatted as Date:Time in form of
CCYYMMDD:HH:MM:SS, the return string is in TLog time stamp format, exactly seven characters long. When the
<stamp> parameter is seven characters long, and formatted as a TLog timestamp, the return string is formatted as
CCYYMMDD:HH:MM:SS. An empty return string indicates an error.

Example 1

The following example converts February 1, 1998 at 7:01 p.m. to a TLog time stamp format.

[SyncStamp("19980201:19:01:30")] returns "+#G><N2"

Example 2

The following example converts a TLog time stamp format to the date and time of February 1, 1998 at 7:01 p.m.

[SyncStamp("+#G><N2")]
returns "19980201:19:01:30"

DDE Macros
To facilitate the use of DDEAUTO fields, GoldMine allows you to select a macro as the service item. Upon
encountering a DDE service item that starts with an ampersand (&), GoldMine searches an internal table of macro
names. If a match is found, the macro is processed and the result is returned, as if a DDE function or expression
had been used.

Most macros are sensitive to the setting of the RECORDOBJ function’s SETRECORD subfunction. This DDE function
is used primarily to gain access to additional contacts and other supplementary information. When the
SETRECORD type is set to PRIMARY, the following macros will return the value from the corresponding fields in the
primary information portion of the contact record. When the SETRECORD type is set to CONTACTS (additional
contacts), or another supplementary record type, the macros will return the value from the corresponding field in
the supplementary file (CONTSUPP.DBF).

The following macros can be used as DDE service items:

Page 85 of 463

&Address Returns a string containing the values of both &Address1 and &Address2,
separated by a carriage return and line feed character. If either &Address1 or
&Address2 does not contain any data, a single line of data is returned, without the
carriage return and line feed character.
This macro can be used to perform rudimentary blank line suppression within
linked applications that do not support blank address line suppression internally.
The action of this macro string is similar to the action of the &Addressmacro. The
&Address2macro can be used to return an additional contact address by using the
RECORDOBJ SETRECORD subfunction.

&Address1 Returns the first Address field from the active contact record. Typically, this value
will be extracted from the Address1 field in the primary display portion of the
contact record; however, when the RECORDOBJ SETRECORD subfunction has been
used to change the returned record type to CONTACTS, then GoldMine returns the
value from the Address1 field on the additional contact record, if a value is
entered. When the Address1 field on the additional contact record is blank, then
the &Address1macro returns the value in the Address1 field in the primary display
portion of the contact record. When the RECORDOBJ SETRECORD type is set to
return a record type other than CONTACTS, the &Address1 macro returns the value
in Address1 field in the primary display portion of the contact record.

&Address2

Returns the second Address field from the active contact record. Typically, this
value will be extracted from the Address2 field in the primary display portion of the
contact record; however, when the RECORDOBJ SETRECORD subfunction has been
used to change the returned record type to ADDITIONAL, then GoldMine returns
the value from the Address2 field on the additional contact record, if an entry
exists in the Address2 field on the additional contact record. When the Address2
field on the additional contact record is blank, then the &Address2macro returns
the value in the Address2 field in the primary display portion of the contact record.
When the RECORDOBJ SETRECORD type is set to return a record type other than
PRIMARY or ADDITIONAL, the &Address2 macro returns the value in the Address2
field of the primary display portion of the contact record.

&BrowseRecNo Xbase: Returns the record number of the last selected record in a browse window.
SQL: Returns the record ID of the last selected record in a browse window.

&CalRefresh Refreshes the graphical calendar display. Set up GoldMine to run this macro after
adding calendar records using DDE.

&City Returns the City field from the active contact record. The action of this macro
string is similar to the action of &Address1. The &Citymacro can be used to return
an additional contact city by using the RECORDOBJ SETRECORD subfunction.

Page 86 of 463

&CityStateZip

Returns a format string of text containing the City, State, and Zip fields from the
active contact record. This string is returned in the following format:
City, State Zip
The action of this macro string is similar to the action of &Address1. The
&CityStateZipmacro can be used to return an additional contact city, state, and ZIP
Code by using the RECORDOBJ SETRECORD subfunction.

&CommonDir
Xbase: Returns the path information for the directory where the contact sets are
located.
SQL: Returns the BDE alias where the contact sets are located.

&Contact Returns a Contact name from the active contact record. Normally, this value will be
extracted from the Contact field in the primary display portion of the contact
record; however, the RECORDOBJ SETRECORD subfunction can be used to change
the returned record type to additional contact, or another type of supplementary
record. When the RECORDOBJ SETRECORD type is set to return record types other
than PRIMARY, the &Contact macro returns the value in Contact field in CONTSUPP
for the current supplementary record.

&Country Returns the Country field from the active contact record. The action of this macro
string is similar to the action of &Address1. The &Country macro can be used to
return an additional contact country by using the RECORDOBJ SETRECORD
subfunction.

&Dial1

Returns the Phone1 entry from the active contact record. The returned phone
number is formatted for dialing. GoldMine applies the same rules used to dial the
phone via TAPI. If selected, PREDIAL.INI settings are applied to phone number
selection.

&Dial2
Returns the Phone2 entry from the active contact record. For details, see &Dial1
above.

&Dial3 Returns the Phone3 entry from the active contact record. For details, see &Dial1
above.

&DialFax Returns the FAX entry from the active contact record. For details, see &Dial1
above.

&EmailAddress Returns the primary e-mail address for the currently selected contact.

&Fax
Returns the fax number as it should be sent to an auto-dialer for automatic fax
transmission.

&Filter Returns the activated filter expression.

&FirstName Returns the first name of the current contact.

Page 87 of 463

&FullAddress

Returns a string containing the complete address for the contact record, composed
of values of &Address1, &Address2, &City, &State, and &ZIP.
The action of this macro string is similar to the action of &Address1. The
&FullAddress macro can be used to return an additional contact address by using
the RECORDOBJ SETRECORD subfunction.

&GetRoTabID

Returns the ID of the currently selected tab. Typically, this value will verify that the
correct tab is selected when a user starts a custom application.

The following values are valid:

0 = Summary
1 = Fields
2 = GM+View
3 = Notes
4 = Contacts
5 = Details
6 = Referral
7 = Pending
8 = History
9 = Links
10 = Members
11 = APs/Tracks
12 = Opportunities
13 = Projects
14 = Relationships/Org tree
15 = Cases
16 = HEAT View if installed, else it will go to the first tab
17+ = custom if installed, otherwise the first tab

The following example tests the selection of the Details tab:
ch=DDEInitiate(“GoldMine”, “Data”)
If DDERequest$(Ch, “&GetRoTabID”) <> “6” Then
MsgBox “You must select a detail record first”
End If

&GetRoTabPos Returns the currently selected tab position. Since the tabs can be rearranged, this
method is not always reliable for determining the currently selected tab. For
details, see &GetRoTabID.

&GoldDir Xbase: Returns path information for the directory in which GoldMine is installed.
SQL: Returns path information for BDE alias in which GoldMine is installed.

&LastFirstName Returns the name of the current contact in the format:
last name, first name

&LicUsers
Returns the number of concurrent users allowed to log in to the installed copy of
GoldMine.

Page 88 of 463

&LicUsersAvailable Returns the number of users allowed to log in to the installed copy of GoldMine
license.

&NameAddress Returns a string containing the contact’s name, company, and complete address of
the current contact record. Each address line is separated by a carriage return and
line feed, and the entire string is formatted so that the string can be inserted
directly into a merge template. If any of the address lines on the contact record is
empty, that address line will be suppressed. This macro can be used to perform
rudimentary blank line suppression within linked applications that do not support
blank address line suppression internally.
The action of this macro string is similar to the action of the &ADDRESS macros,
and the &NAMEADDRESS macro can be used to return an additional contact
address by using the RECORDOBJ SETRECORD subfunction.

&NameTitleAddress

Returns a string containing the contact’s name, title, department, company, and
complete address of the current contact record. Each line is separated by a
carriage return and line feed, and the entire string is formatted so that the string
can be inserted directly into a merge template. If any of the lines on the contact
record is empty, that line will be suppressed. This macro can be used to perform
rudimentary blank line suppression within linked applications that do not support
blank address line suppression internally.
The action of this macro string is similar to the action of the &ADDRESS macros,
and the &NAMETITLEADDRESS macro can be used to return an additional contact
address by using the RECORDOBJ SETRECORD subfunction.

&NewRecID Returns a unique record ID, which can be used when creating new records.

&Notes Returns the Notes from the active contact record. Typically, this value will be
extracted from the Notes field in the primary display portion of the contact record;
however, the RECORDOBJ SETRECORD subfunction can be used to change the
returned record type to additional contact, or another type of supplementary
record. When the RECORDOBJ SETRECORD type is set to other than PRIMARY, the
&TITLE macro returns the value in Notes field in CONTSUPP for the current
supplementary record.

&Phone Returns a telephone number from the selected contact record.
The action of this macro string is similar to the action of the &ADDRESS1. The
&PHONE macro can be used to return an additional contact telephone number by
using the RECORDOBJ SETRECORD subfunction.

Page 89 of 463

&Profile(s)

Two related macros:
&Profile: Returns the first matching profile record for the selected contact.
&Profiles: Returns all profile records for the selected contact.
Both of these macros take optional parameters. Each parameter must be
separated by a period (.). Although GoldMine does not typically pass parameters
with a DDE macro, the structure of &Profiles must be different for DDE fields in
Microsoft Word document templates, which do not take DDE commands.
The following examples show the syntax for the &Profile(s) macros:

&Profile Example 1
&Profile.ProfileName.Reference.Flags

Retrieves the first profile that matches the ProfileName and Reference.
In both of the above examples, the Reference parameter is optional. If passed, the
Reference parameter acts as a “begin with” condition on the profile reference. If
the Reference parameter is not passed, all ProfileName profiles are evaluated.
The optional Flags parameter has the following values:
2 Returns the extended profile fields
4 Returns the ProfileName and Reference
The &Profile(s) macro can easily fill in a Word table with the selected contact’s
profile information because tabs separate each field value, and a CR/LF separates
each profile record.

&Profile Example 2

The following example returns the first e-mail address of the contact:
&Profile.E-mail Address
&Profiles Example 1

The following example returns all the computer profiles that begin with the word
notebook:

&Profiles.Computer.Notebook
&Profiles Example 2

The following examples use the Flags parameter to specify the profile fields to
return:

&Profiles.Computer.Notebook
Notebook ThinkPad 770|
Notebook Compaq Elite|
Notebook Dell 1200|

&Profiles.Computer.Notebook.2
Computer|Notebook ThinkPad 770|
Computer|Notebook Compaq Elite|
Computer|Notebook Dell 1200||

&Profiles.Computer.Notebook.4
Computer|Notebook ThinkPad 770|IBM|233Mz|
Computer|Notebook Compaq Elite|Compaq|200mz|
Computer|Notebook Dell 1200|Dell|166mz|

Page 90 of 463

&RoTabPage

Returns the currently selected tab. Typically, this value will verify that the correct
tab is selected when a user starts a custom application. Values between 1 and 9
represent tabs in the first row of tabs; for example, 1 represents the Summary tab
. Values between 10 and 18 represent tabs in the second row, and 19–27 represent
tabs in the third row.
The following example tests the selection of the fifth (Profiles) tab:

ch=DDEInitiate(“GoldMine”, “Data”)

If DDERequest$(Ch, “&RoTabPage”) <> “5” Then

MsgBox “You must select a profile record first”

End If

&SerialNo Returns the serial number of the installed GoldMine program.

&SetRoTab# Selects the tab that corresponds to the number (represented by #) in the active
contact record.
The following values are valid:
1 = Summary
2 = Fields
3 = GM+View
4 = Notes
5 = Contacts
6 = Details
7 = Referral
8 = Pending
9 = History
10 = Links
11 = Members
12 = APs/Tracks
13 = Opportunities
14 = Projects
15 = Relationships/Org tree
16 = Cases
17 = HEAT View if installed, else it will go to the first tab
18+ = custom if installed, otherwise the first tab

ch=DDEInitiate(“GoldMine”, “Data”)
DDERequest$(Ch, “&SetRoTab4”)

Displays the Notes tab in the contact record.

&ShutDown Logs out the currently logged user, and quits GoldMine.

&State

Returns the State field from the active contact record. The action of this macro
string is similar to the action of the &ADDRESS1. The &STATE macro can be used to
return an additional contact state by using the RECORDOBJ SETRECORD
subfunction.

&SysDir Returns the GoldMine system directory.

Page 91 of 463

&SysInfo Displays system information as returned by Help>About GoldMine>System Info.

&Title

Returns the Title from the active contact record. Normally, this value will be
extracted from the Title field in the primary display portion of the contact record;
however, the RECORDOBJ SETRECORD subfunction can be used to change the
returned record type to additional contact, or another type of supplementary
record. When the RECORDOBJ SETRECORD type is set to other than PRIMARY, the
&TITLE macro returns the value in Title field in CONTSUPP for the current
supplementary record.

&User_Var

Returns the defined field value from all users, a specified user, or the currently
logged user. For details on defining values, see “Defining Field Values for use with
External Applications” in Maintaining GoldMine.
The &User_Var macro allows GoldMine users to store specific data that can be
retrieved later into applications that are linked via DDE with GoldMine. This macro
can be defined in the [user_var] section of both the GM.INI and the username.INI
of GoldMine.
Usage Syntax:

&User_Var.<variable name>.<GoldMine username>

Example:
&User_Var.Territory.Dan

(Where <variable name> is a descriptive name of the macro and <GoldMine
username> assigns a defined value to a specific GoldMine user.)
<GoldMine username> is optional, as GoldMine will assign these values to the
current GoldMine user.

&UserFullName Returns the full name of the currently logged GoldMine user as the name appears
in the FullName field in the Users Master File for the user.

&UserName Returns the login name of the currently logged GoldMine user.

&Version Returns the version number of the installed GoldMine program.

&WebSite Returns http://<Web site> for the active contact.

&ZIP Returns the Zip field from the currently active contact record. The action of this
macro string is similar to the action of the &ADDRESS1. The &ZIP macro can be
used to return an additional contact ZIP Code by using the RECORDOBJ SETRECORD
subfunction. The DDE macro can be used to reindex or rebuild the database.

DDE Macros for Merge Forms
The following DDE macros are used primarily for creating DDE links to GoldMine through the Merge Forms
function. The values returned by each of these macros are updated by GoldMine when a Merge Form is launched
by selecting Edit, Link, Print or Fax from theMerge Forms dialog box.

Page 92 of 463

&PARAM1
(filename)

Returns the path and filename of the document template associated with the merge form
selected when Edit, Link, Print, or Fax was selected. This value is obtained from the Template
File field in the merge form’s Form Setting dialog box.

&PARAM2
(action)

Returns a value indicating whether the Edit, Link, Print, or Fax button was selected to launch
linked application.

&PARAM2 Parameters

Value Description

1 Edit selected

2 Link selected

3 Print selected

4 Fax selected

&PARAM3
(range)

Returns a value corresponding to the setting of the Record Range options on theMerge
Forms dialog box when the Edit, Link, Print, or Fax button was selected.

&PARAM3 Parameters

Value Description

1 This contact selected

2 All contacts selected

3 Forward to last selected

&PARAM4
(scope)

Returns a value corresponding to the setting of the Primary and Additional check boxes on
theMerge Forms dialog box when the Edit, Link, Print, or Fax button was selected.

&PARAM4 Parameters

Value Description

1 Primary checked

2 Additional checked

3 Both Primary and Additional checked

Page 93 of 463

&PARAM5
(flags)

Returns a value corresponding to the status of the Link to Doc, Save History, and/or Allow
Hot Link check boxes on theMerge Forms dialog box. In addition, the returned value
determines whether the form was merged as the result of an Automated Processes action.
Returns a seven-character string. Each position of the string can contain either 0, indicating
the item was not checked (or Automated Processes is not active), or 1, indicating the item
was checked (or Automated Processes is active).

&PARAM5 Parameters

Position Description

1 Link to Doc

2 Save History

3 Allow Hot Link

4 Unused

5 Unused

6 Unused

7 Automated Processes status

&PARAM6
(LinkDoc record number)

Returns a value containing the record number of the last Linked Document
supplementary record created as a result of launching a Merge Form. When you
launch a merge form with Link to Doc selected, GoldMine creates a linked
document record to hold the saved document. This value can be saved and used to
update the linked document record by passing the record number to the LinkDoc
DDE function.

&PARAM7
(contact record pointer)

Returns a pointer to a minimized contact record that is created when Print or Fax is
selected on theMerge Forms dialog box, and the Record Range is All Contacts or
Forward to Last. This value can then be passed to the RecordObj function to further
control a document merge from the linked application.

&PARAM8
(merge code value)

Returns the merge code entered in theMerge code field of theMerge Forms dialog
box.

&PARAM9
(history record)

Returns the RecNo or RecID of the history record created by GoldMine. This macro
is useful for updating the history record.

DDE Macros for the GoldMine License
The following DDE macros return data for the current GoldMine license. The descriptions for each macro include
the corresponding field name from the form that appears in the Registration tab of the GoldMine Net-Update
window. For details on the Net-Update process, see “Using Net-Update” in the online Help.

Page 94 of 463

&LicInfoLicTo Returns the Organization entry from the registration form.

&LicInfo_Contact Returns the Contact Name entry from the registration form.

&LicInfo_LicEmail Returns the E-mail address entry from the registration form.

&LicInfo_Phone Returns the telephone number entry from the first Phone/Fax field.

&LicInfo_Fax Returns the fax number entry from the second Phone/Fax field.

&LicInfo_Address1 Returns the Address1 entry from the registration form.

&LicInfo_Address2 Returns the Address2 entry from the registration form.

&LicInfo_City Returns the city entry from the first City/State field.

&LicInfo_State Returns the state or province entry from the second City/State field.

&LicInfo_Zip Returns the ZIP Code entry from the first Zip/Country field.

&LicInfo_Country Returns the country entry from the second Zip/Country field.

Using GMXS32.DLL for Database Access
and Sync Log Updates

Overview
The GoldMine GMXS32.DLL is a standard dynamic-link library (DLL) that offers developers efficient methods to
access GoldMine databases and update GoldMine synchronization logs when external applications update
GoldMine data. Most development environments can load GMXS32.DLL. GoldMine does not need to run to use
GMXS32.DLL.

GMXS32.DLL installs into the \WINDOWS\SYSTEM directory automatically with GoldMine. Therefore, third-party
developers do not need to distribute GMXS32.DLL with their applications.

The actual file name for the API will vary depending on the version of GoldMine. For versions of GoldMine in the
5.0 ranges, the dll is named GM5S32.DLL. For versions in the 6.0 ranges, the dll is named GM6S32.DLL

For an in-depth discussion on interfacing with GoldMine, visit the Public.GoldMine.Programming newsgroup,
which you can access directly from the GoldMine Web site at http://www.goldmine.com.

This document contains the information you need to:

○ Load and initialize GMXS32.DLL

○ Streamline integration with GoldMine
○ Work with DataStream functions
○ Work with low-level data access functions
○ Update GoldMine synchronization information when data is changed by an external application not

utilizing the GoldMine API.

Passing Multiple Parameters to a Function
Each Name/Value (NV) set, or container, simply combines a “Name” and a “Value.” In the following example:

Company=GoldMine, Inc

Company is the Name and GoldMine, Inc is the Value.

Using a set of NV pairs provides an easy mechanism to pass multiple parameters to a function. The user can
populate the NV pairs into a container, then execute a Business Logic transaction against the container. The
transaction adds extra pairs to the container to return the results.

Page 95 of 463

http://www.goldmine.com/

Page 96 of 463

Since the NV container remains in memory until cleared, it can make several calls without clearing all the previous
values. This capability is useful to call the same function with only slight changes to the values, such as when a
return value of one call is needed for a subsequent call.

Using the Business Logic methods, a developer can easily read and write GoldMine data. Previously, integrating
with GoldMine required a great familiarity with the schema and methodology of GoldMine databases. The
Business Logic functions require less direct knowledge and provide a more standardized and secure way to
integrate with GoldMine. Business Logic functions wrap several other low-level calls to perform common tasks. In
addition, the Business Logic functions take user security restrictions into account when reading and updating
GoldMine data.

Comparing Low Level/DDE Methodology to Business
Logic Methodology

We can compare an example flow to a common task using low level/DDE or Business Logic. In the following
example, you can see that Method 2 has a simpler flow than Method 1.

Method 1: Updating a Contact Record using the low level functions or DDE

1. Open the Contact1 database.
2. Set the index tag.
3. Seek the contact record.
4. If not found, then Append a new record.
5. Replace field values.
6. Close the database.

Method 2: Updating a Contact Record using the Business Logic

1. Load an NV Container with the values for the contact record.
2. Execute the WriteContact method.

Loading GMXS32.DLL and Logging In
The following section describes the functions available to load the BDE and log in to a GoldMine table. For
function prototypes and code examples in C++, Visual Basic and Delphi, see the .

If using C/C++, note that the GMXS32.DLL functions use the stdcall convention.

Before using any of the functions, you must perform the following steps:

1. GMXS32.DLLmust be dynamically loaded in C/C++ (simply declare them in VB).

2. GMW_LoadAPI function must be called to load the API with the set parameters for the programmer to work
with.

The GMW_UnloadAPI() function must always be called before terminating the application and freeing the DLL.

The following functions initialize and close the API sessions:

Page 97 of 463

○ GMW_LoadAPI: loads set parameters for an API session
○ GMW_UnloadAPI: closes the API session

NOTE: As of GoldMine Version 7.0, the Borland Database Engine is no longer used. References to BDE in
the following sections apply only to integrations developed in GoldMine Version 6.7 or lower.

For GoldMine Version 6.7 or Lower

The GMW_LoadBDE function must be called to load the BDE and initialize the database objects. The GMW_
UnloadBDE() function must always be called before terminating the application and freeing the DLL.

The following functions initialize and close the BDE sessions:

○ GMW_LoadBDE: loads a BDE session
○ GMW_UnloadBDE: closes the BDE session

Setting the SQL Database Login Name and PasswordGoldMine
6.7 or lower only)

This topic pertains to SQL only. GMW_SetSQLUserPass should be called immediately prior to the GMW_LoadBDE
call. GMW_SetSQLUserPass is required only when accessing SQL tables, and will have no effect on Xbase tables.
This function is not required if using DDE login credentials with versions of GoldMine beyond 5.70.20222.

Syntax

C/C++ int _stdcall GMW_SetSQLUserPass(char *szUserName, char *szPassword)

VB Public Declare Function GMW_SetSQLUserPass Lib "gm6s32.dll" (ByVal strUserName As
String, ByVal strPassword As String) As Long

Parameters

The GMW_SetSQLUserPass function takes two parameters:

○ szUserName: specifies the SQL login name.
○ szPassword: specifies the SQL login name’s password.

Return Values

The GMW_SetSQLUserPass function returns the following values:

GMW_SetSQLUserPass Return Values

Return Description

0 Failure

1 Success

Example

GMW_SetSQLUserPass("JON", "MyPASSWORD");

Page 98 of 463

Loading an API Session (GoldMine 7.0 or higher)
Syntax

C/C++ int GMW_LoadAPI(char *szSysDir, char *szGoldDir, char *szCommonDir, char *szUser,
char *szPassword)

VB Public Declare Function GMW_LoadAPI Lib "gm6s32.dll" (ByVal strSysDir As String, ByVal
strGoldDir As String, ByVal strCommonDir As String, ByVal strUser As String, ByVal
strPassword As String) As Long

Parameters

The GMW_LoadAPI function takes five parameters.

SzGoldDir: Specifies the location of CAL.DBF or the database alias name to use as the main database.

NOTE: The database alias name must be appended with a colon (":").

SzCommonDir: Specifies the location of CONTACT1.DBF or the database alias name to use as the contact set
database.

NOTE: The database alias name must be appended with a colon (":").

SzUser: Specifies the GoldMine user name (must be UPPERCASE).

For API version 5.70.20222 and later: You may set this parameter to the value of *DDE_LOGIN_
CREDENTIALS* to use login credentials returned for the user logged into a running copy of GoldMine through
DDE. For GoldMine 6.7 or higher, you may also use the UI API equivalent.

SzPassword: Specifies the user’s password (must be UPPERCASE).
For API version 5.70.20222 and later: You may set this to the return string from the GetLoginCredentials DDE
command if the User parameter is set to *DDE_Login_Credentials*. The credential string is only valid for 30
seconds.

Return Values

The GMW_LoadAPI function returns the following values:

GMW_LoadBDE Return Values

Return Description

1 Success

0 API already loaded

-1 API failed to load

-2 Cannot find license file

-3 Cannot load license file

Page 99 of 463

-4 Cannot validate the license file username/password

-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user

Notes

GMW_LoadAPI must be called before calling any function that accesses databases, such as GMW_UpdateSyncLog
and GMW_ReadImpTLog. GMW_UnloadAPI must be called before unloading the DLL. GMW_LoadAPI may be
called as many times as necessary. Be sure to match a corresponding GMW_UnloadAPI for every call of GMW_
LoadAPI.

Example

GMW_LoadAPI("d:\\GM4", "d:\\GM4", "d:\\GM4\\demo", "JON", “PASS”);
Or
GMW_LoadAPI("d:\\GM4", "d:\\GM4", "d:\\GM4\\demo",

“*DDE_LOGIN_CREDENTIALS*”, szDDEReturnString);

Loading a BDE Session (GoldMine 6.7 or lower)
Syntax

C/C++ int GMW_LoadBDE(char *szSysDir, char *szGoldDir, char *szCommonDir, char *szUser,
char *szPassword)

VB Public Declare Function GMW_LoadBDE Lib "gm6s32.dll" (ByVal strSysDir As String, ByVal
strGoldDir As String, ByVal strCommonDir As String, ByVal strUser As String, ByVal
strPassword As String) As Long

Parameters

The GMW_LoadBDE function takes five parameters.

SzGoldDir: Specifies the location of CAL.DBF.

SzCommonDir: Specifies the location of CONTACT1.DBF.

SzUser: Specifies the GoldMine user name (must be UPPERCASE).
For API version 5.70.20222 and later: You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to
use login credentials returned for the user logged into a running copy of GoldMine through DDE.

Page 100 of 463

SzPassword: Specifies the user’s password (must be UPPERCASE).
For API version 5.70.20222 and later: You may set this to the return string from the GetLoginCredentials DDE
command if the User parameter is set to *DDE_Login_Credentials*. The credential string is only valid for 30
seconds.

Return Values

The GMW_LoadBDE function returns the following values:

GMW_LoadBDE Return Values

Return Description

1 Success

0 BDE already loaded

-1 BDE failed to load

-2 Cannot find license file

-3 Cannot load license file

-4 Cannot validate the license file username/password

-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user

Notes

GMW_LoadBDE must be called before calling any function that accesses databases, such as GMW_UpdateSyncLog
and GMW_ReadImpTLog. GMW_UnloadBDE must be called before unloading the DLL. GMW_LoadBDE may be
called as many times as necessary. Be sure to match a corresponding GMW_UnloadBDE for every call of GMW_
LoadBDE.

Example

GMW_LoadBDE("d:\\GM4", "d:\\GM4", "d:\\GM4\\demo", "JON", “PASS”);
Or
GMW_LoadBDE("d:\\GM4", "d:\\GM4", "d:\\GM4\\demo",

“*DDE_LOGIN_CREDENTIALS*”, szDDEReturnString);

Logging in a User
GMW_Login may be used to login a different user than was originally logged in through GMW_LoadAPI or GMW_
LoadBDE.

Page 101 of 463

Syntax

C/C++ int GMW_Login(char *szUser, char *szPassword, char *szSQLUser, char *szSQLPassword)

VB Public Declare Function GMW_Login Lib "gm6s32.dll" (ByVal strUser As String, ByVal
strPassword As String, Optional ByVal strSQLUser As String, Optional ByVal
strSQLPassword As String) As Long

Parameters

szUser: Specifies the GoldMine user name (must be UPPERCASE).
For API version 5.70.20222 and later: You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to
use login credentials returned for the user logged into a running copy of GoldMine through DDE.

szPassword: Specifies the user’s password (must be UPPERCASE).
For API version 5.70.20222 and later: You may set this to the return string from the GetLoginCredentials DDE
command if the User parameter is set to *DDE_Login_Credentials*. The credential string is only valid for 30
seconds.

szSQLUser: Specifies the user’s SQL login name. Omit if using DDE login credentials.

szSQLPassword: Specifies the user’s SQL password. Omit if using DDE login credentials.

Return Values

The GMW_Login function returns the following values:

GMW_Login Return Values

Return Description

1 Success

0 Failure

-1 User does not have permission to open the current contact set.

Example

GMW_Login("JOE", "PASS", "SA", "");
Or
GMW_Login(“*DDE_LOGIN_CREDENTIALS*”, szDDEReturnString);

Closing an API Session (GoldMine 7.0 or higher)
Syntax

C/C++ int GMW_UnloadAPI()

VB Public Declare Function GMW_UnloadAPI Lib "gm6s32.dll" () As Long

Page 102 of 463

Return Values

The GMW_UnloadAPI function returns the following values:

GMW_UnloadBDE Return Values

Return Description

0 Failure

1 Success

Notes

If GMW_LoadAPI is called, GMW_UnloadAPI must be called before unloading the DLL.

Example

GMW_UnloadAPI();

The following functions perform additional functions:

GMW_GetLicenseInfo: Returns GoldMine licensing information

Closing a BDE Session (GoldMine 6.7 or lower)
Syntax

C/C++ int GMW_UnloadBDE()

VB Public Declare Function GMW_UnloadBDE Lib "gm6s32.dll" () As Long

Return Values

The GMW_UnloadBDE function returns the following values:

GMW_UnloadBDE Return Values

Return Description

0 Failure

1 Success

Notes

If GMW_LoadBDE is called, GMW_UnloadBDE must be called before unloading the DLL.

Example

GMW_UnloadBDE();

The following functions perform additional functions:

GMW_SetSQLUserPass: Sets the SQL database login name and password

Page 103 of 463

GMW_GetLicenseInfo: Returns GoldMine licensing information

Logging in Multiple Users through the API
Some integrated solutions for GoldMine require more than one user logged into GoldMine. These are usually
some type of server application or a Web-based interface. The following functions enable you to handle these
situations.

The first function call you will make will still be the GMW_LoadAPI or GMW_LoadBDE function. You must enter a
valid username to call this function, but you can leave the password blank. You can also use *DDE_LOGIN_
CREDENTIALS* to call this function. For more information on the GMW_LoadAPI or GMW_LoadBDE functions, see
and .

Logging In
To log in multiple users, use the GMW_MULogin function. Logging in a user with this function will use a seat of
your GoldMine license.

Syntax

C/C++ int __stdcall GMW_MULogin (char* szUser, char* szPassword, char* szSQLUser, char*
szSQLPassword, char* szCommonDir)

VB Public Declare Function GMW_MULogin Lib "gm6s32.dll" (ByVal strUser As String, ByVal
strPassword As String,ByVal strSQLUser As String, ByVal strSQLPassword As String, ByVal
strCommonDir As String) As Long

Parameters

szUser is the GoldMine login name

szPassword is the GoldMine password

szSQLUser is the username for the MS SQL server

szSQLPassword is the password for the MS SQL server

szCommondir is to set a different, specific contact file directory for this user

Return Values

The GMW_MULogin function returns the following values:

GMW_MULogin Return Values

Return Description

> 0 The session ID for this user

0 Failed to set TLS value

Page 104 of 463

-1 Failed to load license file

-2 Failed to validate name and password

-3 No more seats available

-4 Unknown general exception

-5 User does not have access to the specified contact set.

Logging Out
To log out a user when multiple users are logged in, use the GMW_MULogout function. This function will free the
license seat previously used by the GMW_MULogin function.

Syntax

C/C++ int __stdcall GMW_MULogout (int nSessionID)

VB Public Declare Function GMW_MULogout Lib "gm6s32.dll" (ByVal nSessionID As Long) As
Long

Parameters

nSessionID is the integer value returned by the GMW_MULogin function

Returns

The function will return TRUE if the specified SessionID was valid.

Switching Between Login Sessions
If you are working with more than one login session, it is important to note that the API functions always work on
the last user logged in. The functions do not have a parameter to specify which session (user) to operate on. In
order to switch to a different login session, use the GMW_MUBeginSession function.

Syntax

C/C++ int __stdcall GMW_MUBeginSession (int nSessionID)

VB Public Declare Function GMW_MUBeginSession Lib "gm6s32.dll" (ByVal nSessionID As
Long) As Long

Parameters

nSessionID is the integer value returned by the GMW_MULogin function and specifies which login session under
which you want the API calls to operate.

Returns

The function returns the SessionID on success, and 0 on failure.

Page 105 of 463

Special Consideration for Multi-Threaded Applications
There may be an instance when your application will not be able to guarantee that every data request will go
through the same thread that created the session, such as the case with Internet Information Server. If you try to
access an API session from a different thread than the one that created the session, you may encounter
exceptions.

To handle these situations, use the GMXTP.DLL. Each of the functions in the GMXS32.DLL is wrapped through the
GMXTP.DLL, so there is no need to load both. In addition, the above multiple login functions have slightly altered
names:

GMW_TP_MULogin
GMW_TP_MULogout
GMW_TP_MUBeginSession

In addition, there is one additional function to be aware of, GMW_TP_CopySecurityTokentoWorkthread.

Syntax

C/C++ GMW_TP_CopySecurityTokentoWorkThread ()

VB Public Declare Sub GMW_TP_CopySecurityTokentoWorkThread lib “gm6s32.dll” ()

This function ensures that the thread that is attempting access gets the identity of the working thread instead of
the process. This function is especially important when dealing with IIS Extensions.

Working with Business Logic Functions using the
Name/Value Pair Method

The following section describes the functions available for the programmer to manipulate Name Value containers,
used for accessing the high-level business logic functions via the GMXS32.DLL. For function prototypes and code
examples in C++, Visual Basic and Delphi, see .

For information on which business logic functions are available, and their expected name/value pairs, see ..

Notes

○ These functions require that you are successfully logged into a GoldMine database using the GMW_
LoadAPI or GMW_LoadBDE function.

○ You must pass an empty NV container with all calls that do not take any parameters.

Creating an NV Container
GMW_NV_Create creates an NV container. This is the first step in using the name/value pair containers. This is
analogous to creating a structure to store multiple variables indicating the values you wish to assign to fields in
GoldMine.

Page 106 of 463

Syntax

C/C++ HGMNV __stdcall GMW_NV_Create()

VB Public Declare Function GMW_NV_Create Lib "gm6s32.dll" () As Long

Example

lGMNV = GMW_NV_Create

Return Value

Pointer to a new NV container

Creating an NV Container with Copied Values
GMW_NV_CreateCopy creates an NV container and copies the values from an existing NV container.

Syntax

C/C++ HGMNV __stdcall GMW_NV_CreateCopy(HGMNV hgmnv)

VB Public Declare Function GMW_NV_CreateCopy Lib "gm6s32.dll" (ByVal hgmnv As Long) As
Long

where hgmnv represents the pointer to the source NV container.

Example

lGMNV2 = GMW_NV_CreateCopy(pGMNV)

Return Value

Pointer to a new NV container.

Copying Values between NV Containers
GMW_NV_Copy copies the values from one NV container to another. GMW_NV_Create or GMW_NV_CreateCopy
must have previously created both NV containers.

Syntax

C/C++ void _stdcall GMW_NV_Copy (HGMNV hgmnvDestination, HGMNV hgmnvSource)

VB Public Declare Sub GMW_NV_Copy Lib "gm6s32.dll" (ByVal hgmnvDestination As Long,
ByVal hgmnvSource As Long)

Parameters

hgmnvDestination is the pointer to the destination container.

hgmnvSource is the pointer to the source container.

Page 107 of 463

Example

GMW_NV_Copy lGMNV2, lGMNV

Return Value

n/a

Deleting an NV Container
GMW_NV_Delete deletes an NV container and releases its memory. Be sure to call this for all previously created
containers before exiting your application.

Syntax

C/C++ void __stdcall GMW_NV_Delete(HGMNV hgmnv)

VB Public Declare Sub GMW_NV_Delete Lib "gm6s32.dll" (ByVal hgmnv As Long)

where hgmnv is the pointer to the NV container to delete.

Example

GMW_NV_Delete lGMNV

Return Value

n/a

Reading Values from an NV Container
GMW_NV_GetValue reads a value stored in an NV container. If the name does not exit in the container, the
default value is returned. This method is used to read data out of the container returned from GoldMine. For
example, after creating a contact, you would call GMW_NV_GetValue to read the new Recid or Accountno
assigned to the contact.

Syntax

C/C++ const char* __stdcall GMW_NV_GetValue(HGMNV hgmnv, const char* name, const char*
DefaultValue)

VB Public Declare Function GMW_NV_GetValue Lib "gm6s32.dll" (ByVal hgmnv As Long,
ByVal Name As String, ByVal DefaultValue As String) As GMWStr

Parameters

hgmnv is the pointer to a valid name value container

Name is the name of the value to return

DefaultValue is the default value if <Name> is null or does not exist.

Page 108 of 463

Example

sValue = GMW_NV_GetValue (lGMNV, ‘Accountno’, ‘(none)’)

Return Values

The value of the Name is returned. If the Name is null or does not exist, the DefaultValue value is returned.

Storing NV Pairs in a Container
GMW_NV_SetValue stores a Name/Value pair in the specified container. Use this function to specify the values
that you wish to assign to the GoldMine record (contact, cal, history, etc). Call this function for each field value
you need to assign.

Syntax

C/C++ void __stdcall GMW_NV_SetValue(HGMNV hgmnv, const char* name, const char* value)

VB Public Declare Sub GMW_NV_SetValue Lib "gm6s32.dll" (ByVal hgmnv As Long, ByVal
Name As String, ByVal Value As String)

Parameters

hgmnv is the pointer to a valid name value container.

Name is the name of the value to set.

Value is the value to assign to <Name>.

Example

GMW_NV_SetValue lGMNV, ‘Phone1’, ‘(310)555-1212’

Return Value

n/a

Searching for an NV Pair
GMW_NV_NameExists checks if the specified Name/Value exists within the NV container.

Syntax

C/C++ long __stdcall GMW_NV_NameExists(HGMNV hgmnv, const char* name)

VB Public Declare Function GMW_NV_NameExists Lib "gm6s32.dll" (ByVal hgmnv As Long,
ByVal Name As String) As Long

Parameters

hgmnv is the pointer to a valid name value container.

Name is the name of the value to set.

Page 109 of 463

Example

iResult = GMW_NV_NameExists (lGMNV, ‘Phone1’)

Return Values

GMW_NV_NameExists Return Values

Return Description

0 Value does not exist in container

1 Value exists in container

Removing one NV Pair
GMW_NV_EraseName removes a Name/Value pair from the specified container. This function is useful for
removing the Recid name/value pair from a container that has already been used once to create a new record. To
reuse the container using all of the same name/value pairs, the Recid name/value pair needs to be removed in
order to create another new record.

Syntax

C/C++ void __stdcall GMW_NV_EraseName(HGMNV hgmnv, const char* name)

VB Public Declare Sub GMW_NV_EraseName Lib "gm6s32.dll" (ByVal hgmnv As Long, ByVal
Name As String)

Parameters

hgmnv is the pointer to a valid name value container

Name is the name of the value to set

Example

GMW_NV_EraseName lGMNV, ‘Phone1’

Return Value

n/a

Removing all NV Pairs from a Container
GMW_NV_EraseAll removes all Name/Value pairs from the specified container.

Syntax

C/C++ void __stdcall GMW_NV_EraseAll(HGMNV hgmnv)

VB Public Declare Sub GMW_NV_EraseAll Lib "gm6s32.dll" (ByVal hgmnv As Long)

Page 110 of 463

Parameter

hgmnv is the pointer to a valid name value container.

Example

GMW_NV_EraseAll lGMNV

Return Value

n/a

Totaling NV Pairs in a Container
GMW_NV_Count returns the number of Name/Value pairs within the specified container.

Syntax

C/C++ long __stdcall GMW_NV_Count(HGMNV hgmnv)

VB Public Declare Function GMW_NV_Count Lib "gm6s32.dll" (ByVal hgmnv As Long) As Long

Parameter

hgmnv is the pointer to a valid name value container.

Example

iCount = GMW_NV_Count lGMNV

Return Value

Number of NVs within the specified container.

Finding an NV Name
GMW_NV_GetNameFromIndex finds the name of the NV stored at a specific index within the container. The first
item in the container is at index value 1.

Syntax

C/C++ const char* __stdcall GMW_NV_GetNameFromIndex(HGMNV hgmnv, long index))

VB Public Declare Function GMW_NV_GetNameFromIndex Lib "gm6s32.dll" (ByVal hgmnv As
Long, ByVal index As Long) As GMWStr

Parameters

hgmnv is the pointer to a valid name value container

Index is the item number to return.

Page 111 of 463

Example

sName = GMW_NV_GetNameFromIndex(lGMNV, 3)

Return Value

The name stored at <Index> within the container.

Finding an NV Value
GMW_NV_GetValueFromIndex finds and returns the value of the NV stored at the specified index within the
container. The first item in the container is stored an index value 1.

Syntax

C/C++ const char* __stdcall GMW_NV_GetValueFromIndex(HGMNV hgmnv, long index)

VB Public Declare Function GMW_NV_GetValueFromIndex Lib "gm6s32.dll" (ByVal hgmnv As
Long, ByVal index As Long) As GMWStr

Parameters

hgmnv is the pointer to a valid name value container

Index is the item number to return

Example

sValue = GMW_NV_GetValueFromIndex(pGMNV, 3)

Return Value

The value stored at <Index> within the container.

Setting NV Pairs
GMW_NV_SetStr sets one or more Name/Value pairs. This function is used if you would like to set multiple
name/value pairs in a single call.

Syntax

C/C++ void __stdcall GMW_NV_SetStr(HGMNV hgmnv, char dlmName, char dlmVal, const char*
pszValueStr)

VB Public Declare Sub GMW_NV_SetStr Lib "gm6s32.dll" (ByVal hgmnv As Long, ByVal
strDlmName As String, ByVal strDlmVal As String, ByVal ValueStr As String)

Parameters

hgmnv is the pointer to a valid name value container.

DlmName is the delimiter between the name and its value.

DlmVal is the delimiter between each NV pairs.

Page 112 of 463

ValueStr is the string containing the name values.

Example

GMW_NV_SetStr lGMNV,'=',';','Company=GoldMine;Key1=Cust'
GMW_NV_SetStr lGMNV,'&','&','Company&GoldMine&Key1&Cust'

NOTE: * The delimiters may be the same for DlmName and DlmVal.

Return Value

n/a

Executing Business Logic Methods
All of the Business Logic methods are accessed through the GMW_Execute function. You must be successfully
logged into a GoldMine database for this call to work properly. For details about Business Logic methods, see .

Syntax

C/C++ long _stdcall GMW_Execute(const char *szFuncName, HGMNV hgmnv)

VB Public Declare Function GMW_Execute Lib "gm6s32.dll" (ByVal strFuncName As String,
ByVal hgmnv As Any) As Long

Parameters

FuncName is one of the various business logic functions described below.

hgmnv is the pointer to a Name/Value container.

Example

GMW_Execute “WriteContact”, lGMNV

Return Values

GMW_Execute Return Values

Return Description

0 Failure

>0 Success

Working with Multi-Value Name/Value Pairs
Some business logic methods use a special name/value pair that contains multiple values. In addition, a
name/value pair may simply hold a string value, or it may hold the handle(s) to one or more name/value
containers. The lifetime of an embedded NV value is controlled by its parent. You do not need to call GMW_NV_
Delete on it.

Page 113 of 463

The following functions are used to manipulate and read multi-value pairs.

Determining the Type of a Name/Value Pair
The GMW_NV_GetValueType function is used to determine if a name/value pair is a multi-value pair or a
container.

GoldMine API Version: 5.50.10111

Syntax

C/C++ long _stdcall GMW_NV_GetValueType(HGMNV hgmnv, const char *name)

VB Public Declare Function GMW_NV_GetValueType Lib "gm6s32.dll" (ByVal hgmnv As Long,
ByVal strName As String) As GMWNVValueType

Parameters

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair for which you want to determine the type.

Return Values

Possible return values are as follows:

GetValueType Return Values

Value Description

GM_NV_VALUE_TYPE_SINGLE_NV The value is one NV Containers

GMW_NV_VALUE_TYPE_MULTI_NV The value stores multiple NV containers

GMW_NV_VALUE_TYPE_MULTI_STRING The value stores multiple string values

Determining the Position of an NV Container in an NV
Hierarchy

If the value in an NV pair contains another container, the container that holds the second container is the parent
of the second container. When there are no more parents, or you are at the top level of the hierarchy, the
container is considered the root. The following functions will indicate whether the container is a parent or root, or
return the handle to the root or parent.

GoldMine API Version: 5.50.10111

Syntax

C/C++ BOOL _stdcall GMW_NV_IsRoot(HGMNV hgmnv)

VB Public Declare Function GMW_NV_IsRoot Lib "gm6s32.dll" (ByVal hgmnv As Long) As Long

Page 114 of 463

Returns TRUE (not zero) if the specified hgmnv is the root.

Parameters

hgmnv is the pointer to a Name/Value container.

Example

If(GMW_NV_is Root (hgmnv)) {it’s the root} else {it’s a child}

Syntax

C/C++ HGMNV _stdcall GMW_NV_GetRoot(HGMNV hgmnv)

VB Public Declare Function GMW_NV_GetRoot Lib "gm6s32.dll" (ByVal hgmnv As Long) As
Long

Returns the hgmnv of the root for the specified container. If the root’s hgmnv is specified, the same hgmnv will be
returned.

Parameters

hgmnv is the pointer to a Name/Value container.

Example

hRootNV = GMN_NV_GetRoot(hgmnv)

Syntax

C/C++ HGMNV _stdcall GMW_NV_GetParent(HGMNV hgmnv)

VB Public Declare Function GMW_NV_GetParent Lib "gm6s32.dll" (ByVal hgmnv As Long) As
Long

Returns the hgmnv of the parent for the specified container. The function returns NULL if the specified hgmnv has
no parent (is the root).

Parameters

hgmnv is the pointer to a Name/Value container.

Example

hParentNV = GMW_NV_GetParent(hgmnv)

Getting the Number of Values in a Multi-Value Pair
The GMW_NV_GetMultiValueCount function will return the number of values included in a multi-value
name/value pair.

GoldMine API Version: 5.50.10111

Page 115 of 463

Syntax

C/C++ long __stdcall GMW_NV_GetMultiValueCount(HGMNV hgmnv, const char* name)

VB Public Declare Function GMW_NV_GetMultiValueCount Lib "gm6s32.dll" (ByVal hgmnv As
Long, ByVal strName As String) As Long

Parameters

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair for which you want to receive the count of values.

Example

numberOfValues = GMW_NV_GetMultiValueCount(hgmnv, “POP3_Account”)

Retrieving Containers from an NV Pair
When a value contains one container, the GMW_NV_GetNVValue function is used to retrieve the hgmnv for that
child container.

GoldMine API Version: 5.50.10111

Syntax

C/C++ HGMNV _stdcall GMW_NV_GetNvValue(HGMNV hgmnv, const char* name)

VB Public Declare Function GMW_NV_GetNvValue Lib "gm6s32.dll" (ByVal hgmnv As Long,
ByVal strName As String) As Long

Parameters

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair from which you want to receive the child container.

Example

hSubNV = GMW_NV_GetNvValue(hgmnv, “TheNVName”)

When a value contains multiple containers, the GMW_NV_GetMultiNvValue function is used to retrieve the
hgmnv for the child containers.

Syntax

C/C++ HGMNV _stdcall GMW_NV_GetMultiNvValue(HGMNV hgmnv, const char* name, long
position);

VB Public Declare Function GMW_NV_GetMultiNvValue Lib "gm6s32.dll" (ByVal hgmnv As
Long, ByVal strName As String, ByVal position As Long) As Long '1 based

Page 116 of 463

Parameters

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair from which you want to receive the child container.

Position is the nth value you want to retrieve (1 based). If you wanted the tenth container in the value, then
position would be 10.

Example

hSubNV = GMW_NV_GtMultiNvValue(hgmnv, “TheNVName”, 10)

Retrieving the Values in a Multi-Value Pair
The GMW_NV_GetMultiValue function is used to retrieve the values from a multi-value pair. It is called for each
value and the number of the value to retrieve must be specified. This function is used to retrieve string values. To
retrieve NV containers from the value, use the GMW_NV_GetNvValue function or the GMW_NV_
GetMultiNvValue function.

GoldMine API Version: 5.50.10111

Syntax

C/C++ const char* _stdcall GMW_NV_GetMultiValue(HGMNV hgmnv, const char* name, long
element, const char* defaultValue)

VB Public Declare Function GMW_NV_GetMultiValue Lib "gm6s32.dll" (ByVal hgmnv As Long,
ByVal strName As String, element As Long, ByVal strDefaultValue As String) As GMWStr

Parameters

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair for which you want to receive the values from.

Element is the number of the value to be returned. This is 1 based.

DefaultValue is the default value to return if the element supplied is not found.

Example

To return the fifth element:

strFifthElemnt = GMW_NV_GetMultiValue(hgmnv,
“POP3_Account”, 5, “No Account”)

Deleting Values from a Multi-Value Pair
The GMW_NV_EraseName function will delete the entire Multi-Value Pair.

GoldMine API Version: 5.50.10111

Page 117 of 463

Assigning a Container to a Parent
If you need to populate a container that will be a child container, one approach is to create the container, fill int
with its respective values, and then copy the container into the value of the NV pair desired.

When the NV pair holds only one container, the GMW_NV_SetNvValue function is used.

GoldMine API Version: 5.50.10111

Syntax

C/C++ void _stdcall GMW_NV_SetNvValue(HGMNV hgmnv, const char* name, HGMNV
hgmnvValue)

VB Public Declare Sub GMW_NV_SetNvValue Lib "gm6s32.dll" (ByVal hgmnv As Long, ByVal
strName As String, ByVal hgmnvValue As Long)

Parameters

hgmnv is the pointer to the parent Name/Value container.

Name is the name of the name/value pair into which you want to copy the child container.

hgmnvValue is the prepared NV container to copy to the parent container.

Example
GMW_NV_SetNvValue hgmnv, “TheNVName”, hChildNV

The GMW_NV_AppendNvValue function will append a copy of the specified child container to an NV pair value
that contains multiple containers.

Syntax

C/C++ long _stdcall GMW_NV_AppendNvValue(HGMNV hgmnv, const char* name, HGMNV
hgmnvValue)

VB Public Declare Function GMW_NV_AppendNvValue Lib "gm6s32.dll" (ByVal hgmnv As
Long, ByVal strName As String, ByVal hgmnvValue As Long) As Long

Parameters

hgmnv is the pointer to the Name/Value container.

Name is the name of the name/value pair into which you want to copy the child container.

hgmnvValue is the prepared NV container to copy to the parent container.

Example

GMW_NV_AppendNvValue hgmnv, “The NVName”, hChildNV

Creating an Empty Child Container Within the Parent

Page 118 of 463

The two preceding functions took a prepared NV container and copied it to the parent container. Another (best
practice) method would be to allow the API to create the child container for you, return the hgmnv to that child,
and then allow you to fill it with the appropriate values.

The GMW_NV_SetEmptyNvValue will create a child container for an NV pair and return the hgmnv for that child.
This function is used when the value is to hold only one child container.

GoldMine API Version: 5.50.10111

Syntax

C/C++ HGMNV _stdcall GMW_NV_SetEmptyNvValue(HGMNV hgmnv, const char* name)

VB Public Declare Function GMW_NV_SetEmptyNvValue Lib "gm6s32.dll" (ByVal hgmnv As
Long, ByVal strName As String) As Long

Parameters

hgmnv is the pointer to the parent Name/Value container.

Name is the name of the name/value pair in which you want to create the child container.

Example

hChildNv = GMW_NVSetEmptyNvValue(hgmnv, “TheNVName”)
‘now set the values of the child container using the returned HGMNV

When you need to append an empty child container to an NV pair containing multiple children, use the GMW_
NV_AppencdEmptyNvValue function.

Syntax

C/C++ HGMNV _stdcall GMW_NV_AppendEmptyNvValue(HGMNV hgmnv, const char* name)

VB Public Declare Function GMW_NV_AppendEmptyNvValue Lib "gm6s32.dll" (ByVal hgmnv
As Long, ByVal strName As String) As Long

Parameters

hgmnv is the pointer to the parent Name/Value container.

Name is the name of the name/value pair to which you want to append the new empty child container.

Example

hChildNv = GMW_NV_AppendEmptyNvValue(hgmnv, “TheNVName”)
‘now set the values of the child container using the returned HGMNV.

Appending String Values to a Multi-Value Pair
The GMW_NV_AppendValue function will append values to a multi-value pair.

GoldMine API Version: 5.50.10111

Page 119 of 463

Syntax

C/C++ long _stdcall GMW_NV_AppendValue(HGMNV hgmnv, const char* name, const char*
value)

VB Public Declare Function GMW_NV_AppendValue Lib "gm6s32.dll" (ByVal hgmnv As Long,
ByVal strName As String, ByVal strValue As String) As Long

Parameters

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair for which you want to receive the count of values.

Value is the value to be appended to the end of the list of values.

Example

To set five (5) values for the POP3_Account value:

For i = 1 To 5
GMW_NV_Append hgmnv, “POP3_Account”, i
Next i

Low-level Data Access & Manipulation
The following sections describe additional functions in the GMXS32.DLL that allow data reading and updating via
low-level methods. Use of the following functions requires in-depth knowledge of the GoldMine data structures
and business rules. They are useful for accessing and writing data that is not accessible via the high-level business
logic functions.

Reading Security and Rights for a DLL User
The GMW_UserAccess function retrieves specific permission information for the logged-in user.

GoldMine API Version: 5.00.041

Syntax

C/C++ int _stdcall GMW_UserAccess(long iOption)

VB Public Declare Function GMW_UserAccess lib “gm6s32.dll” (ByVal iOption as long) as
Integer

Parameters

GMW_UserAccess takes one parameter, iOption, which is a value for the types of rights settings you wish to
query.

Page 120 of 463

iOption values

Value Rights

100 Master Rights

101 Access to other user’s calendar

102 Access to other user’s history

103 Access to other user’s sales

104 Access to other user’s reports

105 Access to other user’s merge forms

106 Access to other user’s filters

107 Access to other user’s groups

108 Access to other user’s links

111 Right to create a record

112 Right to edit a record

113 Right to delete a record

114 Right to change record owner

115 Right to field views

116 Right to schedule automated processes

118 Right to SQL Query

119 Right to NetUpdate

124 Right to build groups

Return Values

The GMW_UserAccess function returns 1 if the user has the queried rights.

Using GMW_CalAccess, you can query whether the user logged in via the DLL has rights to read/write a CAL
record.

Syntax

C/C++ int _stdcall GMW_CalAccess(char *szRecType, char *szUserID, char *szNumber1)

VB Public Declare Function GMW_CalAccess lib “gm6s32.dll” (ByVal sRectype as String, ByVal
sUserID as String, ByVal sNumber1 as String) as Integer

Page 121 of 463

Parameters

szRecType is the RecType of the record.

szUserID is the UserID of the record.

szNumber1 is the Number1 value of the record.

Return Values

The GMW_CalAccess function returns 1 if the user has rights to read/write.

Using GMW_HistAccess, you can query if the user logged in via the DLL has rights to read/write a CONTHIST
record.

Syntax

C/C++ int _stdcall GMW_HistAccess(char *szRecType, char *szUserID)

VB Public Declare Function GMW_HistAccess Lib "gm5s32.dll" (ByVal szRecType As String,
ByVal szUserID As String) As Integer

Parameters

szRecType is the RecType of the record.

szUserID is the UserID of the record.

Return Values

The GMW_HistAccess function returns 1 if the user has rights to read/write.

Returning GoldMine Licensing Information
GoldMine API Version: 5.00.041

Syntax

C/C++ int_stdcall GMW_GetLicenseInfo(GMW_LicInfo *pLic)

VB Public Declare Function GMW_GetLicenseInfo Lib "gm6s32.dll" (LicInfo As GMW_LicInfo)
As Long

Parameters

GMW_GetLicenseInfo takes one parameter pLic, which is a pointer to a client allocated GMW_LicInfo structure.

Return Values

The GMW_GetLicenseInfo function returns the following values:

GMW_GetLicenseInfo Return Values

Page 122 of 463

Return Description

0 Failure

1 Success

Notes

The GMW_LicInfo structure includes the following items:

GMW_GetLicenseInfo Structure

Type/Size Name Description

char / 60 Licensee Licensee name

char / 40 LicNo Master serial number

char / 20 SiteName Undocked site name

long integer LicUsers; Licensed users

long integer SQLUsers; Licensed SQL users

long integer GSSites; License GoldSync sites

long integer isDemo; Is demo install? 1=True

long integer isServerLic; Is primary ('D' or 'E') license? 1=True

long integer isRemoteLic; Is remote (‘U’ or ‘S’) license? 1=True

long integer isUSALicense; Is USA license? 1=True

long integer DLLVersion DLL Version number

long integer Reserved1 Reserved

long integer Reserved2 Reserved

char / 100 sReserved Reserved

Example

GMW_LicInfo oLic;
GMW_GetLicenseInfo(&oLic;

Returning Calendar Data
The ReadSchedule call returns all calendar data for a given RecID. You can also make the ReadSchedule call
through the XML API.

Page 123 of 463

Syntax

C/C++ pnv = (GMWnv*)GMW_NV_CreateCls();
pnv->Set("RecID", "SOMEVALIDRECID");
GMW_NV_Execute("ReadSchedule", pnv);

Retrieving Data with DataStream
DataStream returns the data of ordered records from any GoldMine table using the most efficient method
available. The caller can specify:

○ Fields and expressions to return
○ Range of records to return
○ Optional filter to apply to the data set

DataStream SQL query capabilities are very fast on SQL databases.

The DataStream method allows for many useful applications. One such group of applications would merge HTML
templates with the data returned by GoldMine DataStream to publish the contents of GoldMine data on the
Internet. Web pages can be created to display GoldMine data requested by a visitor. Based on visitor selections, a
company could dynamically present a variety of HTML pages, including dealer addresses in a particular city,
financial numbers stored in Contact2, and even seating availability at upcoming conferences. With a fast Internet
connection and a strong SQL server, the GoldMine client could respond simultaneously to dozens of requests.

Advantages of Using DataStream
GoldMine DataStream is absolutely the fastest way to read data from GoldMine tables. Used correctly,
DataStream will return the data faster than most development environments would directly. DataStream offers
the following advantages:

○ Efficiency: DataStream issues a single, most efficient SQL query or Xbase seek to retrieve records from the
back-end database to the local client. On SQL databases, requests of a few hundred records could be
sent from the server to the client with a single network transaction, greatly minimizing network traffic.

○ Speed: All fields and expressions are parsed initially by GMW_DS_Range() and GMW_DS_Query(), and then
quickly evaluated against each record in GMW_DS_Fetch. Other DDE methods (and development
environments) require that each field be parsed and evaluated each time its data is read. This makes a
big difference when reading hundreds or thousands of records.

○ Simplicity: Only three function calls are required to read all the data. Using traditional record-by-record
querying would require one call for each field of each record (reading 10 fields from 50 records would
require 500 function calls).

○ Results: All the work to gather and format the data is done in C++, which is the fastest way to fly. The caller
needs only to parse the resulting packet string.

DataStream Record Selection
The following DataStream functions are listed in the order in which they must be called.

GMW_DS_Range(): Opens a ranged cursor

GMW_DS_Query(): Opens an SQL query cursor

Page 124 of 463

GMW_DS_Fetch(): Fetches records

GMW_DS_Close(): Closes cursor

Either the GMW_DS_Range() function or the GMW_DS_Query() function must be called first to request the data.
These functions return the integer handle, iHandle, which must be passed to the GMW_DS_Fetch() and GMW_
DS_Close() functions.

You must use either GMW_DS_Range() or GMW_DS_Query()—you cannot use both. The GMW_DS_Range and
GMW_DS_Query functions execute equally fast on SQL and FireBird databases. GMW_DS_Range executes much
faster on Xbase tables than does GMW_DS_Query.

GMW_DS_Range

Syntax

C/C++ long GMW_DS_Range(char *szTable, char *szTag, char *szTopLimit, char *szBotLimit, char
*szFields, char *szFilter, char *szFDlm, char *szRDlm);

VB Public Declare Function GMW_DS_Range Lib "gm6s32.dll" (ByVal strTable As String, ByVal
strTag As String, ByVal strTopLimit As String, ByVal strBotLimit As String, ByVal strFields As
String, ByVal strFilter As String, ByVal strFDlm As String, ByVal strRDlm As String) As Long

GMW_DS_Range returns a range of records based on an index.

Parameters

The following parameters are required:

szTable specifies the table name (such as “Contact1”) or the table ID.

szTag designates the tag that corresponds to the index file.

szTopLimit specifies the top limit of the range. (Must conform to the index expression.)

szBotLimit specifies the bottom limit of the range. (Must conform to the index expression.)

szFields specifies the requested fields and expression to return—see “GMW_DS_Range Field Selection” on the
following page.

The following parameters are optional:

szFilter designates an optional Xbase filter expression.

szFDlm specifies the field delimiter (default: carriage return).

szRDlm specifies the record delimiter (default: line feed).

Return Values

The GMW_DS_Range function returns the following values:

GMW_DS_Range Return Values

Return Description

Page 125 of 463

0 Failure

1–20 Success (handle)

GMW_DS_Range Field Selection

The szFields parameter passed to GMW_DS_Range should consist of the field names and Xbase expressions to
evaluate against each record in the data set. Each field must be terminated with a semicolon (;). Xbase
expressions must be prefixed with an ampersand (&), and terminated with a semicolon. For example, the
following commands request the first 100 cities from the Lookup file, including the city name and record number
(RecID under SQL):

ih1 = GMW_DS_Range("lookup", "lookup", "CITY", "CITYZ", "Entry; &RecNo

();")
r1 = GMW_DS_Fetch(ih1, szBuf, iBufSize, 100)
r2 = GMW_DS_Close(ih1)

The following commands request the first 10 profiles of the current contact record, followed by a request for the
next 50 profiles:

ih1 = GMW_DS_Range("contsupp","contspfd", sAccNo+"P", sAccNo+"P",

"Contact;ContSupRef;")
r1 = GMW_DS_Fetch(ih1, szBuf, iBufSize, 10)
r1 = GMW_DS_Fetch(ih1, szBuf, iBufSize, 50)
r1 = GMW_DS_Close(ih1)

GMW_DS_Query

Syntax

C/C++ long GMW_DS_Query(char *szSQL, char *szFilter, char *szFDlm, char *szRDlm);

VB Public Declare Function GMW_DS_Query Lib "gm6s32.dll" (ByVal strSQL As String,
Optional ByVal strFilter As String, Optional ByVal strFDlm As String, Optional ByVal
strRDlm As String) As Long

This function is very fast on SQL databases.

Parameters

szSQL query sends the query for evaluation on the server. The SQL query can join multiple tables and return any
number of fields.

Optional parameter szFilter specifies a Boolean Xbase filter expression to apply to the data set (even on SQL
tables), similar to the DDE SETFILTER command.

Optional parameter szFDlm overrides the return packet’s default field delimiter of CR (carriage return).

Optional parameter szRDlm overrides the return packet’s default record delimiter of LF (line feed).

Return Values

The GMW_DS_Query function returns the following values:

Page 126 of 463

GMW_DS_QueryReturn Values

Return Description

0 Failure

-1 Invalid Query/Timeout

1–20 Success (handle)

GMW_DS_Fetch

Syntax

C/C++ long GMW_DS_Fetch(long iHandle, char *szBuf, int iBufSize,
int nGetRecs);

VB Public Declare Function GMW_DS_Fetch Lib "gm6s32.dll" (ByVal iHandle As Long, ByVal
strbuf As String, ByVal iBufSize As Long, ByVal nGetRecs As Long) As Long

GMW_DS_Fetch returns a single packet string containing the requested data from all records processed by the
current “fetch” command, as specified by the nGetRecs parameter. iHandle must be the value returned from
GMW_DS_Range() or GMW_DS_Query(). For details about the packet format, see below.

GMW_DS_Fetch Return Packet

GMW_DS_Fetch returns a single packet string containing the data from all requested records. The packet includes
a header record, followed by one record for each record evaluated by “fetch.” Within each record in the packet,
the fields are separated by a field delimiter specified in GMW_DS_Range or GMW_DS_Query. By default, the field
delimiter is the carriage return character (13 or 0x0D).

The records in the packet are separated by the record delimiter. By default, the record delimiter is the line feed
character by default (10 or 0x0A).

These delimiters are convenient when the requested data does not contain notes from blob fields. You can pass 0
for szFDlm, szRDlm to use the default delimiters. When requesting notes, override the default delimiters by
passing other delimiter values to GMW_DS_Range() and GMW_DS_Query(). For packets with notes, good
delimiters are the ASCII characters 1 and 2.

The City Lookup example from above might return a packet of data similar to:

3000-0004
Boston|23
London|393
Los Angeles|633
New York|29

The packet header record consists of two sections:

First byte can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another GMW_DS_Fetch call

3 indicates the end-of-file (EOF)

Page 127 of 463

4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in the packet.

DataStream takes about as much time to read three records as to read 30. For best performance, adjust the
number of records requested by GMW_DS_Fetch to return 8K–32K packets.

The calling application must allocate the memory for a large enough packet buffer, and pass that memory buffer
to GMW_DS_Fetch. When the number of records cannot be estimated to allocate a packet buffer, GMW_DS_
Fetch can be called twice, once to fetch the data and return a buffer size, and a second time to retrieve the data
into the buffer. When GMW_DS_Fetch is first called to get the buffer size, the szBuf and iBufSize parameters must
both be 0. The nGetRecs parameter must indicate the number of records to fetch. When GMW_DS_Fetch is then
called to retrieve the data that has been fetched by the first call, the nGetRecs parameter must be 0.

NOTE: If the return DataStream is too large for the specified buffer size, GMW_DS_Fetch returns a value of
-5. When the buffer in increased to an adequate size, GMW_DS_Fetch will return the data in a DataStream.
This behavior prevents the dropping of data due to undersized buffers.

GMW_DS_Close

Syntax

C/C++ long GMW_DS_Close(long iHandle)

VB Public Declare Function GMW_DS_Close Lib "gm6s32.dll" (ByVal iHandle As Long) As Long

GMW_DS_Close must be called when the operation is complete. Unclosed data streams will leak memory and
leave the database connections needlessly open. Passing an iHandle of 0 closes all open DataStream objects.

Accessing Low-Level Data Using Work Areas
The GoldMine GMXS32.DLL provides a complete set of functions that allow low-level access to the database tables.
Using these functions, you can:

○ Open particular data files
○ Seek the values of the fields in the records in the data files
○ Append records to the tables
○ Delete records
○ Replace data in the records

Database applications that need varied access to GoldMine data typically use this suite of functions. To work
successfully, these functions rely on a work area parameter. Using this parameter, you can open multiple data files
concurrently and manipulate each file independently by referencing the file by work area. These functions also
maintain synchronization information, which is stored in the TLogs.

GMXS32.DLL offers the low-level access functions that are listed in the following table.

Page 128 of 463

GMXS32.DLL Low-Level Access Functions

Function Name Description

Opening and Closing Databases

GMW_DB_Open Opens one GoldMine data file for processing by another application

GMW_DB_Close Releases a previously OPENed file when processing is complete

GMW_DB_IsSQL In GM 7.0, Determines whether the table is MSSQL (1) or Other (0). Use the
getDBEngineType function to retrieve additional DB engine information.

Creating and Deleting Records

GMW_DB_Append Adds a new, empty record to a GoldMine data file

GMW_DB_Delete Deletes the current record in the specified work area.

Reading and Writing Data

GMW_DB_Read Queries a data file for the value of a field

GMW_DB_RecNo
Determines either current record number position (Xbase), or the
record ID (SQL)

GMW_DB_Replace Changes the value in a particular field in one GoldMine data file

GMW_DB_Unlock Unlocks a record previously locked by a call to either GMW_DB_Append or GMW_
DB_Replace

Limiting Scope of Data

GMW_DB_Filter
Limits access to data in a GoldMine database by creating a subset of records based
on expression criteria

GMW_DB_Range
Activates the index in a table, and sets a range of values to limit the scope of data
that GoldMine will search

Searching for Data

GMW_DB_Search Performs a sequential search on a file

GMW_DB_Seek Positions to the first record matching the seek value

GMW_DB_SetOrder Sets the current index tag on the table

Navigating the Database

GMW_DB_Move Positions the record pointer to a particular record in a data file

GMW_DB_Goto Positions to a specific record in the table

Page 129 of 463

GMW_DB_Top Positions to the first record in the table

GMW_DB_Skip Positions to the next or prior record in the table

GMW_DB_Bottom Positions to the last record in the table

GMXS32.DLL Low-Level Access Functions

Function Name Description

GMW_DB_QuickSeek Wraps several DLL functions to perform a Seek based on an index

GMW_DB_QuickRead Wraps several DLL function to perform a Read

GMW_DB_QuickReplace Wraps several DLL functions to perform a Replace

Detailed descriptions of each database access function appear on the following pages. Some of the following
functions refer to table names, field names, and index tags. For details, see or .

Opening a Data File
GMW_DB_Open opens one GoldMine data file for processing by another application.

Syntax

C/C++ long GMW_DB_Open(char *szTablename);

VB Public Declare Function GMW_DB_Open Lib "gm6s32.dll" (ByVal strTableName As String)
As Long

Parameter

The GMW_DB_Open function takes only szTableName, which is the name of the table to be opened.

Return Values

The GMW_DB_Open function returns the following values:

GMW_DB_Open Return Values

Return Description

0 Error occurred

>0 Work area handle for table

Closing a Data File
GMW_DB_Close releases a previously OPENed file when processing is complete. All previously opened files must
be properly closed—failure to do so can result in database errors.

Page 130 of 463

Syntax

C/C++ long GMW_DB_Close(long pArea);

VB Public Declare Function GMW_DB_Close Lib "gm6s32.dll" (ByVal lArea As Long) As Long

Parameters

The GMW_DB_Close function takes only pArea, which is the work area handle of the file opened by the GMW_
DB_Open function.

Return Values

The GMW_DB_Close function returns the following values:

GMW_DB_Close Return Values

Return Description

0 Error occurred

1 Table properly closed

Checking for an SQL Table
GMW_DB_IsSQL is used to determine if the table is MSSQL (1) or Other (0). Use the getDBEngineType function to
retrieve more detailed DB engine information.

Syntax

C/C++ long GMW_DB_IsSql(long pArea);

VB Public Declare Function GMW_DB_IsSQL Lib "gm6s32.dll" (ByVal lArea As Long) As Long

Parameter

The GMW_DB_IsSQL function takes only pArea, which is the work area handle of the file opened by the GMW_
DB_Open function.

Return Values

The GMW_DB_IsSQL function returns the following values in GoldMine 7.0:

GMW_DB_IsSQL Return Values

Return Description

0 Table is not MSSQL

1 Table is MSSQL

Page 131 of 463

Adding a Record
GMW_DB_Append adds an empty record to a GoldMine data file.

Syntax

C/C++ long GMW_DB_Append(long pArea, char* szRecID);

VB Public Declare Function GMW_DB_Append Lib "gm6s32.dll" (ByVal lArea As Long, ByVal
strRecID As String) As Long

Before using GMW_DB_Append, you must open a data file using the GMW_DB_Open function. After executing
the GMW_DB_Append function, the record pointer is positioned at the new empty record, and the record is
locked and ready to accept field replacements.

When a CONTACT1 record is appended, GoldMine automatically fills in the new record with the appropriate
ACCOUNTNO and CREATEBY values. For all other records, you must replace the ACCOUNTNO field with the value
from the CONTACT1 record with which the new record is to be linked. For records that require remote
synchronization initialization, GoldMine will automatically fill in the value of the RECID field when these records
are appended.

Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szRecID specifies the size of the character buffer to accept the return value. The szRecID buffer must be at least 20
characters.

Return Value

Xbase: APPEND function returns the record number of the new record, or 0 if the file could not be locked.

SQL and FireBird: APPEND function returns the RECID of the new record in the szRecID parameter.

Deleting the Current Record
GMW_DB_Delete deletes the current record in the specified work area and moves the record pointer to the next
record.

For records that require remote synchronization initialization, GoldMine will automatically maintain the TLog
entry.

Syntax

C/C++ long GMW_DB_Delete(long pArea);

VB Public Declare Function GMW_DB_Delete Lib "gm6s32.dll" (ByVal lArea As Long) As Long

Parameter

The GMW_DB_Delete function takes only pArea, which is the work area handle of the file opened by the GMW_
DB_Open function.

Page 132 of 463

Return Values

The GMW_DB_Delete function returns the following values:

GMW_DB_Delete Return Values

Return Description

0 Error occurred

1 Record deleted

Querying for a Field Value
GMW_DB_Read queries a data file for the value of a field.

Syntax

C/C++ long GMW_DB_Read(long pArea, char *szField, char *szBuf, int iBufSize);

VB Public Declare Function GMW_DB_Read Lib "gm6s32.dll" (ByVal lArea As Long, ByVal
strField As String, ByVal strbuf As String, ByVal lBufSize As Long) As Long

Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szField is the name of the field to read within the table.

szBuf is the buffer in which the function will return the results.

iBufSize specifies the size of the buffer.

GMW_DB_Range Return Values

Return Description

0 Error occurred

1 Success

Checking the Current Record Number or Record ID
GMW_DB_RecNo is used to determine either current record number position (Xbase) or the record ID (SQL and
FireBird).

Syntax

C/C++ long GMW_DB_RecNo(long pArea, char *szRecID);

VB Public Declare Function GMW_DB_RecNo Lib "gm6s32.dll" (ByVal lArea As Long, ByVal
strRecID As String) As Long

Page 133 of 463

Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

SzRecID is a character string that accepts the return value of RecNo (Xbase) or RecID (SQL).

Return Value

Xbase: Returns the current record number

SQL: Returns the current RecID

Changing a Field Value

GMW_DB_Replace changes the value in a particular field in one GoldMine data file.

For records that require remote synchronization initialization, GoldMine will automatically maintain the TLog
entry.

Syntax

C/C++ long GMW_DB_Replace(long pArea, char *szField, char *szData, int iAddTo);

VB Public Declare Function GMW_DB_Replace Lib "gm6s32.dll" (ByVal lArea As Long, ByVal
strField As String, ByVal strData As String, ByVal iAddTo As Long) As Long

Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szField specifies the name of the field to be replaced.

szData specifies the data to be placed in the field.

iAddTo indicates if the data is to be appended to the existing data. A value of 1 will append the data. A value of 0
will overwrite the data.

Return Values

The GMW_DB_Replace function returns the following values:

GMW_DB_Replace Return Values

Return Description

0 Error occurred

1 Field was successfully replaced

Unlocking a Record
GMW_DB_Unlock unlocks a record previously locked by a call to either GMW_DB_Append or GMW_DB_Replace.

Page 134 of 463

Syntax

C/C++ long GMW_DB_Unlock(long pArea);

VB Public Declare Function GMW_DB_Unlock Lib "gm6s32.dll" (ByVal lArea As Long) As Long

Parameter

The GMW_DB_Unlock function takes only pArea, which is the work area handle of the file opened by the GMW_
DB_Open function.

Return Values

The GMW_DB_Unlock function returns the following values:

GMW_DB_Unlock Return Values

Return Description

0 Error occurred

1 Success

Creating a Subset of Records
GMW_DB_Filter limits access to data in a GoldMine database by creating a subset of records based on expression
criteria. If successfully called, all other functions (Top, Bottom, Skip, and so on) will respect the filter.

Syntax

C/C++ long GMW_DB_Filter(long pArea, char *szFilterExpr);

VB Public Declare Function GMW_DB_Filter Lib "gm6s32.dll" (ByVal lArea As Long, ByVal
strFilterExpr As String) As Long

Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szFilterExpr is the valid Xbase expression. To remove the filter, send an empty string as the second parameter.

Return Values

The GMW_DB_Filter function returns the following values:

GMW_DB_Filter Return Values

Return Description

0 Error occurred

1 Success

Page 135 of 463

Limiting Search Scope
GMW_DB_Range activates the index in a table and sets a range of values to
limit the scope of data that GoldMine will search. This function is faster than GMW_DB_Filter.

The Min and Max values must be formatted the same as the selected index tag’s expression.

If successfully called, all other functions (Top, Bottom, Skip, etc.) will respect the range.

Syntax

C/C++ long GMW_DB_Range(long pArea, char *szMin, char *szMax, char *szTag);

VB Public Declare Function GMW_DB_Range Lib "gm6s32.dll" (ByVal lArea As Long, ByVal
strMin As String, ByVal strMax As String, ByVal strTag As String) As Long

Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szMin specifies the minimum or lower value of the range.

szMax specifies maximum or upper value of the range.

szTag is the index tag name.

Return Values

The GMW_DB_Range function returns the following values:

GMW_DB_Range Return Values

Return Description

0 Error occurred

1 Success

Performing a Sequential Search
GMW_DB_Search performs a sequential search on a file.

Syntax

C/C++ long GMW_DB_Search(long pArea, char *szExpr, char *szRecID);

VB Public Declare Function GMW_DB_Search Lib "gm6s32.dll" (ByVal lArea As Long, ByVal
strExpr As String, ByVal strRecID As String) As Long

Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szExpr is the valid Xbase expression. For a record to be “found” this expression must result as TRUE.

Page 136 of 463

szRecID is the buffer where the return value is stored. The return value will be a record number under Xbase or a
RecID under SQL. You may pass NULL as the third parameter if you do not want the RecNo/RecID.

Return Values

The GMW_DB_Search function returns the following values:

GMW_DB_Search Return Values

Return Description

0 No match found

>0 Xbase: RecNo of the matching record; SQL: RecID of the matching record

Moving to the First Record Match
GMW_DB_Seek positions to the first record matching the seek value.

Syntax

C/C++ long GMW_DB_Seek(long pArea, char * szParam);

VB Public Declare Function GMW_DB_Seek Lib "gm6s32.dll" (ByVal lArea As Long, ByVal
strParam As String) As Long

Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szParam is the value you will seek. This value must match the format of the index expression for the currently
active index.

Return Values

The GMW_DB_Seek function returns the following values:

GMW_DB_Seek Return Values

Return Description

0 Error occurred

1 Exact match found. Cursor moved to record.

2 Exact match not found. Cursor placed at closest matching record.

3 EOF (end of file)

4 BOF (beginning of file)

Setting the Current Index Tag
GMW_DB_SetOrder sets the current index tag on the table.

Page 137 of 463

Syntax

C/C++ long GMW_DB_SetOrder(long pArea, char *szTag);

VB Public Declare Function GMW_DB_SetOrder Lib "gm6s32.dll" (ByVal lArea As Long, ByVal
strTag As String) As Long

Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function. For a list of index names, see .

szTag is the name of the index tag to activate on the table.

Return Values

The GMW_DB_SetOrder function returns the following values:

GMW_DB_SetOrder Return Values

Return Description

0 Error occurred

1 Index successfully activated

Positioning the Record Pointer
GMW_DB_Move positions the record pointer to a particular record in a data file.

Syntax

C/C++ long GMW_DB_Move(long pArea, char *szCommand, char *szParam);

VB Public Declare Function GMW_DB_Move Lib "gm6s32.dll" (ByVal lArea As Long, ByVal
strCommand As String, ByVal strParam As String) As Long

Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szCommand is the command to execute. Each of these commands has an independent function equivalent that is
the preferred method to use. This function remains as a legacy to its DDE counterpart.

szParam is the scope or value for the command.

GMW_DB_Move Commands and Function Equivalents

Command Parameter Function Equivalents

TOP Not required GMW_DB_Top

BOTTOM Not required GMW_DB_Bottom

Page 138 of 463

SKIP Number of records to skip GMW_DB_Skip

GOTO Record Number/RecID GMW_DB_Goto

SEEK Search key value GMW_DB_Seek

SETORDER Index Tag GMW_DB_SetOrder

Return Values

The GMW_DB_Move function returns the following values:

GMW_DB_Move Return Values

Return Description

0 Error occurred

1 Exact match found. Cursor moved to record or index-activated.

2 Exact match not found. Cursor placed at closes matching record.

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to a Specified Record
GMW_DB_Goto positions to a specific record in the table.

Syntax

C/C++ long GMW_DB_Goto(long pArea, char *szRecNo);

VB Public Declare Function GMW_DB_Goto Lib "gm6s32.dll" (ByVal lArea As Long, ByVal
strRecNo As String) As Long

Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szRecNo specifies where the cursor should be placed, and is either the Record number for Xbase or the RecID for
SQL

Return Values

The GMW_DB_Goto function returns the following values:

GMW_DB_Goto Return Values

Return Description

Page 139 of 463

0 Error occurred

1 Exact match found. Cursor moved to record or Index activated.

2 Exact match NOT found. Cursor placed at closest matching record.

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to the First Record
GMW_DB_Top positions to the first record in the table.

Syntax

C/C++ long GMW_DB_Top(long pArea);

VB Public Declare Function GMW_DB_Top Lib "gm6s32.dll" (ByVal lArea As Long) As Long

Parameter

The GMW_DB_Top function takes only pArea, which is the work area handle of the file opened by the GMW_DB_
Open function.

Return Values

The GMW_DB_Top function returns the following values:

GMW_DB_TopReturn Values

Return Description

0 Error occurred

1 Cursor moved to top of file

Moving to the Previous or Following Record
GMW_DB_Skip positions to the previous or following record in the table.

Syntax

C/C++ long GMW_DB_Skip(long pArea, int nSkip);

VB Public Declare Function GMW_DB_Skip Lib "gm6s32.dll" (ByVal lArea As Long, ByVal lSkip
As Long) As Long

Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

Page 140 of 463

nSkip specifies the number records to skip. This value can be positive to move forward in the table or negative to
move backwards.

Return Values

The GMW_DB_Skip function returns the following values:

GMW_DB_Skip Return Values

Return Description

0 Error occurred

1 Cursor successfully moved

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to the Last Record
GMW_DB_Bottom positions to the last record in the table.

Syntax

C/C++ long GMW_DB_Bottom(long pArea);

VB Public Declare Function GMW_DB_Bottom Lib "gm6s32.dll" (ByVal lArea As Long) As Long

Parameter

The GMW_DB_Bottom function takes only pArea, which is the work area handle of the file opened by the GMW_
DB_Open function.

Return Values

The GMW_DB_Bottom function returns the following values:

GMW_DB_Bottom Return Values

Return Description

0 Error occurred

1 Cursor positioned on the last record in the table

Seeking a Record
GMW_DB_QuickSeek wraps several other database functions to provide a quick and easy way to seek a record in
the database.

Page 141 of 463

Syntax

C/C++ long GMW_DB_QuickSeek(char *szTableName, char *szIndex, char *szSeekValue, char
*szRecID);

VB Public Declare Function GMW_DB_QuickSeek Lib "gm6s32.dll" (ByVal strTableName As
String, ByVal strIndex As String, ByVal strSeekValue As String, ByVal strRecID As String) As
Long

Parameters

szTableName is the name of the table to be opened.

szIndex is the index to use for the table.

szSeekValue is the seek expression to use.

szRecID is returned by the function. This is the RecID of the record found.

Return Values

The GMW_DB_QuickSeek function returns the following values:

GMW_DB_QuickSeek Return Values

Return Description

-2 Invalid Index

-1 Invalid table

0 Failure

1 Success

Reading a Field Value
GMW_DB_QuickRead wraps several other database functions to provide a quick and easy way to read a field
value from a record in the database.

Syntax

C/C++ long GMW_DB_QuickRead(char *szTableName, char *szRecID, char *szField, char
*szValue, int iLen);

VB GMW_DB_QuickRead Lib "gm6s32.dll" (ByVal strTableName As String, ByVal strRecID As
String, ByVal strField As StringByVal strValue As String, ByVal iLen As Long) As Long

Parameters

szTableName is the name of the table to be opened.

szRecID is the RecID of the record from which to read.

Page 142 of 463

szField is the Field name to return.

szValue is the value returned by the function.

iLen is the length of the returned data.

Return Values

The GMW_DB_QuickRead function returns the following values:

GMW_DB_QuickRead Return Values

Return Description

-4 Invalid Fieldname

-3 RecID not found

-2 Invalid RecID

-1 Invalid table

0 Failure

1 Success

Replacing a Field Value
GMW_DB_QuickReplace wraps several other database functions to provide a quick and easy way to replace a field
value from a record in the database.

Syntax

C/C++ long GMW_DB_QuickReplace(char *szTableName, char *szRecID, char *szField, char
*szValue, int iAddTo);

VB GMW_DB_QuickReplace Lib "gm6s32.dll" (ByVal strTableName As String, ByVal strRecID
As String, ByVal strField As String, ByVal strValue As String, ByVal iAddTo As Integer) As
Long

Parameters

szTableName is the name of the table to be opened.

szRecID is the RecID of the record to be updated.

szField is the Field name to replace.

szValue is the value to store in the field.

iAddTo indicates if the value data is to be appended (1) or replaced (0=default).

Return Values

The GMW_DB_QuickReplace function returns the following values:

Page 143 of 463

GMW_DB_QuickReplace Return Values

Return Description

-4 Invalid Fieldname

-3 RecID not found

-2 Invalid RecID

-1 Invalid table

0 Failure

1 Success

Updating Sync Logs with GMXS32.DLL
The GoldMine GMXS32.DLL provides a method to update GoldMine synchronization logs whenever an external
application updates GoldMine data.

GMXS32.DLL offers the following synchronization functions:

GMW_UpdateSyncLog: Updates the sync log file

GMW_ReadImpTLog: Imports a prepared TLog import file

GMW_NewRecID: Gets a new RecID

GMW_SyncStamp: Converts sync stamp to time and converts time back to sync stamp

Updating the Sync Log File

Syntax

C/C++ int GMW_UpdateSyncLog(char *szTable, char *szRecID, char *szField, char *szAction)

VB GMW_UpdateSyncLog Lib "gm6s32.dll" (ByVal strTable As String, ByVal strRecID As String,
ByVal strField As String, ByVal strAction As String) As Long

Parameters

szTable specifies the table name (such as “Contact1”) or the table ID.

szRecID specifies the RecID of the updated record: the correct RecID must be passed, and the RecID value must be
exactly 15 characters long.

szField specifies the name of the field that has changed. This parameter is only relevant when the Action
parameter is U. szField is ignored when Action is N or D.

szAction should be N when a new record has been appended, D when a record has been deleted, or U when a
field in a record has been updated.

Page 144 of 463

Return Values

The GMW_UpdateSyncLog function returns the following values:

GMW_UpdateSyncLog Return Values

Return Description

0 Error

1 New TLog entry created

2 New TLog entry updated

4 Field TLog entry created

8 Field TLog entry updated

16 Deleted record TLog entry created

32 New TLog Entry removed

Example

char szTable[10] = "CONTACT1";
char szField[12] = "KEY2";
char szRecID[20] = "\0";
char szAction = 'U';
GMW_NewRecID(szRecID,"JON"); GMW_UpdateSyncLog(szTable, szRecID,

szField, szAction);

Importing a Prepared TLog Import File
GMW_ReadImpTLog reads the status of a TLog import file, then deletes the import file when the process is
completed.

Syntax

C/C++ int GMW_ReadImpTLog(char *szFile, int bDelWhenDone, char *szStatus)

VB Public Declare Function GMW_ReadImpTLog Lib "gm6s32.dll" (ByVal strFile As String,
ByVal lDelWhenDone As Long, ByVal strStatus As String) As Long

Parameters

szFile specifies the import file name—see below for the import file structure.

IDeleteWhenDone specifies to delete the import file when the process has completed.

SzStatus buffer used to monitor the status of the process. Optional, can be NULL. If passed, the szStatus buffer
must be at least 10 characters long.

Page 145 of 463

Return Values

The GMW_ReadImpTLog function returns the following values:

GMW_ReadImpTLog Return Values

Return Description

0 Failure

> 0 Success, total number of imported TLog records

Notes

GMW_LoadAPI or GMW_LoadBDE must be called before calling GMW_ReadImpTLog for the first time. GMW_
ReadImpTLog is executed in a thread, so multiple calls can be made. Your application can determine when the
imported process completes by setting the iDeleteWhenDone parameter to 1, and noting when the import file is
deleted. The TLog import must have the structure shown in the following table.

TLog Import Structure

Field Name Type Length

Table ID char 10

RecID char 15

Field ID char 10

Action ID char 1

Example

char szImpFile[80] = "d:\\GoldMine\\tlogimp.dbf";
char szStatus[20] = "\0";
int iDeleteWhenDone = 1;
int nTotRead = GMW_ReadImpTLog(szImpFile, iDeleteWhenDone, szStatus);

Getting a New Record ID
GMW_NewRecID returns a new RecID in the szRecIDBuf.

Syntax

C/C++ char* GMW_NewRecID(char *szRecIDBuf, char *szUser)

VB Public Declare Function GMW_NewRecID Lib "gm6s32.dll" (ByVal strRecID As String, ByVal
strUser As String) As GMWStr

Page 146 of 463

Parameters

szRecID specifies the application allocated buffer to contain the new RecID. The buffer must be at least 16
characters long.

szUser specifies the GoldMine user name.

Return Value

pointer to szRecIDBuf

Notes

GMW_NewRecID returns a new RecID in the szRecIDBuf. GMW_NewRecID can be called without first calling
GMW_LoadAPI or GMW_LoadBDE.

Example

char szRecID[20] = "\0";
char szUser[10] = "JON";
GMW_NewRecID(szRecID, szUser);

Converting the Sync Stamp
GMW_SyncStamp converts Sync Stamp to time format and back.

Syntax

C/C++ int GMW_SyncStamp(char *szStamp, char *szOutBuf)

VB Public Declare Function GMW_SyncStamp Lib "gm6s32.dll" (ByVal strStamp As String,
ByVal strOutBuf As String) As Long

Parameters

When the szStamp string parameter is exactly 17 characters long, formatted as Date:Time in form of
CCYYMMDD:HH:MM:SS, the return string in szOutBuf is in TLog timestamp format, exactly seven characters long.
When the szStamp parameter is seven characters long formatted as a TLog timestamp, the return string in
szOutBuf is formatted as CCYYMMDD:HH:MM:SS.

Return Values

The GMW_SyncStamp function returns the following values:

GMW_SyncStamp Return Values

Return Description

0 Failure

1 Success

Page 147 of 463

Notes

An empty return string indicates an error.

Example

The following examples convert February 1, 1998, at 7:01pm to a TLog time stamp format, then back to a date and
time format:

Char szOut[20] = "\0"
GMW_SyncStamp("19980201:19:01:30", szOut); // returns "+#G><N2"
GMW_SyncStamp("+#G><N2", szOut); // returns "19980201:19:01:30"

Working with the XML API

Overview
Beginning in GoldMine version 6.7, the GoldMine API can be accessed using XML via the GMXMLAPI.DLL. The
programmer may pass XML generated programmatically by concatenating strings or by using the Document
Object Model (DOM). XML provides a simple and flexible medium for passing and receiving data from
GoldMine’s API.

A DOM Parser, such as MSXML or Xerces, should be utilized in constructing the XML documents for the
GoldMine XML API. All GoldMine data needs to be XMLEncoded to avoid conflicts with XML entities (ie. < > ‘ &).
A DOM Parser would handle this, in addition to creating well-formed XML. Finally, some of the XML documents
returned will be too large to be handled by manually looping through the XML; whereas a parser would make
accessing the returned data much more manageable.

The GMXMLAPI.DLL is used independently of the GMXS32.DLL. The XML API exposes all of the functionality
present in the GMXS32, including the low-level data access functions. However, the power of implementing an
integration with XML allows the use of the GoldMine API in any development environment that supports COM,
including VB, VB.NET, C++, C#, and JAVA.

This chapter will discuss how to login to GoldMine with the XML API , how to call the business logic functions,
and accessing the low level data functions. For specific information on the names of the business logic functions
and acceptable data parameters and their return values, see .

Executing Your XML Document
Once the XML document has been created, pass it to the GoldMine XML API with the ExecuteCommand
method. This is the only method exposed in the XML API. It accepts one parameter, xmlIn (the XML document
prepared by the developer) and returns the resulting XML document detailing result and/or error codes.

Example

xmlout = GMAPI.ExecuteCommand(xmlIn)

Creating Your XML Document
The root XML element for the GoldMine XML API is defined as the following:

Page 148 of 463

Page 149 of 463

<GMAPI call="FunctionName">
<data name="Parameter1">Parameter Value</data>
<data name="Parameter2">Parameter Value 2</data>
</GMAPI>

Loading the API (GoldMine 7.0 or higher)
The first function to execute is loading the API with the desired parameters. Calling the LoadAPI function will also
login the specified user into the API.

NOTE: The GoldMine XML API will always use a GoldMine seat for each user that is logged into it. The total
number of users logged into GoldMine will be all workstation users and add-on applications combined.

To load the API and login the user, create the following XML:

<GMAPI call="LoadAPI">
<data name="User">kevin</data>
<data name="Password">mygmpass</data>
<data name="SysDir">c:\program files\goldmine\</data>_
<data name="GoldDir">c:\program files\goldmine\gmbase\</data> _
<data name="ComDir">c:\program files\goldmine\common\</data> _
<data name="SQLUser">sa</data>_
<data name="SQLPassword"></data>
</GMAPI>

Parameters

The LoadAPI function takes seven parameters.

User: Specifies the GoldMine user name (case insensitive).
You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to use login credentials returned for the
user logged into a running copy of GoldMine through DDE or COM.

Password: Specifies the user’s password (case insensitive).
You may set this to the return string from the GetLoginCredentials DDE or COM command if the User parameter is
set to *DDE_Login_Credentials*. The credential string is only valid for 30 seconds.

SysDir: Specifies the location of the LICENSE.BIN file (Version 7.0 or l ater).

GoldDir: Specifies the location of the CAL table or the database alias name to use as the main database.

NOTE: The database alias name must be appended with a colon (":").

ComDir: Specifies the location of the CONTACT1 table or the database alias name to use as the contact set
database.

NOTE: The database alias name must be appended with a colon (":").

SQLUser: The login name for the SQL Server, if applicable.

SQLPassword: The password for the SQL Server, if applicable.

NOTE: The GMXS32.DLL required the call of GMW_SetSQLUserPass prior to calling GMW_LoadBDE in order
to set the SQL username and password. This extra call is not used in the XML API.

Page 150 of 463

The returned XML from LoadAPI will indicate if the call succeeded, and if so, a SessionID. This session ID is used to
reference this particular user’s API session. This is important in applications where multiple users are logged into
the API simultaneiously. Even if the integration will only have one user logged in at a time, the Session ID must still
be referenced in future calls to the XML API.

<GMAPI SessionID="1" call="LoadAPI">
<status code="1">API loaded successfully</status>
</GMAPI>

The status code will always give a description as to the cause of any generated errors. The possible return codes
are as follows.

LoadAPI Return Values

Return Description

1 API loaded successfully

0 API already loaded

-1 API failed to load

-2 Cannot find license file

-3 Cannot load license file

-4 Cannot validate the license file username/password

-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user

Loading BDE (GoldMine 6.7)
The first function that needs to be executed is loading the Borland Database Engine. Calling the function to load
BDE will also login the specified user into the API.

NOTE: The GoldMine XML API will always use a GoldMine seat for each user that is logged into it. The total
number of users logged into GoldMine will be all workstation users and add-on applications combined.

To load the Borland Database Engine, create the following XML:

<GMAPI call="LoadBDE">
<data name="User">kevin</data>
<data name="Password">mygmpass</data>
<data name="SysDir">c:\program files\goldmine\</data>_
<data name="GoldDir">c:\program files\goldmine\gmbase\</data> _

Page 151 of 463

<data name="ComDir">c:\program files\goldmine\common\</data> _
<data name="SQLUser">sa</data>_
<data name="SQLPassword"></data>
</GMAPI>

Parameters

The LoadBDE function takes seven parameters.

User: Specifies the GoldMine user name (case insensitive).
You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to use login credentials returned for the
user logged into a running copy of GoldMine through DDE or COM.

Password: Specifies the user’s password (case insensitive).
You may set this to the return string from the GetLoginCredentials DDE or COM command if the User parameter is
set to *DDE_Login_Credentials*. The credential string is only valid for 30 seconds.

SysDir: Specifies the location of the LICENSE.DBF.

GoldDir: Specifies the location of CAL.DBF.

ComDir: Specifies the location of CONTACT1.DBF.

SQLUser: The login name for the SQL Server, if applicable.

SQLPassword: The password for the SQL Server, if applicable.

NOTE: The GMXS32.DLL required the call of GMW_SetSQLUserPass prior to calling GMW_LoadBDE in order
to set the SQL username and password. This extra call is not used in the XML API.

The returned XML from LoadBDE will indicate if the call succeeded, and if so, a SessionID. This session ID is used to
reference this particular user’s API session. This is important in applications where multiple users are logged into
the API simultaneiously. Even if the integration will only have one user logged in at a time, the Session ID must still
be referenced in future calls to the XML API.

<GMAPI SessionID="1" call="LoadBDE">
<status code="1">BDE loaded successfully</status>
</GMAPI>

The status code will always give a description as to the cause of any generated errors. The possible return codes
are as follows.

LoadBDE Return Values

Return Description

1 BDE loaded successfully

0 BDE already loaded

-1 BDE failed to load

-2 Cannot find license file

Page 152 of 463

-3 Cannot load license file

-4 Cannot validate the license file username/password

-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user

Logging in Subsequent Users
If an additional user needs to be logged into the XML API, call the Login method.

<GMAPI call="Login">
<data name="User">MASTER</data>
<data name="password">ACCESS</data>
<data name="ComDir">c:\program files\goldmine\common\</data> _
<data name="SQLUser">sa</data>
<data name="SQLPassword">mypassword</data>
</GMAPI>

Parameters

The Login function takes five parameters.

User: Specifies the GoldMine user name (case insensitive).
You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to use login credentials returned for the
user logged into a running copy of GoldMine through DDE or COM.

Password: Specifies the user’s password (case insensitive).
You may set this to the return string from the GetLoginCredentials DDE or COM command if the User parameter
is set to *DDE_Login_Credentials*. The credential string is only valid for 30 seconds.

ComDir: Specifies the location of CONTACT1.DBF or the database alias name to use as the contact set database.

NOTE: The database alias name must be appended with a colon (":")..

SQLUser: The login name for the SQL Server, if applicable.

SQLPassword: The password for the SQL Server, if applicable.

The Login function returns the following XML:

<GMAPI SessionID="2" call="Login">
<status code="1">Login Successful</status>
</GMAPI>

Page 153 of 463

Login Return Values

Return Description

1 Success

0 Failure

-1 User does not have permission to open the current contact set.

Logging Out
To log out a user when multiple users are logged in, use the Logout function. This function will free the license
seat previously used by the Login function. Be sure to call this function for each session that has been opened.

Syntax

XML <GMAPI call="Logout" SessionID="2"/>

Parameters

SessionID is the integer value returned by the Login function.

Return

The function will return a code attribute of “1” if the specified SessionID was valid. The returned XML will look like
the following:

<GMAPI SessionID="2" call="Logout">
<status code="1">Logout succeeded for the supplied session.</status>
</GMAPI>

Unloading the API (GoldMine 7.0 or higher)
Before ending your GoldMine integration application, the API needs to be unloaded. The XML to unload the API is
as follows:

<GMAPI call="UnloadAPI" SessionID="1"/>

The actual SessionID will be the value that was returned by the LoadAPI call.

Unloading BDE (GoldMine 6.7)
Before ending your GoldMine integration application, the Borland Database Engine needs to be unloaded. The
XML to unload the BDE is as follows:

<GMAPI call="UnloadBDE" SessionID="1"/>

Page 154 of 463

The actual SessionID will be the value that was returned by the LoadBDE call.

Accessing Data with Business Logic Functions
Reading and modifying GoldMine data with the business logic functions is the best-practice method for integrating
with GoldMine. For the XML root element, the call will be any business logic function name, as described in
Chapter 6, Business Logic Functions. Each data name will be the name portion of the defined name/value pairs,
and the text for that node is the value portion of a name/value pair. For example, to create a contact using the
GoldMine XML API, one would create an XML document like the following:

<GMAPI call=”WriteContact” SessionID=”1”>
<data name=”Contact”>Sam Jackson</data>
<data name=”Company”>Jackson Plumbing</data>
<data name=”Phone1”>(123)456-7890</data>
</GMAPI>

Accessing Nested Nodes of Data
Some business logic functions require or return nodes that contain nested nodes. For example, if you wish to add
members to a contact group, the XML would look like the following:

<GMAPI call="AddContactGrpMembers" SessionID="1">
<data name="GroupNo">1234</data>
<data name="Members">
<data name="AccountNo">A3042474804 WB9!JCat</data>
<data name="Reference">A Reference Value</data>
</data>
<data name="Members">
<data name="AccountNo">A3082867459(LP:#JGab</data>
<data name="Reference">Another Reference</data>
</data>
<data name="Members">
<data name="AccountNo">A3060244052#3?(N3Ste</data>
<data name="Reference">The last Reference Value</data>
</data>
</GMAPI>

Each time there needs to be an additional node for the Members node, simply repeat the Members node with the
required data. This applies to any business logic function that requires more than one data value for a node, or
more than one nested node.

Business Logic Function Return Values
The business logic functions will return the same return codes as described in Chapter 6, Business Logic Functions.
An example of the XML returned is as follows:

Input XML:

<GMAPI call="WriteContact" SessionID="1">

Page 155 of 463

<data name="Contact">Joe Smith</data>
<data name="Company">Joes Window Washing</data>
<data name="phone1">3106548963</data>
</GMAPI>

Returned XML:

<GMAPI SessionID="1" call="WriteContact">
<status code="1">Success</status>
<data name="Return">
<data name="AccountNo">A4100552319*T_S{3Del</data>
<data name="COMPANY">Joes Window Washing</data>
<data name="CONTACT">Joe Smith</data>
<data name="PHONE1">3106548963</data>
<data name="RecID">AP7Q62B&*AK=3\T</data>
</data>
</GMAPI>

Accessing Low-level Data Manipulation Functionality
The following sections describe additional functions in the GoldMine XML API that allow data reading and
updating via low-level methods. Use of the following functions requires in-depth knowledge of the GoldMine data
structures and business rules. They are useful for accessing and writing data that is not accessible via the high-
level business logic functions.

Retrieving Data with DataStream
DataStream returns the data of ordered records from any GoldMine table using the most efficient method
available. The caller can specify:

○ Fields and expressions to return
○ Range of records to return
○ Optional filter to apply to the data set

DataStream SQL query capabilities are very fast on SQL databases.

The DataStream method allows for many useful applications. One such group of applications would merge HTML
templates with the data returned by GoldMine DataStream to publish the contents of GoldMine data on the
Internet. Web pages can be created to display GoldMine data requested by a visitor. Based on visitor selections, a
company could dynamically present a variety of HTML pages, including dealer addresses in a particular city,
financial numbers stored in Contact2, and even seating availability at upcoming conferences. With a fast Internet
connection and a strong SQL server, the GoldMine client could respond simultaneously to dozens of requests.

Advantages of Using DataStream
GoldMine DataStream is absolutely the fastest way to read data from GoldMine tables. Used correctly,
DataStream will return the data faster than most development environments would directly. DataStream offers
the following advantages:

Page 156 of 463

○ Efficiency: DataStream issues a single, most efficient SQL query or Xbase seek to retrieve records from the
back-end database to the local client. On SQL databases, requests of a few hundred records could be
sent from the server to the client with a single network transaction, greatly minimizing network traffic.

○ Speed: All fields and expressions are parsed initially by DS_Range and DS_Query, and then quickly
evaluated against each record in DS_Fetch. Other DDE methods (and development environments)
require that each field be parsed and evaluated each time its data is read. This makes a big difference
when reading hundreds or thousands of records.

○ Simplicity: Only three function calls are required to read all the data. Using traditional record-by-record
querying would require one call for each field of each record (reading 10 fields from 50 records would
require 500 function calls).

○ Results: All the work to gather and format the data is done in C++, which is the fastest method. The caller
needs only to parse the resulting packet string.

DataStream Record Selection
The following DataStream functions are listed in the order in which they must be called.

DS_Range: Opens a ranged cursor

DS_Query: Opens an SQL query cursor

DS_Fetch: Fetches records

DS_Close: Closes cursor

Either the DS_Range function or the DS_Query function must be called first to request the data. These functions
return the integer handle which must be passed to the DS_Fetch and DS_Close functions.

You must use either DS_Range or DS_Query—you cannot use both. The DS_Range and DS_Query functions
execute equally fast on SQL databases. DS_Range executes much faster on Xbase tables than does DS_Query.

DS_Range

Syntax

XML <GMAPI call = “DS_Range” sessionid=”X”>
<data name = "Table">CONTACT1</data>
<data name = "Tag">Contacc</data>
<data name="TopLimit"> A3042474804 WB9!Jcat</data>
<data name ="BotLimit"> A4090244569#H4J*3Dav</data>
<data name="Fields">CONTACT;COMPANY;PHONE1</data>
<data name="Filter"/>

</GMAPI>

DS_Range returns a range of records based on an index.

Parameters

The following parameters are required:

Table specifies the table name (such as “Contact1”) or the table ID.
Tag designates the tag that corresponds to the index file.

Page 157 of 463

TopLimit specifies the top limit of the range. (Must conform to the index expression.)
BotLimit (or BottomLimit) specifies the bottom limit of the range. (Must conform to the index expression.)
Fields specifies the requested fields and expression to return—see “DS_Range Field Selection” on the
following page.

The following parameter is optional:

Filter designates an optional Xbase filter expression.

Return Values

The XML returned by DS_Range will look like the following:

<GMAPI SessionID="2" call="DS_Range">
<status code="1">1</status>
</GMAPI>

The text of the code attribute is used as the “Area” or “Handle” value for DS_Fetch.

The DS_Range function returns the following values:

GMW_DS_Range Return Values

Return Description

0 Failure

1–20 Success (handle)

DS_Range Field Selection

The Fields parameter passed to DS_Range should consist of the field names and Xbase expressions to evaluate
against each record in the data set. Each field must be terminated with a semicolon (;). Xbase expressions must be
prefixed with an ampersand (&), and terminated with a semicolon. Be sure to XML encode this as the ampersand
is an XML entitiy.

DS_Query

Syntax

XML <GMAPI call =”DS_Query” SessionID =”1”>
<data name = “SQL”>select recid from contsupp</data>
<data name=“Filter">xBase expression filter</data>
</GMAPI>

This function is very fast on SQL databases.

Parameters

SQL query sends the query for evaluation on the server. The SQL query can join multiple tables and return any
number of fields.

Page 158 of 463

Optional parameter Filter specifies a Boolean Xbase filter expression to apply to the data set (even on SQL tables),
similar to the DDE SETFILTER command.

Return Values

The DS_Query function returns the following values:

DS_QueryReturn Values

Return Description

0 Failure

-1 Invalid Query/Timeout

1–20 Success (handle)

DS_Fetch
DS_Fetch returns a single packet string containing the requested data from all records processed by the current
“fetch” command.

Syntax

XML <GMAPI call=”DS_Fetch” SessionID=”3”>
<data name=”Area”>Value returned from Query or
Range</data>
<data name=”RecordCount”>50</data>
<data name=”Raw”>1</data>
</GMAPI>

Parameters

RecordCount (or RecCount) specifies the number of records to return.

Areamust be the value returned from DS_Range() or DS_Query().

Optional Parameters

FldDmt (or FieldDelimiter) specifies the field delimiter (default: carriage return). Omit this data node completely to
use the default value.

RowDmt (or RowDelimiter) specifies the record delimiter (default: line feed). Omit this data node completely to
use the default value.

Raw indicates the format the data should be returned as. The default (“0”) puts the data into XML format. Setting
Raw to “1” returns the data stream in the old return packet format, as described below.

For details about the packet format, see .

The XML Return packet

DS_Fetch has an option in the GoldMine XML API to return the data in an XML format that is easier to process
than the traditional datastream return packet.

Page 159 of 463

Consider the following DS_Query XML call:

<GMAPI call="DS_Query" SessionID="1">
<data name="SQL">select contact, company, key1 from contact1 where

contact=’Rafael Zimberoff’</data>
<data name="Filter"/>
</GMAPI>

Return

<GMAPI SessionID="1" call="DS_Query"><status code="1">1</status></GMAPI>

The DS_Fetch call to retrieve the requested data is:

<GMAPI call="DS_Fetch" SessionID="1">
<data name="Area">1</data>
<data name="Raw">0</data>
<data name="RecordCount">25</data>
</GMAPI>

The resulting XML datastream return packet is:

<GMAPI SessionID="1" call="DS_Fetch">
<status code="1">Success</status>
<data name="Return">
<data name="Header">
<data name="field">
<data name="Field_Name">CONTACT</data>
<data name="Field_Type">C</data>
<data name="Field_Length">40</data>
<data name="Field_Decimal">0</data>
</data>
<data name="field">
<data name="Field_Name">COMPANY</data>
<data name="Field_Type">C</data>
<data name="Field_Length">40</data>
<data name="Field_Decimal">0</data>
</data>
<data name="field">
<data name="Field_Name">KEY1</data>
<data name="Field_Type">C</data>
<data name="Field_Length">20</data>
<data name="Field_Decimal">0</data>
</data>
</data>
<data name="CountData">3000-0001</data>
<data name="Rows">
<data Name="Row">
<data name="CONTACT">Rafael Zimberoff</data>
<data name="COMPANY">Z-Firm LLC</data>
<data name="KEY1">Partner</data>

Page 160 of 463

</data>
</data>
</data>
</GMAPI>

The Header node contains child nodes for each field included in the SQL query, describing the fields’ properties.
The CountData node’s text corresponds with the old fetch return packet’s header data:

The first digit can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another DS_Fetch call

3 indicates the end-of-file (EOF)

4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in the packet.

The Rows node contains a child node for each data record returned by the query.

DS_Fetch Return Packet

DS_Fetch returns a single packet string containing the data from all requested records. The packet includes a
header record, followed by one record for each record evaluated by “fetch.” Within each record in the packet, the
fields are separated by a field delimiter specified in DS_Fetch. By default, the field delimiter is the carriage return
character (13 or 0x0D).

The records in the packet are separated by the record delimiter. By default, the record delimiter is the line feed
character by default (10 or 0x0A).

These delimiters are convenient when the requested data does not contain notes from blob fields. You can omit
FldDmt and RowDmt to use the default delimiters. When requesting notes, override the default delimiters by
passing other delimiter values to DS_Fetch. For packets with notes, good delimiters are the ASCII characters 1 and
2.

The XML example above might return xml similar to:

<GMAPI SessionID="3" call="DS_Fetch">
<status code="1">3000-0003
A3053029581%`O6B3Sim
A4082371189*>$>B3Vin
A4090244569#H4J*3Dav
</status>
</GMAPI>

The packet header record consists of two sections:

First byte can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another DS_Fetch call

3 indicates the end-of-file (EOF)

4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in the packet.

Page 161 of 463

DS_Close
DS_Close must be called when the operation is complete. Unclosed data streams will leak memory and leave the
database connections needlessly open. Passing an Area (or Handle) of 0 closes all open DataStream objects.

Syntax

XML <GMAPI call="DS_Close" SessionID="4">
<data name="Area">1</data>
</GMAPI>

DS_Close returns the following XML:

<GMAPI SessionID="4" call="DS_Close">
<status code="1">Success</status>
</GMAPI>

Accessing Low-Level Data Using Work Areas
The GoldMine XML API provides a complete set of functions that allow low-level access to the database tables.
Using these functions, you can:

○ Open particular data files
○ Seek the values of the fields in the records in the data files
○ Append records to the tables
○ Delete records
○ Replace data in the records

Database applications that need varied access to GoldMine data typically use this suite of functions. To work
successfully, these functions rely on a work area parameter. Using this parameter, you can open multiple data files
concurrently and manipulate each file independently by referencing the file by work area. These functions also
maintain synchronization information, which is stored in the TLogs.

The GoldMine XML API offers the low-level access functions that are listed in the following table.

GMXS32.DLL Low-Level Access Functions

Function Name Description

Opening and Closing Databases

o DB_Open Opens one GoldMine data file for processing by another application

o DB_Close Releases a previously OPENed file when processing is complete

o DB_IsSQL Determines whether the table is SQL (1) or Xbase (0)

Creating and Deleting Records

o DB_Append Adds a new, empty record to a GoldMine data file

Page 162 of 463

o DB_Delete Deletes the current record in the specified work area.

Reading and Writing Data

o DB_Read Queries a data file for the value of a field

o DB_RecNo
Determines either current record number position (Xbase), or the
record ID (SQL)

o DB_Replace Changes the value in a particular field in one GoldMine data file

o DB_Unlock Unlocks a record previously locked by a call to either GMW_DB_Append or GMW_
DB_Replace

Limiting Scope of Data

o DB_Filter
Limits access to data in a GoldMine database by creating a subset of records based
on expression criteria

o DB_Range
Activates the index in a table, and sets a range of values to limit the scope of data
that GoldMine will search

Searching for Data

o DB_Search Performs a sequential search on a file

o DB_Seek Positions to the first record matching the seek value

o DB_SetOrder Sets the current index tag on the table

Navigating the Database

o DB_Move Positions the record pointer to a particular record in a data file

o DB_Goto Positions to a specific record in the table

o DB_Top Positions to the first record in the table

o DB_Skip Positions to the next or prior record in the table

o DB_Bottom Positions to the last record in the table

GMXS32.DLL Low-Level Access Functions

Function Name Description

DB_QuickSeek Wraps several DLL functions to perform a Seek based on an index

DB_QuickRead Wraps several DLL function to perform a Read

DB_QuickReplace Wraps several DLL functions to perform a Replace

Page 163 of 463

For details, see or ”.

Opening a Data File
DB_Open opens one GoldMine data file for processing by another application. Be sure to call DB_Close after
completing all operations on the open table. Failing to do so will cause the UnloadAPI or UnloadBDE function to
wait indefinitely for the resource to close.

Syntax

XML <GMAPI call="DB_Open" SessionID=”1”>
<data name="Table">Contact1</data>
</GMAPI>

Parameter

The DB_Open function takes only Table(or File), which is the name of the table to be opened.

Return Values

The XML returned by DB_Open for a successful call will look like the following:

<GMAPI SessionID="2" call="DB_Open">
<status code="1">76007040</status>
</GMAPI>

The code attribute will be 1 on success and the text of the attribute is the workarea to be used for subsequent
low-level calls. If the call is unsuccessful, the code will be 0 and the text will indicate an error.

DB_Open Code Attribute Values

Code Text

0 Error occurred

1 Work area handle for table, for example 57919176

Closing a Data File
DB_Close releases a previously opened file when processing is complete. All previously opened files must be
properly closed—failure to do so can result in database errors.

Syntax

XML <GMAPI call="DB_Close" SessionID="2">
<data name="Area">76007040</data>
</GMAPI>

Parameters

The DB_Close function takes only Area, which is the work area handle of the file opened by the DB_Open function.

Page 164 of 463

Return Values

DB_Close returns the following XML on success:

<GMAPI SessionID="2" call="DB_Close">
<status code="1">Success</status>
</GMAPI>

Checking for an SQL Table
DB_IsSQL is used to determine if the table is MSSQL (1) or Other (0).

Syntax

XML <GMAPI call="DB_IsSQL" SessionID="3">
<data name="Area">76021592</data>
</GMAPI>

Parameter

The DB_IsSQL function takes only Area, which is the work area handle of the file opened by the DB_Open function.

Return Value

The DB_IsSQL function returns the following values:

<GMAPI SessionID="3" call="DB_IsSQL">
<status code="0">The open file is xBase.</status>
</GMAPI>

DB_IsSQL Code Attribute Values

Code Description

0 The open file is Other

1 The open file is MSSQL

Adding a Record
DB_Append adds an empty record to a GoldMine data file.

Syntax

XML <GMAPI call="DB_Append" SessionID="3">
<data name="Area">76021592</data>
</GMAPI>

Before using DB_Append, you must open a data file using the DB_Open function. After executing the DB_Append
function, the record pointer is positioned at the new empty record, and the record is locked and ready to accept
field replacements.

Page 165 of 463

When a CONTACT1 record is appended, GoldMine automatically fills in the new record with the appropriate
ACCOUNTNO and CREATEBY values. For all other records, you must replace the ACCOUNTNO field with the value
from the CONTACT1 record with which the new record is to be linked. The GoldMine XML API will automatically fill
in the value of the RECID field.

Parameters

Area is the work area handle of the file opened by the DB_Open function.

Return Value

Xbase: APPEND function returns the record number of the new record as the code attribute, or 0 if the file could
not be locked. The text of the code attribute is also the record number in xBase, Record ID in SQL and FireBird.

<GMAPI SessionID="3" call="DB_Append">
<status code="64">64</status>
</GMAPI>

SQL: APPEND function returns the RECID of the new record in the text of the code attribute. The code will be 1 or
0 indicating success or failure.

<GMAPI SessionID="3" call="DB_Append">
<status code="1">9NDJRJN(EQ[)JW:</status>
</GMAPI>

Deleting the Current Record
DB_Delete deletes the current record in the specified work area and moves the record pointer to the next record.

Syntax

XML <GMAPI call="DB_Delete" SessionID="4">
<data name="Area">73140736</data >
</GMAPI>

Parameter

The DB_Delete function takes only Area, which is the work area handle of the file opened by the DB_Open
function.

Return Value

The DB_Delete function returns the following XML:

<GMAPI SessionID="4" call="DB_Delete">
<status code="1">Success</status>
</GMAPI>

DB_Delete Code Attribute Values

Code Description

Page 166 of 463

0 Error occurred

1 Record deleted

Reading a Field Value
DB_Read queries a data file for the value of a field.

Syntax

XML <GMAPI call="DB_Read" SessionID="5">
<data name="Area">73154424</data>
<data name="Field">Company</data>
</GMAPI>

Parameters

Area is the work area handle of the file opened by the GMW_DB_Open function.

Field is the name of the field to read within the table.

Return Value

The XML returned for DB_Read using the sample XML above is as follows:

<GMAPI SessionID="5" call="DB_Read">
<status code="1">GoldMine, Inc.</status>
</GMAPI>

DB_Range Code Attribute Values

Code Description

0 Error occurred

1 Success

Checking the Current Record Number or Record ID
DB_RecNo is used to determine either current record number position (Xbase) or the record ID (SQL or FireBird).

Syntax

XML <GMAPI call="DB_RecNo" SessionID="7">
<data name="Area">73166392</data>
</GMAPI>

Parameters

Area is the work area handle of the file opened by the DB_Open function.

Page 167 of 463

Return Value

Xbase: Returns the current record number

SQL: Returns the current RecID

The returned XML will look like the following:

<GMAPI SessionID="7" call="DB_RecNo">
<status code="1">BDNHWD5#0PA5]WV</status>
</GMAPI>

Changing a Field Value
DB_Replace changes the value in a particular field in one GoldMine data file. After all replace operations on a
single record are complete, the record must be unlocked using DB_Unlock.

Syntax

XML <GMAPI call="DB_Replace" SessionID="9">
<data name="Area">73177576</data>
<data name="Field">Contact</data>
<data name="NewValue">XML Contact</data>
<data name="Append">0</data>
</GMAPI>

Parameters

Area is the work area handle of the file opened by the DB_Open function.

Field specifies the name of the field to be replaced.

NewValue specifies the data to be placed in the field.

Append indicates if the data is to be appended to the existing data. A value of 1 will append the data. A value of 0
will overwrite the data.

Return Value

The DB_Replace function returns the following XML:

<GMAPI SessionID="9" call="DB_Replace">
<status code="1">Success</status>
</GMAPI>

DB_Replace Code Attribute Values

Code Description

0 Error occurred

1 Field was successfully replaced

Page 168 of 463

Unlocking a Record
DB_Unlock unlocks a record previously locked by a call to either DB_Append or DB_Replace.

Syntax

XML <GMAPI call="DB_Unlock" SessionID="3">
<data name="Area">75885408</data>
</GMAPI>

Parameter

The DB_Unlock function takes only Area, which is the work area handle of the file opened by the DB_Open
function.

Return Value

The DB_Unlock function returns the following XML:

<GMAPI SessionID="3" call="DB_Unlock">
<status code="1">Success</status>
</GMAPI>

DB_Unlock Code Attribute Values

Code Description

0 Error occurred

1 Success

Creating a Subset of Records
DB_Filter limits access to data in a GoldMine database by creating a subset of records based on expression
criteria. This function is similar to DB_Range. If successfully called, all other functions (Top, Bottom, Skip, and so
on) will respect the filter.

Syntax

XML
<GMAPI call="DB_Filter" SessionID="1"> <data
name="Area">57919176</data> <data name="Filter">contact1-
>contact="Paul Redstone"</data></GMAPI>

Note

The Filter value above is XML encoded. Passing the value contact1->contact=”Paul Redstone” through an XML
Parser would handle the XML encoding automatically.

Parameters

Area is the work area handle of the file opened by the GMW_DB_Open function.

Page 169 of 463

Filter (or FilterExpr, Expr, Expression) is the valid Xbase expression. To remove the filter, send an empty string as
the second parameter.

Return Value

The DB_Filter function returns the following XML:

<GMAPI SessionID="1" call="DB_Filter">
<status code="1">Success</status>
</GMAPI>

DB_Filter Code Attribute Values

Code Description

0 Failure

1 Success

Limiting Search Scope
DB_Range activates the index in a table and sets a range of values to limit the scope of data that GoldMine will
search. This function is faster than DB_Filter.

The Min and Max values must be formatted the same as the selected index tag’s expression.

If successfully called, all other functions (Top, Bottom, Skip, etc.) will respect the range.

Syntax

XML <GMAPI call="DB_Range" SessionID="1">
<data name="Area">57917464</data>
<data name="Min">A3042474804 WB9!JCat </data>
<data name="Max">A4090244569#H4J*3Dav</data>
<data name="Tag">Contacc"</data>
</GMAPI>

Parameters

Area is the work area handle of the file opened by the GMW_DB_Open function.

Min specifies the minimum or lower value of the range.

Max specifies maximum or upper value of the range.

Tag is the index tag name.

Return Value

The DB_Range function returns the following XML:

<GMAPI SessionID="1" call="DB_Range">
<status code="1">Success</status>
</GMAPI>

Page 170 of 463

DB_Range Code Attribute Values

Code Description

0 Error occurred

1 Success

Performing a Sequential Search
DB_Search performs a sequential search on a file.

Syntax

XML <GMAPI call="DB_Search" SessionID="1">
<data name="Area">60211128</data>
<data name="Expression">contact1->contact="David

Evans"</data>
</GMAPI>

Parameters

Area is the work area handle of the file opened by the GMW_DB_Open function.

Expr (or Expression) is the valid Xbase expression. For a record to be “found” this expression must result as TRUE.
Be sure to XML encode this, since the “>” in an Xbase expression is an XML entity.

Return Value

The DB_Search function returns the following XML:

<GMAPI SessionID="1" call="DB_Search">
<status code="1">23</status>
</GMAPI>

The text of the code attribute will be the record number for dBase databases, and the RecID for SQL databases.

DB_Search Code Attribute Values

Return Description

0 No match found

1 Success – the text of the attribute will be:
Xbase: RecNo of the matching record; SQL: RecID of the matching record

Moving to the First Record Match
DB_Seek positions to the first record matching the seek value. DB_SetOrder must be called at some point prior to
calling DB_Seek in order to set an index tag.

Page 171 of 463

Syntax

XML <GMAPI call="DB_Seek" SessionID="1">
<data name="Area">60211128</data>
<data name="Expression">A3100554903(ZUW)3Dav</data>
</GMAPI>

Parameters

Area is the work area handle of the file opened by the GMW_DB_Open function.

Param is the value you will seek. This value must match the format of the index expression for the currently active
index.

Return Value

The DB_Seek function returns the following XML:

<GMAPI SessionID="1" call="DB_Seek">
<status code="1">Success- Exact match found.</status>
</GMAPI>

DB_Seek Return Values

Return Description

0 Error occurred

1 Exact match found. Cursor moved to record.

2 Exact match not found. Cursor placed at closest matching record.

3 EOF (end of file)

4 BOF (beginning of file)

Setting the Current Index Tag
DB_SetOrder sets the current index tag on the table.

Syntax

XML <GMAPI call="DB_SetOrder" SessionID="1">
<data name="Area">60211128</data>
<data name="Tag">CONTACC</data>
</GMAPI>

Parameters

Area is the work area handle of the file opened by the DB_Open function. Tag is the name of the index tag to
activate on the table. For a list of index names, see .

Page 172 of 463

Return Value

The DB_SetOrder function returns the following XML:

<GMAPI SessionID="1" call="DB_SetOrder">
<status code="1">Success</status>
</GMAPI>

DB_SetOrder Code Attribute Values

Code Description

0 Error occurred

1 Index successfully activated

Positioning the Record Pointer
DB_Move positions the record pointer to a particular record in a data file.

Syntax

XML <GMAPI call="DB_Move" SessionID="1">
<data name="Area">60211128</data>
<data name="Command">SKIP</data>
<data name="Parameter">2</data>
</GMAPI>

Parameters

Area is the work area handle of the file opened by the GMW_DB_Open function.

Command is the command to execute. Each of these commands has an independent function equivalent that is
the preferred method to use. This function remains as a legacy to its DDE counterpart.

Parameter is the scope or value for the command.

DB_Move Commands and Function Equivalents

Command Parameter Function Equivalents

TOP Not required DB_Top

BOTTOM Not required DB_Bottom

SKIP Number of records to skip DB_Skip

GOTO Record Number/RecID DB_Goto

SEEK Search key value DB_Seek

SETORDER Index Tag DB_SetOrder

Page 173 of 463

Return Value

The DB_Move function returns the following XML:

<GMAPI SessionID="1" call="DB_Move">
<status code="1">Exact match found. Cursor moved to record or index

activated.</status>
</GMAPI>

DB_Move Code Attribute Values

Code Description

0 Error occurred

1 Exact match found. Cursor moved to record or index-activated.

2 Exact match not found. Cursor placed at closest matching record.

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to a Specified Record
DB_Goto positions to a specific record in the table.

Syntax

XML <GMAPI call="DB_Goto" SessionID="1">
<data name="Area">60211128</data>
<data name="RecordNumber">9Z2RME8(X%(!3\T</data>
</GMAPI>

Parameters

Area is the work area handle of the file opened by the GMW_DB_Open function.

RecNo (or RecordNumber) specifies where the cursor should be placed, and is either the Record number for Xbase
or the RecID for SQL. The RecID works for Xbase as well.

Return Value

The DB_Goto function returns the following XML:

<GMAPI SessionID="1" call="DB_Goto">
<status code="1">Exact match found. Cursor moved to record or index

activated.</status>
</GMAPI>

Page 174 of 463

DB_Goto Code Attribute Values

Return Description

0 Error occurred

1 Exact match found. Cursor moved to record or Index activated.

2 Exact match NOT found. Cursor placed at closest matching record.

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to the First Record
DB_Top positions to the first record in the table. This function should not be called with an SQL database.

Syntax

XML <GMAPI call="DB_Top" SessionID="1">
<data name="Area">60211128</data>
</GMAPI>

Parameter

The DB_Top function takes only Area, which is the work area handle of the file opened by the DB_Open function.

Return Value

The DB_Top function returns the following XML:

<GMAPI SessionID="1" call="DB_Top">
<status code="1">Success</status>
</GMAPI>

DB_Top Code Attribute Values

Code Description

0 Error occurred

1 Cursor moved to top of file

Moving to the Previous or Following Record
DB_Skip positions to the previous or following record in the table.

Page 175 of 463

Syntax

XML <GMAPI call="DB_Skip" SessionID="1">
<data name="Area">60211128</data>
<data name="Skip">3</data>
</GMAPI>

Parameters

Area is the work area handle of the file opened by the DB_Open function.

Skip specifies the number records to skip. This value can be positive to move forward in the table or negative to
move backwards.

Return Value

The DB_Skip function returns the following XML:

<GMAPI SessionID="1" call="DB_Skip">
<status code="1">Success</status>
</GMAPI>

DB_Skip Code Attribute Values

Return Description

0 Error occurred

1 Cursor successfully moved

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to the Last Record
DB_Bottom positions to the last record in the table.

Syntax

XML <GMAPI call="DB_Bottom" SessionID="1">
<data name="Area">60211128</data>
</GMAPI>

Parameter

The DB_Bottom function takes only Area, which is the work area handle of the file opened by the DB_Open
function.

Return Value

The DB_Bottom function returns the following XML:

Page 176 of 463

<GMAPI SessionID="1" call="DB_Bottom">
<status code="1">Success</status>
</GMAPI>

DB_Bottom Code Attribute Values

Code Description

0 Error occurred

1 Cursor positioned on the last record in the table

Seeking a Record
DB_QuickSeek wraps several other database functions to provide a quick and easy way to seek a record in the
database.

Syntax

XML <GMAPI call="DB_QuickSeek" SessionID="1">
<data name="Table">Contact1</data>
<data name="Index">CONTACC</data>
<data name="SeekValue">A3100554903(ZUW)3Dav</data>
</GMAPI>

Parameters

Table is the name of the table to be opened.

Index is the index to use for the table.

SeekValue is the seek expression to use.

Return Value

The DB_QuickSeek function returns the following XML:

<GMAPI SessionID="1" call="DB_QuickSeek">
<status code="1">9Z2RME8(X%(!3\T</status>
</GMAPI>

DB_QuickSeek Code Attribute Values

Return Description

-2 Invalid Index

-1 Invalid table

0 Failure

1 Success – The text will be the recid of the found record.

Page 177 of 463

Reading a Field Value
DB_QuickRead wraps several other database functions to provide a quick and easy way to read a field value from
a record in the database.

Syntax

XML <GMAPI call="DB_QuickRead" SessionID="1">
<data name="Table">Contact1</data>
<data name="Recid">9Z2RME8(X%(!3\T</data>
<data name="Field">Contact</data>
</GMAPI>

Parameters

Table is the name of the table to be opened.

RecID (or RecordID) is the RecID of the record from which to read.

Field (or FieldName) is the Field name to return.

Return Value

The DB_QuickRead function returns the following XML:

DB_QuickRead Code Attribute Values

Return Description

-4 Invalid Fieldname

-3 RecID not found

-2 Invalid RecID

-1 Invalid table

0 Failure

1 Success

Replacing a Field Value
DB_QuickReplace wraps several other database functions to provide a quick and easy way to replace a field value
from a record in the database.

Page 178 of 463

Syntax

XML <GMAPI call="DB_QuickReplace" SessionID="1">
<data name="Table">Contact1</data>
<data name="Recid">9Z2RME8(X%(!3\T</data>
<data name="Field">Key3</data>
<data name="Data">Updated by XML API</data>
<data name="AddTo">0</data>
</GMAPI>

Parameters

Table is the name of the table to be opened.

RecID (or RecordID) is the RecID of the record to be updated.

Field (or FieldName) is the Field name to replace.

Value (or Data, NewValue) is the value to store in the field.

AddTo (or Append) indicates if the value data is to be appended (1) or replaced (0=default).

Return Value

The DB_QuickReplace function returns the following XML:

<GMAPI SessionID="1" call="DB_QuickReplace">
<status code="1">Success</status>
</GMAPI>

DB_QuickReplace Code Attribute Values

Return Description

-4 Invalid Fieldname

-3 RecID not found

-2 Invalid RecID

-1 Invalid table

0 Failure

1 Success

Returning Calendar Data
The ReadSchedule call returns all calendar data for a given RecID.

Page 179 of 463

Syntax

XML <GMAPI call="ReadSchedule" SessionID="XXX">
<data name="RecID">BUAQI6O!* C8]WV</data>
</GMAPI>

Return Value

The ReadSchedule call returns the following XML:

<GMAPI call="ReadSchedule" SessionID="XXX">

<status code="1">Success</status>

<data name="Return">

<data name="ACCOUNTNO">A5040658567& _:+]Mat</data>

<data name="ACTVCODE"/>

<data name="COLORCODE">0</data>

<data name="CONTACT">Matthew W & Kathleen Blacklock</data>

<data name="DURATION"> 30</data>

<data name="LINK">1</data>

<data name="LOPRECID"> UAQI6O((X$]]WV</data>

<data name="NOTIFY">0</data>

<data name="ONDATE">20060530</data>

<data name="ONTIME"> 7:00am </data>

<data name="PRIVATE">0</data>

<data name="RECID">BUAQI6O!* C8]WV</data>

<data name="RECTYPE">C</data>

<data name="REF"/>

<data name="RSVP">0</data>

<data name="UPDATERELATED">0</data>

<data name="USERID">GUY</data>

</data>

</GMAPI>

For Sales-type records, The ReadSchedule call returns more data:

<GMAPI call="ReadSchedule" SessionID="XXX">

 <status code="1">Success</status>

 <data name="Return">

 <data name="ACCOUNTNO">A5040658567& _:+]Mat</data>

 <data name="ACTVCODE">AA </data>

 <data name="AMOUNT">1110</data>

 <data name="COLORCODE">0</data>

 <data name="CONTACT">Matthew W & Kathleen Blacklock</data>

 <data name="DURATION"> 30</data>

 <data name="LINK">1</data>

 <data name="LOPRECID"> UAQR0L&6K]O]WV</data>

 <data name="NOTIFY">0</data>

 <data name="ONDATE">20060530</data>

 <data name="ONTIME"/>

 <data name="POTNSALE">1110</data>

 <data name="PRIVATE">0</data>

Page 180 of 463

 <data name="PROBSALE">30</data>

 <data name="RECID">BUAQR0L(?B&+]WV</data>

 <data name="RECTYPE">S</data>

 <data name="REF">Johnny Apple Sauce! </data>

 <data name="RSVP">1</data>

 <data name="UNITSSALE">2</data>

 <data name="UPDATERELATED">0</data>

 <data name="USERID">GUY</data>

 </data>

</GMAPI>

Updating Sync Logs
The GoldMine XML API provides a method to update GoldMine synchronization logs whenever an external
application updates GoldMine data.

The GoldMine XML API offers the following synchronization functions:

UpdateSyncLog: Updates the sync log file

ReadImpTLog: Imports a prepared TLog import file

NewRecID: Gets a new RecID

SyncStamp: Converts sync stamp to time and converts time back to sync stamp

Updating the Sync Log File

Syntax

XML <GMAPI call="UpdateSyncLog" SessionID="1">
<data name="Table">Contact1</data>
<data name="RecID">9NDJRJN(EQ[)JW:</data>
<data name="Field">Key3</data>
<data name="Action">U</data>
</GMAPI>

Parameters

Table specifies the table name (such as “Contact1”) or the table ID.

RecID specifies the RecID of the updated record: the correct RecID must be passed, and the RecID value must be
exactly 15 characters long.

Field specifies the name of the field that has changed. This parameter is only relevant when the Action parameter
is U. Field is ignored when Action is N or D.

Action should be N when a new record has been appended, D when a record has been deleted, or U when a field
in a record has been updated.

Return Value

The UpdateSyncLog function returns the following XML:

<GMAPI SessionID="1" call="UpdateSyncLog">

Page 181 of 463

<status code="4">Field TLog entry created.</status>
</GMAPI>

UpdateSyncLog Code Attribute Values

Return Description

0 Error

1 New TLog entry created

2 New TLog entry updated

4 Field TLog entry created

8 Field TLog entry updated

16 Deleted record TLog entry created

32 New TLog Entry removed

Importing a Prepared TLog Import File
ReadImpTLog reads the status of a TLog import file, then deletes the import file when the process is completed.

Syntax

XML <GMAPI call="ReadImpTLog" SessionID="1">
<data name="File">c:\tlogs\mytlog.dbf</data>
<data name="Delete">1</data>
</GMAPI>

Parameters

File specifies the import file name—see below for the import file structure.

Delete specifies to delete the import file when the process has completed.

Return Value

ReadImpTLog function returns the following values in the code attribute:

ReadImpTLog Code Attribute Values

Code Description

0 Failure

1 Success -- Text is total number of imported TLog records

Page 182 of 463

Notes

LoadAPI or LoadBDE must be called before calling ReadImpTLog for the first time. Your application can determine
when the imported process completes by setting the Delete parameter to 1, and noting when the import file is
deleted. The TLog import must have the structure shown in the following table.

TLog Import Structure

Field Name Type Length

Table ID char 10

RecID char 15

Field ID char 10

Action ID char 1

Getting a New Record ID
NewRecID returns a new RecID in the text of the code attribute of the returned XML.

Syntax

XML <GMAPI call="NewRecID" SessionID="1">
<data name="User">KEVIN</data>
</GMAPI>

Parameters

User specifies the GoldMine user name.

Return Value

<GMAPI SessionID="1" call="NewRecID">
<status code="1">AQN8HK0 I9& =$R</status>
</GMAPI>

Notes

The resulting Recid is XML encoded because it contains an XML entity. Reading the text of the code attribute via
an XML Parser would return the correctly XML unencoded RecID.

Converting the Sync Stamp
SyncStamp converts Sync Stamp to time format and back.

Syntax

XML <GMAPI call="SyncStamp" SessionID="1">
<data name="Stamp">19980201:19:01:30</data>
</GMAPI>

Page 183 of 463

Parameters

When the Stamp parameter is exactly 17 characters long, formatted as Date:Time in form of
CCYYMMDD:HH:MM:SS, the return string in the code attribute’s text is in TLog timestamp format, exactly seven
characters long. When the Stamp parameter is seven characters long formatted as a TLog timestamp, the return
string in the code attribute’s text is formatted as CCYYMMDD:HH:MM:SS.

Return Value

The SyncStamp function returns the following example XML:

<GMAPI SessionID="1" call="SyncStamp">
<status code="1">5V1QM50</status>
</GMAPI>

SyncStamp Code Attribute Values

Code Description

0 Failure

1 Success

Notes

An empty return string indicates an error.

Using MSXML to Handle GoldMine API XML
MSXML is just one DOM parser that can be used to format and parse the XML to pass to the GoldMine XML API.
This section will give a brief tutorial of functions that can be used to handle the GoldMine XML document. It does
not comprehensively document MSXML; please refer to Microsoft’s Developer Network (MSDN) for complete
MSXML documentation. Another parser that is available is Xerces.

Getting Started
The examples in this section will use functions and syntax from Microsoft XML 4.0 and Visual Basic 6.0. Include a
reference to Microsoft XML, v. 4.0 in your development project. To create a document reference, use the
following code:

Dim doc As DOMDocument40
Set doc = New DOMDocument40

The XML document is now ready to be composed.

Defining the Root Element
The root element for the GoldMine XML API is GMAPI. The code below sets this value:

Dim xmlIn As String

Page 184 of 463

xmlIn = "<GMAPI/>"
Dim doc As DOMDocument40
Set doc = New DOMDocument40

doc.loadXML xmlIn

Dim elRoot As IXMLDOMElement
Set elRoot = doc.documentElement

Creating an IXMLDOMElement object and setting it to doc.documentElement provides a reference to the root
element of the document. This allows for easy updating to that element later on.

Setting Attributes
The attributes of an element define a specific setting or provide additional information to an element. Attributes
appear in an element’s start tag and are in a name/value pair format. The GoldMine XML API typically expects two
attributes for the root element: call and sessionid.

To set an attribute, use the SetAttribute method in the documentElement object. The following code assumes the
elRoot object defined above.

elRoot.setAttribute "call", "DB_Open"
elRoot.setAttribute "SessionID", sSessionID

Referencing an Attribute
The call attribute for the GMAPI root element will likely need to be changed many times in the course of your
application. A reference to this attribute can be obtained by calling the following code:

Dim att As IXMLDOMAttribute
Set att = elRoot.selectSingleNode("@call")

Now the GoldMine XML API call can be changed easily.

att.Text = "DB_Append"

IMPORTANT: Be sure to set all references to Nothing (or Null) before exiting your application!

Set elRoot = Nothing
Set doc = Nothing
Set att = Nothing

Creating Child Elements
To specify parameters of the GoldMine XML API function calls, a “data” element needs to be created for each
parameter. Each data element has one attribute titled “name”. The value of the parameter is stored as the text
value of the attribute. Following is a Visual Basic example showing a subroutine that sets a parameter for the
GoldMine XML API:

Public Sub SetParameter(doc As DOMDocument40, root As IXMLDOMElement,

sParamName As String, ByVal sValue As String)

Page 185 of 463

Dim tempEL As IXMLDOMElement

‘Create the element and assign to a reference
Set tempEL = doc.createElement("data")

‘Set the attribute with the sParamName value being the name of the

‘parameter
tempEL.setAttribute "name", sParamName

‘Specify the value of the parameter
tempEL.Text = sValue

‘Append the child element to the root
root.appendChild tempEL
Set tempEL = Nothing

End Sub

The above subroutine can now be called to set many parameters for a function. The example below assumes the
document, root element and attribute objects created in the previous section.

att.Text = "DB_Replace"

SetParameter doc, elRoot, "Field", "Contact"
SetParameter doc, elRoot, "NewValue", "XML Contact"
SetParameter doc, elRoot, "Append", "0"

Executing the XML Document
The GoldMine XML API exposes a single method to execute the XML document: ExecuteCommand. The following
subroutine wraps the calls necessary to execute the API’s XML:

Public Sub ExecuteCommand(doc As DOMDocument40)
Dim strOut As String

Dim GMAPI As GMXMLAPI.GoldMineData

Set GMAPI = New GMXMLAPI.GoldMineData
strOut = GMAPI.ExecuteCommand(doc.xml)

‘xmlout is a global string variable. This can be changed to be ‘returned

by the function call.
xmlout = strOut
Set GMAPI = Nothing

End Sub

Page 186 of 463

Reading the Results
The GoldMine XML API returns the results of the function calls by adding an element called status with an
attribute called “code”. In addition, data returned by the call, such as contact information, is returned as child
elements.

Reading the Code Attribute
After executing an XML API command, the resulting XML document contains a status element with a code
attribute. The value of this attribute represents the return value of the function executed. The text value of the
code attribute is a description of the return value, typically providing a meaningful explanation of an error code.
The following subroutine returns the code as the return value and the textual description as an optional output
parameter:

Public Function GetReturnVal(Optional sDescription As String) As Integer
Dim DomDoc As DOMDocument40
Set DomDoc = New DOMDocument40

‘xmlout is a global variable that contains the returned XML from

‘the ExecuteCommand subroutine defined in the above section
DomDoc.loadXML xmlout

Dim root As IXMLDOMElement
Set root = DomDoc.documentElement
If root.Attributes.length > 0 Then
Dim status As IXMLDOMNode
Set status = root.childNodes(0)
If status.Attributes(0).baseName = "code" Then
sDescription = status.Text
GetReturnVal = status.Attributes(0).Text
End If
End If

Set DomDoc = Nothing

Set root = Nothing
Set status = Nothing

End Function

Reading the Returned Data
The GoldMine XML API returns an element titled “Return” containing the data elements returned by the executed
command. The best way to access the individual elements using MSXML is to call selectsingleNode and specify an
XPath expression to designate the desired element. SelectsingleNode returns a reference to the element
requested. To access a further-nested element, call selectsingleNode again from the originally returned element.
The following code loads an XML document returned from executing the ReadRecord command. It then obtains a
reference to the “Return” element, followed by requesting the “CONTACT” element from the “Return” element.

Dim elReturnData As IXMLDOMElement

Page 187 of 463

Dim elFieldValue As IXMLDOMElement
Dim docReturned As DOMDocument40
Dim elRootReturned As IXMLDOMElement

Set docReturned = New DOMDocument40

docReturned.loadXML xmlReturned
Set elRootReturned = docReturned.documentElement

Set elReturnData = elRootReturned.selectSingleNode("data[@name='Return']")
If Not elReturnData Is Nothing Then
Set elFieldValue = elReturnData.selectSingleNode("data[@name='CONTACT']")
If Not elFieldValue Is Nothing Then _
txtContactName = elFieldValue.Text
End If

Set elReturnData = Nothing
Set elFieldValue = Nothing
Set elRootReturned = Nothing
Set docReturned = Nothing

The XPath expression is case sensitive. Typically, all field name elements will be in ALL CAPS. Other element names
may not be formatted in that manner. The case format of the element name can be checked by inspecting the
returned XML during the design phase of your application.

Accessing the Current GoldMine Instance
with COM

Overview
With the release of GoldMine 6.7, GoldMine acts as a COM Server. This new functionality enables an application
to interact with GoldMine without using DDE or loading a dll. In addition, integrating your application with
GoldMine using the COM Server ability does not require a separate instance of Borland Database Engine (BDE)
to be loaded. Furthermore, utilization of the COM server in GoldMine allows the integrating application to
control GoldMine’s user interface to a much greater extent than the legacy DDE server allowed.

NOTE: As of GoldMine Version 7.0, the Borland Database Engine is no longer used. References to BDE in
this chapter apply to integrations developed in GoldMine Version 6.7.

All COM server class methods are executed via XML. For information on using Microsoft XML for creating XML
documents to use with the GoldMine COM Server, please see .

There are 3 classes exposed by the COM server:

1. GoldMine.GoldMineData – This class has methods that are exactly as in the GoldMine XML API described in
Chapter 4, Working with the XML API. However, this class does not contain any functions for loading BDE or
logging in, as they are unnecessary with a running instance of GoldMine. Using the
GoldMine.GoldMineData class of the COM Server will alleviate the SharedMemLocation BDE setting issues
with loading a second BDE instance.

NOTE: Since these commands are an exact duplicate to the GoldMine XML API commands, they will not
be documented in this chapter. For information on using the commands accepted in this class, please see
.

2. GoldMine.UI – This class has methods and events that replace all current DDE functionality and to control
the GoldMine user interface.

3. GoldMine.RecObj – This class has events for notifying client applications of Record object changes.

Getting Started
To access the GoldMine COM Server, add a reference to the GoldMine 6.7 Type Library to your project. Objects
for each of the classes can now be created.

Dim WithEvents GMUI As GoldMine.UI
Dim WithEvents RcOb As GoldMine.RecObj
Dim GMData As GoldMine.GoldMineData

Page 188 of 463

Page 189 of 463

In addition, your application needs to be COM Exception aware.

For instance if a login fails, then a COM Exception of type AccessDenied is passed to your application.

Executing Commands
The GoldMine.UI and GoldMine.GoldMineData classes only have one exposed method:

ExecuteCommand([in]BSTR xmlIn, [out, retval] BSTR* xmlOut)

To use this method, build your XML document using a DOM parser, such as MSXML, then pass the resulting
document to the ExecuteCommand method.

strOut = GMUI.ExecuteCommand(txtXMLIn.Text)

■ If your application is developed in VB, C#, VB.NET, or Delphi the call will have the same format as above.
StringVar = GMUI.ExecuteCommand(xmlIN)

■ If your application is developed in C++, or another lower-level programming language, the call will have the
format of:
ExecuteCommand(xmlIn, xmlOut)

Logging In to GoldMine
Using the GoldMine COM Server requires that GoldMine is running on the computer the client application is also
running on. If GoldMine is not running, it will be launched the first time a call is made to the GoldMine COM
Server. However, this will only bring GoldMine to the login screen. The GoldMine.UI and GoldMine.GoldMineData
classes both have a command to handle this, Login. Following is example code for calling the Login command:

GMObj.ExecuteCommand("<GMAPI call=""Login""><data

name=""User"">MASTER</data><data name=""Pass"">ACCESS</data></GMAPI>")

■ If GoldMine is already running, the COM server will return:
<GMAPI call="Login">
<status code="-31703">The call passed was not recognised as

valid.</status>
</GMAPI>

■ If the Login attempt was successful, the COM server will return:
<GMAPI call="Login">
<status code="1">Succeeded.</status>
</GMAPI>

■ If invalid login information is passed, a COM Exception of type AccessDenied is returned to the client
application.

Page 190 of 463

GoldMine.UI Class
The UI class of the GoldMine COM Server provides identical functionality to the legacy DDE Server. If you are
familiar with using the DDE commands, porting to the COM Server will be natural. There is additional functionality
in the COM Server that allows control of the GoldMine user-interface with commands such as launching menu
items, being notified when a window is being launched, and manipulating controls.

Accessing Data Files
GoldMine.UI provides a complete set of commands that allow low-level access to the data files. These functions
allow you to:

○ Open particular data files,
○ Query the values of the fields in the records in the data files,
○ Add records to the files, and
○ Replace data in the records.

This suite of functions is usually used for database applications that need varied access to GoldMine data.

Adding an Empty Record

Syntax <GMAPI call=”Append”>
<data name=”Area”>1</data>
</GMAPI>

The Append function is used to add an empty record to a GoldMine data file. Before using Append, you must open
a data file using the Open function. After executing the Append function, the record pointer is positioned at the
new empty record, and the record is locked and ready to accept field replacements.

When a CONTACT1 record is appended, GoldMine automatically propagates the new record with the appropriate
ACCOUNTNO and CREATEBY values. For all other records, you must replace the ACCOUNTNO field with the value
from the CONTACT1 record with which the new record is to be linked. For records that require remote
synchronization initialization, GoldMine will automatically propagate the value of the RECID field when these
records are appended.

Parameters

The Append function accepts one parameter, the work area handle of the file to Append. The work area handle is
returned by the Open file when the file is opened.

Return Value

Xbase: The Append function returns the record number of the new record, or 0 if the file could not be locked.

SQL: The Append function returns the record ID.

Returned XML

<GMAPI call="Append">
<status code="1">72</status>

Page 191 of 463

</GMAPI>

Closing an Opened File

Syntax <GMAPI call=”Close”>
<data name=”Area”> 1</data>
</GMAPI>

<GMAPI call=”Close”>
<data name=”Area”> 1</data>
</GMAPI>

The Close function is used to release a previously OPENed file when processing is complete. When access is
complete, a file must be CLOSEd to release memory used by GoldMine to maintain database work areas.

Parameters

The Close function accepts one parameter, Area—the work area handle of the file to close. The Open file returns
the work area handle when the file is opened.

Return Value

The Close value returns 1 if the function was able to successfully close the work area, 0 if an invalid work area
handle was passed.

Returned XML

<GMAPI call="Close"><status code="1">Success</status></GMAPI>

Deleting the Current Record

Syntax <GMAPI call=”Delete”>
<data name=”Area”>1</data>
</GMAPI>

The Delete function deletes the current record in the specified work area. The record pointer is not advanced to
the next record.

Parameters

The Delete function takes one parameter, Area—the work area value obtained from the Open function.

Returned XML

<GMAPI call="Delete">
<status code="1">Success</status>
</GMAPI>

Creating a Subset of Records

Syntax <GMAPI call=”Filter>
<data name=”Area”>1</data>
<data name=”Expression”>Xbase Expression</data>
</GMAPI>

Page 192 of 463

The Filter function limits access to data in a GoldMine database by creating a subset of records based on
expression criteria.

Parameters

The Filter function takes two parameters.

Area: the work area handle of the file that you want to read. The Open function provides this value when the data
file is opened.

Expression: a valid Xbase expression. Referencing a table and field in an Xbase expression requires the use of the
“>” character. Since this is an XML entity, be sure to build this XML document through a DOM parser to XML
encode the elements. See for more information.

To remove the filter from the database, use a Filter function with an empty string, such as:
<GMAPI call=”Filter”>
<data name=”Area”>1</data>
<data name=”Expression”/>
</GMAPI>

Checking for an Xbase or SQL Table

Syntax <GMAPI call=”IsSQL”>
<data name=”Area”>1</data>
</GMAPI>

The IsSQL function returns the table type (Xbase or SQL) that is open in a work area. Using this command, you can
determine the most appropriate method to retrieve information when working with DataStream. For example,
when your routine starts, you can open Contact1 and Cal, issue an IsSQL command to determine the GoldDir and
CommonDir database types, and then close both work areas. You can then send the appropriate DataStream calls.

Parameters

The IsSQL function takes work area as the only parameter, Area.

Return Value

IsSQL returns 1 for an SQL database table, or 0 for an Xbase file.

Returned XML

<GMAPI call="IsSql">
<status code="0">The open file is xBase.</status>
</GMAPI>

Moving to a Specified Record

Syntax <GMAPI call=”Move”>
<data name=”Area”> 87494472</data>
<data name=”Command”>COMMAND</data>
<data name=”Parameter”>PARAMETER</data>
</GMAPI>

Page 193 of 463

The Move function will position the record pointer to a particular record in a data file. Before using Move, you
must open a data file using the Open function.

Parameters

The Move function requires either two or three parameters.

Area: the work area handle of the file whose record pointer you want to position. The Open function provides this
value when the data file is opened.

Command: the name of the Move subfunction that you want to perform.

Parameter: Depending on the subfunction, a third parameter can be required.

The following table lists the Move subfunctions and the requirements for the third parameter:

Valid Move Subfunctions

Subfunction Description 3rd Parameter

TOP Move to first logical record Not required

BOTTOM Move to last logical record Not required

SKIP Skip records Optional, records to skip

GOTO Go to a specific record Record number (Xbase), Record ID (SQL)

SEEK Seek a specific record by key Search key value

SETORDER Select an index Index name

Top Positions the record pointer at the first logical record according to the current index order. For
example, if the data file open in the selected work area is CONTACT1.DBF, and the index order
is set to Company, a call to TOP will result in the record pointer being positioned at a record
with a company name, such as AAA Cleaners.

Bottom Positions the record pointer at the last logical record according to the current index order. For
example, if the data file open in the selected work area is CONTACT1.DBF, and the index order
is set to Company, a call to BOTTOM will result in the record pointer being positioned at a
record with a company name, such as Z-best Bakery.

Skip

Moves the record pointer record by record. If SKIP is called without the third parameter, it will
move the record pointer to the next logical record according to the current index order. If SKIP
is called with a string numeric as the third parameter, the record pointer will be moved
forward by the indicated number if the value is positive, or backward if the value is negative.
Negative numbers must be passed in quotation marks, for example “-1”.

Goto
Positions the record pointer at the record number (Xbase) or record ID (SQL) specified by a
string numeric passed as the third parameter.

Page 194 of 463

Seek Attempts to locate a record in the data file with an index key that matches the string passed as
the third parameter. Partial key searches are allowed; GoldMine will position the record
pointer at the record with the key that most closely matches the passed value.

Setorder Selects an active index for ordering and SEEKing the data file. See for the appropriate values
and collating sequence for each data file index.

TIP: If an invalid index is selected for the data file, none of the MOVE subfunctions will operate
properly.

Return Value

The Move function can return several values.

Move Return Values

Return Description

0 Error occurred

1 Record pointer successfully moved, or index selected

2 Exact match not found, pointer positioned at closest match

3 Record pointer positioned at end-of-file (EOF)

4 Record pointer positioned at beginning-of-file (BOF)

An error can be returned under any of the following conditions:

○ Invalid work area handle is passed to the function.
○ Invalid subfunction is passed.
○ Out-of-range record number is passed.
○ Nonnumeric value is passed as a third parameter when a numeric value is expected.

Returned XML

<GMAPI call="MOVE">
<status code="1">1</status>
</GMAPI>

Opening a Data File

Syntax <GMAPI call=”Open”>
<data name=”Filename”>CONTACT1</data>
</GMAPI>

The Open function is used to open a GoldMine data file for processing by another application. This function must
be called before calling any GoldMine.UI data functions that work with an individual data file. It is not necessary to
use this function when calling the RecordObj function or user-interface control functions.

Page 195 of 463

Parameters

The Open function takes one parameter, Filename. The following values are valid for this parameter:

Open Valid Parameters

File Description

CAL Calendar activities file

CONTACT1 Primary contact information file

CONTACT2 Primary contact information file

CONTGRPS Groups file

CONTHIST History records file

CONTSUPP Supplementary records file

INFOMINE InfoCenter file

LOOKUP Lookup file

MAILBOX E-mail Center mailbox file

OPMGR Opportunity Manager file

PERPHONE Personal Rolodex file

RESOURCE Resources file

SPFILES Contact files directory

Return Value

The Open function returns an integer value representing the handle to the file’s work area. This value is required
for all subsequent access to the file. If the file could not be opened, or an invalid parameter is passed, the function
will return 0.

Returned XML

<GMAPI call="Open"><status code="1">87732928</status></GMAPI>

Limiting GoldMine Search Range

Syntax
<GMAPI call="Range"> <data name="Area">87732928</data> <data

name="Min">Mark Durrant</data> <data name="Max">Paul

Redstone</data> <data name="Tag">CONTNAME</data></GMAPI>

The Range function activates the index in a table and sets a range of values to limit the scope of data that
GoldMine will search.

Page 196 of 463

Parameters

The Range function requires four parameters.

Area: the work area handle of the file that you want to read. The Open function provides this value when the data
file is opened.

Min: the minimum value of the range.

Max: the maximum value of the range.

Tag: the tag that corresponds to the index file. For details about tags, see .

Returned XML

<GMAPI call="Range">
<status code="1">Success</status>
</GMAPI>

Syntax <GMAPI call="Query">
<data name="Area">87732928</data>
<data name="SQL">select recid from contact1 where

state=”MI”</data>
</GMAPI>

The Query function limits the set of records that can be accessed to the result set from the specified SQL query.
After calling the Query command, issue a MOVE command to move the record pointer into the result set from the
Query (by calling TOP for example).

Parameters

Area: the area value returned by the Open command.

SQL: the SQL query to send to the server.

Returned XML

<GMAPI call="Query"><status code="1">Success</status></GMAPI>

Reading a Field Value

Syntax <GMAPI call="Read">
<data name="Area">87624560</data>
<data name="Field">Key1</data>
</GMAPI>

The Read function is used to query a data file for the value of a field. Before using Read, you must open a data file
using the Open function. In addition, you will probably want to position the record pointer to the record you want
to query by using the Move function.

Parameters

The Read function requires two parameters.

Page 197 of 463

Area: The first parameter is the work area handle of the file that you want to read. The Open function provides
this value when the data file is opened.

Field: The second parameter is the name of the field in the data file whose value you want to query. You will
normally pass only a single field name, such as CONTACT as the second parameter. However, if you pass a field
expression, such as “COMPANY + CONTACT” GoldMine will attempt to evaluate the expression and return the
value of the expression.

Return Value

The Read function returns a character string containing the value in the specified field, or the value of the
specified expression. An invalid work area handle, an invalid field being passed, or an expression that GoldMine
could not evaluate can cause errors.

Returned XML

<GMAPI call="Read">
<status code="1">Client Prospect</status>
</GMAPI>

Checking the Current Record Number or Record ID

Syntax <GMAPI call="Recno">
<data name="Area">87624560</data>
</GMAPI>

Xbase: RecNo function is used to determine current record number position.

SQL: RecNo function is used to determine the record ID.

Parameters

The RecNo function accepts one parameter, Area—the work area handle of the file. The Open function returns the
workarea.

Return Value

The RecNo function returns the current record number position, 0 if an invalid work area handle was passed.

Returned XML

<GMAPI call="Recno">
<status code="1">21</status>
</GMAPI>

Page 198 of 463

Changing a Field Value

Syntax <GMAPI call="Replace">
<data name="Area">87637440</data>
<data name="Field">contact</data>
<data name="NewValue">Reuben Corazza</data>
<data name="Append">0</data>
</GMAPI>

The Replace function is used to change the value in a particular field in one GoldMine data file. Before using
Replace, you must open a data file using the Open function. In addition, you will probably want to position the
record pointer to the record you want to change either by using the Move function, or by adding a new record
with the Append function.

After executing the Replace function, GoldMine will update the specified field with the new value, and update the
appropriate remote synchronization data structures to indicate that the field was changed.

In a network environment, GoldMine automatically locks the record before performing the replacement. The
record is not automatically unlocked, allowing for fast multiple field replacements. The record is automatically
unlocked when a Close, Move, or Unlock command is issued on the work area.

Parameters

The Replace function requires three parameters and has an optional fourth parameter.

Area: The first parameter is the work area handle of the file in which you want to perform the replacement. The
Open function provides this value when the data file is opened.

Field: The second parameter is the name of the field to be replaced. See for information on the name of fields in
each GoldMine data files. If you attempt to replace a field that does not exist in the file open in the specified work
area, the Replace function will fail.

NewValue: The third parameter is the value to replace. The replace value must be a string value. If the
replacement field is a date or numeric field, GoldMine will convert the string data to the appropriate data type
prior to performing the replacement.

Append: The fourth parameter will add data instead of replacing data. Using this parameter, you can insert large
amount of text into a notes field. To append instead of replace incoming data from the third parameter, pass 1 as
the fourth parameter. You can set up a loop to feed notes in 256-byte segments to override the 256-byte limit for
inbound DDE requests.

Return Value

If the file was replaced, the Replace function returns 1.

<GMAPI call="Replace"><status code="1">Success</status></GMAPI>

If the field could not be replaced, 0 is returned. The failure can be caused under any of the following conditions:

○ Invalid parameter, such as an invalid work area handle.
○ Invalid field name.
○ Record already locked by another user.

Page 199 of 463

Performing a Sequential Search

Syntax <GMAPI call="search">
<data name="area">87675752</data>
<data name="expression">contact="Paul Redstone"</data>
</GMAPI>

The Search function is used to perform a sequential search on a file. Unlike Move, Search scans the table, one
record at a time, looking for a record that satisfies the search condition. The search condition can be any Xbase
expression that GoldMine understands, but is usually an expression that tests the value of one or more fields in
the file. When a match is found, the record pointer is located at the matching record.

Search starts with the record that immediately follows the current record (the next logical record according to the
selected index order) and continues until a match is found or the end of file is encountered. Because of this,
Search can be called repeatedly to return a list of records that satisfy the search condition.

Parameters

The Search function takes three parameters.

Area: the work area handle of the file you want to search. The Open function provides this value when the data
file is opened.

Expression: the search expression, such as “CITY=‘Los Angeles’”

Return Value

The Search function can return several values.

Search Return Values

Return Description

0 Error occurred or match could not be found

>0
Match found; return value indicated current physical record number (Xbase) or
record ID (SQL)

An error can be returned if an invalid work area handle is passed to the function, or if an invalid search condition
is passed.

Returned XML

<GMAPI call="search">
<status code="1">1</status>
</GMAPI>

Unlocking a Record
Syntax <GMAPI call="Unlock">

<data name="Area">87675752</data>
</GMAPI>

Page 200 of 463

The Unlock function unlocks a record previously locked by a call to either Append or Replace. GoldMine does not
specifically release a lock on a record until you call Unlock, allowing you to perform multiple field replacements
quickly. Before using Unlock, you must open a data file using the Open function.

After calling Unlock, GoldMine will also update the remote synchronization data structures to indicate the date
and time that the record was modified.

Parameters

The Unlock function accepts one parameter, Area—the work area handle of the file to close. The work area handle
is returned by the Open file when the file is opened.

Return Value

The Unlock function returns 1 if the record was unlocked, or 0 if an invalid work area handle was passed to the
function.

Returned XML

<GMAPI call="Unlock">
<status code="1">Success</status>
</GMAPI>

Accessing Contact Records
For specific applications that need access to the GoldMine contact database at the logical level, the RecordObj
function is the preferred access method. Unlike the low-level GoldMine.UI functions, the RecordObj function
maintains all of the relationships between the various GoldMine files. This access method is most often used for
document merging functions such as word processor mail merges or placing information into a spreadsheet.

Linking GoldMine Fields with an External Application
Syntax <GMAPI call="RecordObj">

<data name="Command">skip</data>
<data name="Argument">3</data>
</GMAPI>

The RecordObj function is a specialized function designed to link fields in a document application, such as a word
processor or spreadsheet. Using RecordObj, an application can access the contact record in a high-level fashion,
rather than opening the CONTACT1.DBF and CONTACT2.DBF files using Open.

Calling RecordObj within a program is equivalent to viewing and manipulating the contact record within
GoldMine. The calling program can control the record pointer in the contact record much the same way a
GoldMine user can move the record pointer. In fact, RecordObj can be called in such a way as to create a
minimized contact record in the GoldMine work area display.

The primary differences between using Open, Move, and Read to access contact information and using RecordObj
are described in the following table.

Page 201 of 463

Differences in Accessing Contact Information

Using Open, Move, Read Using RecordObj

Any filter or group that is active on a contact record
in GoldMine is ignored when files are accessed using
Open and Move

RecordObj can work in conjunction with a filter or group.
Any records that do not match the filter expression, or
are not members of the group, are skipped

The only way to maintain the relationship between
the CONTACT1 and CONTACT2 files, is to manually
reposition CONTACT2 whenever the record pointer
is moved in CONTACT1.DBF.

Automatically maintains the relationship between
CONTACT1 and CONTACT2 , and other contact
information such as history.

RecordObj does not contain a method to read specific
fields from the database. It is expected that the
application will use the Macro or Expr functions to query
information from the current contact record, and use
RecordObj function calls only to position the record
pointer.

When RecordObj is used to move the record pointer, the
contact record screen in GoldMine is updated. To receive
notification that the screen has changed, use the
GoldMine.RecordObj class to receive events notifying of
a record change, a tab clicked, or a contact1 or contact2
field being changed.

Parameters

The RecordObj function requires either one or two parameters.

Command: the name of the RecordObj subfunction that you want to perform.

Argument: Depending on the subfunction, a second parameter can be required. The following table lists the
RecordObj subfunctions and the requirements of the second parameter.

Valid RecordObj Functions

Subfunction Description Argument

SETOBJECT Create or select contact record Optional object pointer

TOP Move to first logical record Not required

BOTTOM Move to last logical record Not required

SKIP Skip records Optional, recs to skip

SEEK Seek a specific record by key Search key value

Page 202 of 463

SETORDER Select an index Index tag number

GETORDER Return the currently active index name Not required

SETTITLE Set the contact record title Text of title

CLOSEWINDOW Close the contact record None

SETRECORD
Change the behavior of SKIP, TOP, and
bottom

Name of data structure to be queried

REFRESH Repaint the contact record Not required

GETRP Return the point to the current contact
record (Xbase) or the record ID (SQL)

Not required

GETFILTEREXPR Get the activated filter’s expression Not required

GETGROUPNO Get the GroupNo of the activated group Not required

GOTO Seeks a specific record by RecordID

The RecID to seek
Additionally, accepts a third optional
parameter, SetPrimary, indicating if only
primary contacts should be searched (1) or
(0) to include additional contacts in the
search scope.

Setobject If SetObject is called without a second parameter, subsequent calls to RecordObj will
manipulate the currently active contact record. If SetObject is called with a second
parameter of 0, GoldMine will create a minimized contact record in the work area display,
and subsequent calls to RecordObj will manipulate that contact record. If SetObject is
called with a second parameter of 1, GoldMine will create a minimized contact record in
the work area display and copy any filter or group active on the last used contact record
into the newly minimized contact record.
If RecordObj is called with a specific pointer number, GoldMine will attempt to establish a
link with that contact record.

Top Positions the record pointer at the first logical record according to the current index order.
For example, if the contact record index order is set to Company, a call to Top will result in
the record pointer being positioned at a record with a company name such as “AAA
Cleaners.” GoldMine will also update the contact record to display the new record.

Bottom

Positions the record pointer at the last logical record according to the current index order.
For example, if the contact record index order is set to Company, a call to Bottom will
result in the record pointer being positioned at a record with a company name such as “Z-
best Bakery.” GoldMine will also display the new record.

Page 203 of 463

Skip

The Skip subfunction moves the record pointer on a record-by-record basis.
If Skip is called without the second parameter, it will move the record pointer to the next
logical record according to the current index order.
If Skip is called with a string numeric as the second parameter, the record pointer will be
moved forward by the indicated number of records if the value is positive, or backwards if
the value is negative. GoldMine will also update the display to show the new record.
The Skip subfunction is sensitive to any filter or group that can be active on the contact
record in GoldMine. For example, if the user applies a filter to the contact record in
GoldMine, the Skip subfunction will skip over any records that do not match the filter
expression.

Goto The Goto subfunction positions the record pointer at the record number specified by a
string numeric passed as the second parameter. Additionally, accepts a third optional
parameter, SetPrimary, indicating if only primary contacts should be searched (1) or (0 -
default) to include additional contacts in the search scope.

<GMAPI call="RecordObj">
<data name="Command">skip</data>
<data name="Argument">3</data>

<data name=”SetPrimary”>1</data>
</GMAPI>

Seek Attempts to locate a record in the data file with an index key that matches the string
passed as the second parameter. Partial key searches are allowed, and GoldMine will
position the record pointer at the record with the key that most closely matches the
passed value. GoldMine will update the display to show the new record.

Setorder
Selects an active index for ordering and SEEKing the contact database. Only the twelve
CONTACT1 indexes can be used for this subfunction. See for the appropriate values and
collating sequence for each data file’s indexes.

Getorder
Returns the active index being used to sort the contact records. See for the appropriate
values and collating sequence for each data file’s indexes.

Settitle Changes both the text in the title bar of the contact record’s window and the text
displayed below a minimized contact record. For example, an application that merges
contact records within a document can modify the contact record title to indicate the
number of records that have been merged. Any text that is passed as the second
parameter will be used as the new title’s text.

Closewindow Closes the contact record when processing is complete. Issuing this call is equivalent to
selecting Close from the contact record’s system menu.

Page 204 of 463

Setrecord

Changes the behavior of the Skip, Top, and Bottom subfunctions to allow ancillary contact
information (such as additional contacts) to be queried using the RecordObj function.
Normally, GoldMine assumes the CONTACT1 data file to be the parent data file, and when
the Skip, Top, or Bottom subfunction is called, the record pointer is repositioned in this
data file. When accessing information in GoldMine tabs, however, the Skip, Top, and
Bottom subfunctions must be able to reposition the record pointer in the data file that
stores these items (CONTSUPP).

The SetRecord subfunction accepts the name of the data structure being queried as the
second parameter. Valid data structure names are listed in the following table.

Data Structure Name Description

m CONTACTS Additional contacts

m PROFILE Profile records

m REFERRALS Referral records

m LINKS Linked documents

m PRIMARY Primary contacts

Setrecord Valid Structure Names
Using SetRecord changes the behavior of the Skip, Top, and Bottom subfunctions.

The first parameter is the name of the RecordObj subfunction that you want to perform.
When Top is called, GoldMine will position the record pointer in the supplementary data
file so that the first record containing the selected information is the current record. For
example, if SetRecord is used to select CONTACTS, Top will position the record pointer on
the first additional contact record for the current contact. The record pointer in the
primary information data file (CONTACT1) will not be moved, so the name of the current
company will remain the same. Bottom behaves in a similar manner.

Skip will position the record pointer in the supplementary file on the next record of the
selected type. For example, if SetRecord is used to select CONTACTS, Skip will position the
record pointer in the supplementary file on the next additional contact record for the
current contact. The record pointer in the primary information data file (CONTACT1) will
not be moved, unless the record pointer in the supplementary file was already positioned
at the last record of the selected type; then GoldMine will reposition the record pointer in
the primary information data file (CONTACT1) to the next contact record and reset the
record pointer in the supplementary file to the first supplemental record of the selected
type. Macro expressions are also sensitive to the setting of the SetRecord subfunction.

Refresh Repaints the contact record

GetRP Obtains a pointer of the currently selected contact record

GetGroupNo Returns the group number (if a group is activated)

Page 205 of 463

GetFilterExpr Returns the filter expression (if a filter is activated)

Return Value

All RecordObj subfunctions return 1 if the function was completed successfully, or 0 if an internal error occurred.

Returned XML

<GMAPI call="RecordObj">
<status code="1">Skip Success</status>
</GMAPI>

Accessing Specialized GoldMine.UI Functions
GoldMine provides a set of specialized functions for performing specific tasks, such as retrieving a list of plug-ins,
adding document links to the contact database, or sending GoldMine a CallerID message.

Retrieving a List of Active Plug-Ins (GoldMine 7.0 or higher)

Syntax <GMAPI call="GetActivatedPlugIns"/>

The GetActivatedPlugIns function is used to retrieve a list of active (trusted) plug-ins for the current user’s session.
For more information about GoldMine Plug-ins, see the Working with GoldMine Plug-ins chapter.

Each PlugIn node in the list is an encoded representation of the item. These are dynamically created and will not
be the same starting number on individual systems. For example, 3013__GMAIL may be 3001__GMAIL on another
system. The text after the number will be the same.

Each plug-in list item contains the following information:

XXXX__InternalName__MethodMenuEntry

Returned XML

<GMAPI call="GetActivatedPlugIns">
<status code="1">Success</status>
<data name="PlugInList">
<data name="PlugIn">3007__FrontRangeCTestControl</data>
<data name="PlugIn">3002__FrontRangeOutlookWebAccess</data>
<data name="PlugIn">3250__FrontRangeMovieViewer10__

LaunchMovieViewer10</data>
<data name="PlugIn">3251__FrontRangeMovieViewer10__

ConfigureMovieViewer10</data>
<data name="PlugIn">3001__FrontRangeTestCalendar</data>
<data name="PlugIn">3003__FrontRangeHelpAbout</data>
<data name="PlugIn">3008__GamesKittenGame</data>
<data name="PlugIn">3013__GMAIL</data>
<data name="PlugIn">3005__GoogleGoogleMaps</data>
<data name="PlugIn">3000__JCSFlashandGMViaVBNET</data>
<data name="PlugIn">3009__JCSOfficeDocument</data>
<data name="PlugIn">3004__SolutionSellingSolutionSelling</data>
</data>

Page 206 of 463

</GMAPI>

Running a Plug-In (GoldMine 7.0 or higher)

Syntax <GMAPI call="RunPlugIn">3013__GMAIL</GMAPI>

Or
<GMAPI call="RunPlugIn">3013</GMAPI>

Or
<GMAPI call="RunPlugIn">
<data name=”PlugIn”>3013__GMAIL</data>
</GMAPI>

Or
<GMAPI call="RunPlugIn">
<data name=”PlugIn”>3013</data>
</GMAPI>

The RunPlugIn function attempts to start the designated plug-in. For more information about GoldMine Plug-ins,
see .

Returned XML

<GMAPI call="RunPlugIn">
<status code="1">The plug-in call was successful.</status>
</GMAPI>

Or

<GMAPI call="RunPlugIn">
<status code="0"> The Plug-in ID is invalid</status>
</GMAPI>

Retrieving Login Credentials for Use with the GMXS32.DLL

Syntax <GMAPI call="GetLoginCredentials"/>

The GetLoginCredentials function is used to retrieve a string containing login credentials to be used for logging
into the GMXS32.DLL through the GMW_LoadAPI, GMW_LoadBDE or GMW_Login functions. Using this option, it
is not necessary to prompt the integration user for login information if GoldMine is running. The login credentials
received are only valid for 30 seconds, so do not store them and attempt to use them at a later time. The string
returned by this command should be used as the password to the appropriate login function, where the username
is “*DDE_LOGIN_CREDENTIALS*”.

Returned XML

<GMAPI call="GetLoginCredentials">
<status code="1">KEVIN

01C4D24F7051B9B04F882C36294F1F4AB4E4D20FCF3C1682</status>
</GMAPI>

Page 207 of 463

Retrieving the RecID of the Current Opportunity

Syntax <GMAPI call="GetActiveOppty"/>

The GetActiveOppty function is used to retrieve the RecID of the currently selected Opportunity in the
Opportunity Manager.

Return Value

The GetActiveOppty function returns the record ID of the currently selected opportunity. If no opportunity is
available, an empty string is returned.

Returned XML

No opportunity or project selected in GoldMine:

<GMAPI call="GetActiveOppty">
<status code="1"></status>
</GMAPI>

An opportunity or project is selected in GoldMine:

<GMAPI call="GetActiveOppty">
<status code="1">AOA73CU%Y/HD3\T</status>
</GMAPI>

Completing a Calendar Activity

Syntax <GMAPI call="CalComplete">
<data name="Recno">ASSAG6C(+.E%3\T</data>
<data name="Activity">BIL</data>
<data name="Ref">Called Angel re Support</data>
<data name="ResultCode">DON</data>
<data name="Notes">Agreed on terms</data>
<data name="User">KEVIN</data>

<data name=”RetainDate”>1</data>
</GMAPI>

The CalComplete function is used to complete an activity from the Calendar.

Parameters

The CalComplete function takes up to seven parameters.

Recno: the record number of the calendar activity to be completed.

Activity: the Activity Code. This parameter is optional.

ResultCode: the Result Code. This parameter is optional.

User: the User. If this parameter is not specified, the User field defaults to the currently logged user.

Ref: the history Reference. This parameter is optional.

Page 208 of 463

Notes: the Notes for the history record. This parameter is optional.

RetainDate: a Boolean (1=true, 0= false) that if true, retains the original date of the calendar entry, otherwise uses
today. Defaults to 0, false.

Return Value

The CalComplete function returns the record number (Xbase) or record ID (SQL) of the new history record created.

Returned XML

<GMAPI call="CalComplete">
<status code="1">1980</status>
</GMAPI>

Displaying Edit Windows for Calendar and History Items

Syntax <GMAPI call="PopCalHistItem">
<data name=”recID”>BNPKDFZ$OF9-]WV</data>
</GMAPI>

Use the PopCalHistItem function to display the edit window for calendar or history items, including email. When
you pass it a valid cal table or conthist recID, the correct edit window will open.

The Calendar Item edit window is a modal dialog: the return value will not be sent until the user closes the edit
window.

For history items, the record object will align to the owner of the history automatically. This will not occur for
calendar items.

General Messages

<GMAPI call="PopCalHistItem"><status code="-33001">

PopCalItem has failed because the passed record could not be found.

</status></GMAPI>
<GMAPI call="PopCalHistItem"><status code="-33002">

PopCalItem opens a calendar or contact history record for editing.
Parameters
RecID: the record id of the cal or conthist table entry. </status></GMAPI>

Return Value

■ Calendar Item Return Values
<GMAPI call="PopCalHistItem"><status code="0">User pressed cancel

button.</status></GMAPI>
<GMAPI call="PopCalHistItem"><status code="1">User pressed OK

button.</status></GMAPI>

■ History Item Return Values
<GMAPI call="PopCalHistItem"><status code="0">Failure</status></GMAPI>
<GMAPI call="PopCalHistItem"><status code="1">Success</status></GMAPI>

■ Email Item Return Values
<GMAPI call="PopCalHistItem"><status code="0">Failure</status></GMAPI>

Page 209 of 463

<GMAPI call="PopCalHistItem"><status code="1">Success</status></GMAPI>
<GMAPI call="PopCalHistItem"><status code="1">Already

Open</status></GMAPI>

Displaying the Contact Record of an Incoming Caller

Syntax <GMAPI call="CallerID">
<data name="Phone">(800)776-7889</data>
<data name="Description">Incoming caller:</data>
<data name="DisplayDialog">6</data>

<data name=”All”>1</data>
<data name=”UPhone”>1</data>
</GMAPI>

The CallerID function is used to inform the GoldMine user that an incoming call has been identified by Automatic
Number Identification (ANI) equipment attached to the telephone system. By using CallerID, GoldMine can
perform a lookup on the contact database, and attempt to locate a contact record with a telephone number that
matches the telephone number extracted by the ANI device.

With the CallerID function, GoldMine can automatically display the contact record of the caller. A dialog box is
displayed, allowing the user to select an action. A CallerID function parameter is used to specify the message in
the dialog box.

Parameters

The CallerID function accepts five parameters:

Phone: the telephone number of the caller as captured by the ANI device. The calling application is responsible for
formatting the telephone number that appears in the Phone1 field in GoldMine.

Description: the optional message to be displayed in the dialog box in GoldMine.

All: Indicates for GoldMine to search all of the phone fields on the contact record (except FAX). Set to 1 to search
all phone fields, 0 to indicate to search only Phone1.

UPhone: Indicates for GoldMine to search the UPhone fields in contact2. This parameter is ignored if the All
parameter is set to 0.

DisplayDialog: specifies whether the dialog box is displayed. This parameter is the sum of the required options.
For example, to display the caller’s contact record in the current window if the record is found, or to display the
contact listing if the caller’s phone number is not found, specify 6 (2+4) as the <display dialog> parameter. The
following table lists valid parameter values.

CallerID Parameters

Value Description

0 Dialog box is displayed (default when third parameter is not passed)

1 Dialog box is not displayed, and contact record is displayed in a new contact record

2 Dialog box is not displayed, and contact record is displayed in the current contact record

Page 210 of 463

4 Contact Listing is displayed when GoldMine cannot find the contact’s telephone number. To
activate this option, add this value to the third parameter value.

8 Restores input focus to the window that had input focus just before CALLERID is called—used by
applications that control the entire interface.

Return Value

CallerID Return Values

Return Description

0 Error occurred

1 Contact record found

2 Contact record not found

Returned XML

<GMAPI call="CallerID">
<status code="1">Passed caller was found</status>
</GMAPI>

Running a Counter

Syntax <GMAPI call="F2Counter">
<data name="Name">My counter</data>
<data name="Inc">1</data>
<data name="Start">0</data>
<data name="Action">0</data>
</GMAPI>

The F2Counter function returns a sequence of consecutive numbers each time the expression is evaluated. The
DDE equivalent to this function was called “Counter”.

Parameters

The counter name must be unique, and can be a maximum of 10 characters. Each evaluation of the Counter
function increments the counter by the Inc value.

The Start and Action parameters are optional. When Action is 1, the start value resets the counter. When Action is
2, the counter is deleted. F2Counter stores the count value between GoldMine sessions, and it is shared by all
GoldMine users.

GoldMine can track an unlimited number of uniquely named counters. The counter values are stored in the
LOOKUP table.

Return Value

The F2Counter function returns a number incremented by Inc.

Page 211 of 463

Example

The following sets up the counter:

<GMAPI call="F2Counter">
<data name="Name">Num Iterations</data>
<data name="Inc">1</data>
<data name="Start">0</data>
<data name="Action">0</data>
</GMAPI>

Returns:

<GMAPI call="F2Counter">
<status code="1">0</status>
</GMAPI>

To increment the “Num Iterations” counter:

<GMAPI call="F2Counter">
<data name="Name">Num Iterations</data>
<data name="Include">1</data>
</GMAPI>

Returns:

<GMAPI call="F2Counter">
<status code="1">1</status>
</GMAPI>

Returning GoldMine Record Data

Syntax

Range <GMAPI call=”DataStream”>
<data name=”Command”>Range</data>
<data name=”Table”>Contact1</data>
<data name=”Tag”>CONTNAME</data>
<data name=”BotLimit”>A</data>
<data name=”TopLimit”>ZZ</data>
<data name=”Fields”>contact;company</data>
<data name=”Filter”>EXPRESSION</data><! –NOT REQUIRED- >
</GMAPI>

Query

<GMAPI call=”DataStream”>
<data name=”Command”>Query</data>
<data name=”SQL”>select recid from contact1</data>
<data name=”Filter”>EXPRESSION</data><! –NOT REQUIRED- >
</GMAPI>

Page 212 of 463

Fetch

<GMAPI call=”DataStream”>
<data name=”Command”>Fetch</data>
<data name=”Area”>1</data>
<data name=”FetchCount”>55</data>
<data name=”Raw”>0</data><! –NOT REQUIRED- >
<data name=”FieldDelimiter”>|</data><! –NOT REQUIRED- >
<data name=”RowDelimiter”>\-/</data><! –NOT REQUIRED- >
</GMAPI>

Close <GMAPI call=”DataStream”>
<data name=”Command”>Close</data>
<data name=”Area”>1</data>
</GMAPI>

DataStream returns the data of requested records from any GoldMine table using the most efficient method
possible. The caller can specify the fields and expressions to return, as well as the range of records to return. A
filter can optionally be applied to the data set.

The DataStream method allows for many useful applications. One example would be to publish the contents of
GoldMine data on the Internet by using XSL templates with the data returned by DataStream. Web pages can be
created to display GoldMine data requested by a visitor. Based on the visitor’s selections, a company could
dynamically present a variety of HTML pages, such as:

○ Addresses of product dealers in a particular city
○ Financial numbers stored in Contact2
○ Seating availability of upcoming conferences

With a fast Internet connection and a strong SQL server, the GoldMine client could simultaneously respond to
dozens of requests.

Record Selection

The DataStream command consists of four subcommands. Each subcommand takes different parameters.

The “range” or “query” subcommands must be called first to request the data. The “range” and “query”
subcommands return an integer handle, which must be passed to the “fetch” and “close” subcommands. You
must use either “range” or “query”—not both.

Datastream Range Parameters

The Table, Tag, TopLimit, and BotLimit parameters determine the range of records to scan. The Fields parameter
specifies the requested fields and expression to return.

The Field parameter passed to the “range” subcommand should consist of the field names and Xbase expressions
to evaluate against each record in the data set. Each field must be terminated with the semicolon (;) character.
Xbase expressions must be prefixed with the ampersand (&) character and terminated with a semicolon.

The other “range” parameters are optional.

Datastream Query Parameters

The “query” subcommand sends the SQL query for evaluation on the server.

Page 213 of 463

The SQL query can join multiple tables and return any number of fields. The optional Filter parameter can specify
a Boolean Xbase filter expression to apply to the data set (even on SQL tables).

Datastream Fetch Parameters

The “fetch” subcommand returns a single packet string that contains the requested data from all records
processed by the current “fetch” command, as specified by the second Records parameter. Optionally, Fetch can
return the requested data formatted in XML, making it easy to retrieve specific data without having to parse a
large string. To receive the Fetch results formatted for XML, set the “Raw” parameter to 0. Area must be the value
returned from “range” or “query.” The “fetch” command can be issued multiple times. The optional FieldDelimiter
and RowDelimiter can override the return packet’s default field and record delimiters of CR and LF. These
parameters are not used when retrieving the return packet in XML format. See “Return Packet” below.

Datastream Close Parameters

The “close” subcommand must be called when the operation is complete. Unclosed data streams will leak
memory and leave the database connections needlessly open. Passing an Area of 0 closes all open DataStream
objects.

The XML Return Packet

DS_Fetch has an option in the GoldMine XML API to return the data in an XML format that is easier to process
than the traditional datastream return packet. Consider the following DS_Query XML call:

<GMAPI call="DS_Query" SessionID="1">
<data name="SQL">select contact, company, key1 from contact1 where

contact=’Rafael Zimberoff’</data>
<data name="Filter"/>
</GMAPI>

Returns

<GMAPI SessionID="1" call="DS_Query"><status code="1">1</status></GMAPI>

The DS_Fetch call to retrieve the requested data is:

<GMAPI call="DS_Fetch" SessionID="1">
<data name="Area">1</data>
<data name="Raw">0</data>
<data name="RecordCount">25</data>
</GMAPI>

The resulting XML datastream return packet is:

<GMAPI call="DS_Fetch">
<status code="1">Success</status>
<data name="Return">
<data name="Header">
<data name="field">
<data name="Field_Name">CONTACT</data>
<data name="Field_Type">C</data>

Page 214 of 463

<data name="Field_Length">40</data>
<data name="Field_Decimal">0</data>
</data>
<data name="field">
<data name="Field_Name">COMPANY</data>
<data name="Field_Type">C</data>
<data name="Field_Length">40</data>
<data name="Field_Decimal">0</data>
</data>
<data name="field">
<data name="Field_Name">KEY1</data>
<data name="Field_Type">C</data>
<data name="Field_Length">20</data>
<data name="Field_Decimal">0</data>
</data>
</data>
<data name="CountData">3000-0001</data>
<data name="Rows">
<data Name="Row">
<data name="CONTACT">Rafael Zimberoff</data>
<data name="COMPANY">Z-Firm LLC</data>
<data name="KEY1">Partner</data>
</data>
</data>
</data>
</GMAPI>

The Header node contains child nodes for each field included in the SQL query, describing the fields’ properties.
The CountData node’s text corresponds with the old fetch return packet’s header data:

The first digit can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another DS_Fetch call

3 indicates the end-of-file (EOF)

4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in the packet.

The Rows node contains a child node for each data record returned by the query.

Return Packet

The “fetch” command returns a single packet string containing the data from all requested records. The packet
includes a header record, followed by one record for each record evaluated by “fetch.” Within each record in the
packet, the fields are separated by a Field Delimiter, the carriage return character by default (13 or 0x0D). The
records in the packet are separated by the Record Delimiter, the line feed character by default (10 or 0x0A). These
delimiters are convenient when the requested data does not contain notes from blob fields. Otherwise, you must
override the default delimiters by passing other delimiter values to the “fetch” command. The characters 1 and 2
would probably make good delimiters for packets with notes.

An example of a packet of data:

3000-0004

Boston|23

Page 215 of 463

London|393

Los Angeles|633

New York|29

The packet header record consists of two sections. The first byte can be 0, 3 or 4. Zero indicates that more records
are available, which could be fetched with another “fetch” command. A value of 3 indicates the end-of-file (EOF),
and 4 indicates the beginning-of-file (BOF). The number following the dash indicates the total number of data
records contained in the packet.

Packets should be designed to be 8K to 32K. DataStream takes about as much time to read three records as it
does to read 30. For best performance, adjust the number to records requested by the “fetch” command to return
packets of 8K to 32K.

Performance

DataStream is the fastest way to read data from GoldMine tables. Used correctly, the GoldMine DataStream will
return the data faster than most development environments would directly. DataStream offers the following
advantages:

1. DataStream issues a single, efficient SQL query or Xbase seek to retrieve the records from the back-end
database to the local client. On SQL databases, requests of a few hundred records could be sent from the
server to the client with a single network transaction, thereby minimizing network traffic.

2. All fields and expressions are parsed initially by the “range” and “query” commands, then quickly evaluated
against each record in the “fetch” command. Other lower level GoldMine.UI methods (and development
environments) require that each field be parsed and evaluated each time the field’s data is read. This can
save a significant amount of time when reading hundreds or thousands of records.

3. Only three calls are required to read all the data. Using traditional record-by-record querying would require
one call for each field of each record (reading 10 fields from 50 records would require 500 calls).

The “range” and “query” commands execute equally fast on SQL databases. The “range” command executes much
faster on Xbase tables than the “query” command.

Processing a Web Import Instruction File

Syntax <GMAPI call=”ExecIniImp”>c:\theimport.ini</GMAPI>
OR
<GMAPI call=”ExecIniImp”>

<data name=”IniFile”>c:\theimport.ini</data>

</GMAPI>

An application can send GoldMine a command to process a Web import instruction file. To start processing an
instruction file, send the ExecIniImp command.

TIP: For details about setting up and working with the GoldMine Web Import Gateway, see
“Capturing Web Data” in Maintaining GoldMine.

Page 216 of 463

Reading an Xbase Expression Without Opening a File

Syntax <GMAPI call=”Expr”>Accountno</GMAPI>

OR
<GMAPI call=”Expr”>
<data name=”Expression”>Accountno</data>
</GMAPI>

The Expr function is similar to the Read function in that it attempts to evaluate an Xbase expression and return the
result. The Expr function, however, does not require you to open a specific data file using the Open function. The
expression passed to the Expr function is evaluated against the current operating state of GoldMine (usually, the
currently displayed record), rather than the state of a specific work area. For this reason, you should be aware
that differences between the return values could exist for the same expression passed to Read and Expr.

Parameters

The Expr function takes one parameter, Expression—the Xbase expression to be evaluated. GoldMine supports a
subset of the Xbase dialect, so there is substantial flexibility in the application of this function.

When referencing field names within an expression, you should always use an alias; otherwise, GoldMine assumes
CONTACT1 to be the default alias.

Return Value

The Expr function returns a character string containing the value of the specified expression. If an error occurs, or
the expression could not be evaluated, the Expr function will return a null string.

The following XML:

<GMAPI call="Expr">
<data name="Expression">&CityStateZip</data>
</GMAPI>

Returns:

<GMAPI call="Expr">
<status code="1">Colorado Springs, CO 80920</status>
</GMAPI>

Adding Merge Fields to a Form

Syntax <GMAPI call=”FormAddFields”>
<data name=”FormNo”>1</data>
<data name=”FieldList”>contact;company</data>
</GMAPI>

The FormAddFields function adds merge fields to a form profile.

Parameters

The FormAddFields function takes two parameters.

Page 217 of 463

FormNo: the number of the form.

FieldList: a string that lists fields, macros, and expressions; each item in the string is separated by a semicolon (;).
GoldMine parses the string, checks for duplication, assigns names to the fields, and then stores the items.

Deleting Fields from a Form

Syntax <GMAPI call=”FormClearFields”>
<data name=”FormNo”>1</data>
</GMAPI>

The FormClearFields function opens an existing form profile and deletes all associated fields.

Parameters

The FormClearFields function takes one parameter, FormNo—the number of the form.

Return Value

The FormClearFields function returns 1 if the profile is open, or 0 if an error occurs.

Closing a Form Profile

Syntax <GMAPI call=”FormCloseForm”/>

The FormCloseForm function closes an open form profile.

Parameters

The FormCloseForm function does not accept any parameters.

Creating an Xbase File with Registered Fields

Syntax <GMAPI call=”FormCreateFile”>
<data name=”FormNo”>1</data>
<data name=”File”>c:\XXXX.dbf</data>
<data name=”MergeCode”>Mergecode</data>
<data name=”WhichRec”>1</data>
</GMAPI>

The FormCreateFile function creates an Xbase (DBF) file with all registered fields. Any active filter or group that
applies to the contact record is taken into account. FormCreateFile can be used to export data via the COM Server.

Parameters

The FormCreateFile function takes four parameters.

FormNo: the number of the form.

File: the name of the .DBF file to be created.

MergeCode: the merge code. If any merge code value(s) are included in the function, only records with the
matching merge code(s) will be included. To include multiple merge codes, place a space between each individual
merge code. If the MergeCode parameter is empty, all records are included.

Page 218 of 463

WhichRec: indicates which records are to be exported. The WhichRec value is the sum of values for each available
listed below.

WhichRec Values

Value Description

1 Primary

2 Secondary

4 All records

8 Forward to last

16 Return control to the calling program immediately after export has started

Examples of WhichRec Parameter

Current contact 1

All primary contacts 5 (1+4)

Forward to last of primary and additional contacts 11 (1+2+8)

Return Value

The FORMCREATEFILE function returns the total number of records in the output .DBF file.

Returning a Field Name for an Expression

Syntax <GMAPI call=”FormGetFieldName”>
<data name=”FormNo”>1</data>
<data name=”Field”>contact</data>
</GMAPI>

The FormGetFieldName function returns the field name for an expression, a macro, or a field.

Parameters

The FormGetFieldName function takes two parameters.

FormNo: the number of the form.

Field: the name of the field, macro, or expression to be associated with the file name.

Returning a Value for Unattached Fields

Syntax <GMAPI call=”FormNewFormNo”/>

Page 219 of 463

Return Value

The FormNewFormNo function returns a new, unique FormNo value that can be used to register fields not
attached to a GoldMine form.

Counting the Number of Exported Records

Syntax <GMAPI call=”FormQueryCreate”>
<data name=”Flags”>0</data>
</GMAPI

The FormQueryCreate function provides status information during an export by returning the number of records
exported during the export process.

Parameters

The FormQueryCreate function takes one optional parameter, Flags.

The following table lists values of FormQueryCreate parameters.

FormQueryCreate Parameters

Value Description

0 Export in progress (default)

1 Start process

2 Abort process

Return Value

The FormQueryCreate function returns the number of records created while an export is in progress, or -1 when
the record export process is completed.

FormPrintedDoc

Syntax <GMAPI call=”FormPrintedDoc”>
<data name=”RecordID”> 9NDJRJN(EQ[)JW:</data>
</GMAPI

The FormPrintedDoc function is used to complete a pending literature fulfillment request. Call this function after
printing the merge form to remove the pending literature fulfillment and create a history record.

Parameters

RecordID: the RecID of the pending literature fulfillment request.

Page 220 of 463

Creating a History Record

Syntax <GMAPI call="InsHist">
<data name="AccNo">A3042474804 WB9!JCat</data>
<data name="Activity">SLS</data>
<data name="Duration">00:35:00</data>
<data name=”OpRecID”>ValidOpRecid</data>
<data name="RecType">C</data>
<data name="Ref">Informed Paul of sale terms</data>
<data name="ResultCode">DON</data>
<data name="Notes">Ready to proceed to next step</data>
<data name="User">KEVIN</data>
<data name="Private">1</data>

</GMAPI>

The InsHistory function is used to create a history record in GoldMine. The InsHistory function provides a higher
level interface for creating these records than using Open, Append, and Replace.

Parameters

AccNo: the account number of the contact record to which the new history record will be linked.

Rectype: the record type to create. The following values are available:

InsHistory Activity Valid Values

Value Record Type Value Record Type

A Appointment U Unknown

C Phone call CC Call back

D To-do CI Incoming call

E Event CM Returned message

L Form CO Outgoing call

M Sent message MG E-mail message

O Other MI Received e-mail

S Sale MO Sent e-mail

T Next action

Duration: the length of time spent on the activity. Format as HH:MM:SS. (optional)

OpRecid: the Recid of the opportunity or project record to link the history activity.
Omit if not linking to a project or opportunity (optional).

Ref: the history reference.

Page 221 of 463

Notes: the Notes for the history record (optional).

Activity: the Activity Code (optional).

ResultCode: the Result Code (optional).

User: the User (optional). If this parameter is not specified, the User field defaults to the currently logged user.

Private: flag to specify if the history activity should be marked private. Set to 1 for private, or 0 to public.

Return Value

The InsHistory function returns the record number (Xbase) or record ID (SQL) of the new history record if the
function was completed successfully. The function returns 0 if a new record could not be appended to the data
file.

Returned XML

<GMAPI call="InsHist">
<status code="1">1982</status>
</GMAPI>

Creating or Updating a Document Link

Syntax <GMAPI call="LinkDoc">
<data name="RecNo">0</data>
<data name="File">C:\Documents and Settings\Kevin\My

Documents\GMAPI\TLog_Mechanics.pdf</data>
<data name="Desc">Help File</data>
<data name="User">KEVIN</data>
<data name="Notes">Read this</data>

<data name="Sync">1</data>

</GMAPI>

The LinkDoc function is used to create or update a document link in GoldMine. Document links allow you to
launch directly into an application and load the application with a document by clicking on the desired document
listed in the contact’s Links tab. GoldMine maintains these links as records in the supplementary data file. The
LinkDoc function provides a higher level interface to these records than can be obtained by using Open, Append,
and Replace.

Parameters

RecNo: the record number of the link record to be updated. If a new link record is to be created, pass 0 as the first
parameter.

File: the fully qualified path and filename of the file to link. Keep in mind that a valid association must exist for the
file’s extension if GoldMine is to automatically launch the file’s application.

Desc: the document title.

User: the optional document owner. If this field is not passed, the document owner defaults to the name of the
currently logged GoldMine user.

Notes: optional notes for the linked document record in the Links tab.

Page 222 of 463

Sync: defines the remote synchronization status for the linked document from the values shown in the following
table.

Sync Valid Values

Value Action

-1
Uses the GoldMine default as defined by Allow new documents to sync by default in the Sync
tab of the Preferences window.

0 Does not synchronize the newly linked document.

1 Allows the newly linked document to synchronize.

Return Value

The LinkDoc function returns the new record number (Xbase) or record ID (SQL) if the function was completed
successfully. The function returns any empty string if a new record could not be appended to the data file, or an
existing record could not be locked for update.

Returned XML

<GMAPI call="LinkDoc">
<status code="1">482</status>
</GMAPI>

Displaying a Message Dialog Box

Syntax <GMAPI call=”MsgBox”>
<data name=”Message”>Are you sure?</data>
<data name=”Style”>4</data>
</GMAPI>

The MsgBox function displays a standard Windows message dialog box.

Parameters

The MsgBox function accepts two parameters.

MsgBox: the message to display within the dialog box.

Style: the optional style of the message box. This value is the sum of the following options:

MsgBox Style Values

Value Meaning

0 Display OK button only

1 Display OK and Cancel buttons

Page 223 of 463

2 Display Abort, Retry, and Ignore buttons

3 Display Yes, No, and Cancel buttons

4 Display Yes and No buttons

5 Display Retry and Cancel buttons

16 Display Stop icon

32 Display Question Mark icon

48 Display Exclamation Mark icon

64 Display Information icon

128 First button is default

256 Second button is default

512 Third button is default

Return Value

The MsgBox function returns the following values:

MsgBox Return Values

Return Description

1 OK button selected

2 Cancel button selected

3 Abort button selected

4 Retry button selected

5 Ignore button selected

6 Yes button selected

7 No button selected

Returned XML

<GMAPI call="MsgBox">
<status code="1">6</status>
</GMAPI>

Page 224 of 463

Adding a Merge Form

Syntax <GMAPI call=”NewForm”>

<data name=”AppType”>Microsoft.Word.10</data>

<data name=”Template”>c:\Program

Files\GoldMine\Templates\Proposal.doc</data>

<data name=”Title”>Business Proposal</data>

<data name=”Macro”>[MsgBox(“Form Added”,”0”)]</data>

<data name=”FormType”>0</data>

<data name=”Flags”>3</data>

</GMAPI>

The NewForm function adds a merge template record into the Merge Forms window in GoldMine. This function’s
DDE counterpart is used primarily by the document merge link installation macro; however, the function can also
be used to add additional merge templates from a user-written application.

Parameters

The NewForm function takes up to six parameters; the first three parameters are required, and the last three
parameters are optional.

AppType: the type of document to which the new form record will point. This value must be a valid Application
Identifier, such as Word.Document.6, that corresponds to an entry in the Registration Database.

Template: the fully qualified path and filename of the template file.

Title: the title of the document as it should appear in the Merge Forms browse window.

Macro: the name of an optional DDE function to be called after the template is loaded by the linked application. If
this parameter is not specified, the default function is MAINMENU. This parameter must be passed in DDE call
format.

FormType: the optional type of template. If this parameter is not specified, the template type is assumed to be
Document. GoldMine accepts the following values for this parameter:

Document Types

Type Description

0 Document

1 Spreadsheet

2 Other

Flags: a three-character field corresponding to the values of the Link To Doc, Save History and Allow Hot Link
options on the Form Setup dialog box. To set (check) one of these options, 1 is passed; to reset (uncheck), 0 is
passed.

Page 225 of 463

Flag Values

Position Description

0 Link To Doc check box

1 Save History check box

2 Allow Hot Link check box

Return Value

The NewForm function returns a form number.

Playing a Toolbar Macro

Syntax <GMAPI call=”PlayMacro”>
<data name=”Macro”>800</data>
<data name=”Wait”>0</data>
</GMAPI>

A macro groups together a series of commands, keystrokes, and/or mouse clicks into a one-step operation. You
can create a macro to automate a sequence of tasks that you perform frequently in GoldMine. This function plays
a macro previously created in GoldMine.

Parameters

The PlayMacro function takes two parameters that identify the macro and assign a wait state.

Macro: The first parameter identifies the macro. Either the number for the currently logged user or a valid macro
filename can be used to identify a macro.

Identifying a Macro by Number

Each user can create up to 100 macros from the GoldMine toolbar. Each macro can be assigned an optional
numeric identification from 800 to 899. For example, you can assign 800 to identify your first macro, 801 to
identify your second macro, and so on.

TIP: For details about creating a macro from the GoldMine toolbar, see “About Macros” in the
online Help.

Identifying a Macro by File Name

You can assign a file name to identify the macro, such as C:\GOLDMINE\MACROS\JOHN.801.

Wait: The second parameter assigns a wait state that determines GoldMine availability to process another macro
or task while the current macro executes. To set GoldMine to wait for the currently executing macro to finish
before starting another task, set the parameter to 1. For example, if you are setting up a sequence of macros to
run tutorial lessons, you want GoldMine to wait for each lesson to finish before executing the next macro that will
run the following lesson.

Page 226 of 463

To allow GoldMine to perform background processing, such as indexing, while the macro(s) execute, set the
parameter to 0.

Return Value

The PlayMacro function returns an integer value based on the wait parameter; that is, GoldMine availability to
process a task in addition to the currently running macro. If the wait parameter is 0 (GoldMine does not wait for
the macro to finish to process another task), the PlayMacro function will always return 1. If the wait parameter is
1 (GoldMine will wait for the current macro to finish before processing another macro or task), the PlayMacro
function will return either 0 or 1 under the following conditions:

PlayMacro Return Values

Return Description

0 Error occurred during macro playback

1 Macro played successfully

You can also play a macro from the command line (DOS prompt). Executing a macro from the command line can
be useful in running functions at night, such as indexing, running an Automated Process, or synchronizing with
remote sites with a transfer set created via macro. You can either identify a macro by an identification number,
like GMW4 /m:801, or by file name like GMW4 /m:c: \index.801. If necessary, the command line statement can
start GoldMine and then, once started, run the macro.

Optional switches include:

/m: Logs in automatically to GoldMine
/u:[username] Provides the username entry to log in to GoldMine
/p:[password] Provides the password entry to log in to GoldMine

If running the Plus! Pack with Windows, you can run a macro from the System Agent by placing a command line
switch for GoldMine in the Program field of the Schedule a New Program dialog box that will run a macro. For
example, to log in John with his username and password, then run John’s first macro, place the following macro in
the System Agent:

GMW5 /u:john /p:pswd /m:800

Where GMW5/ starts Goldmine, u:john/ is login user John, p:pswd/ enters the password password, andm:800
runs first macro.

Creating and Sending a Pager Message

Syntax <GMAPI call=”SendPage”>
<data name=”Message”>Your 3:00pm appointment is

cancelled</data>
<data name=”To”>PAULR</data>
<data name=”From”>Trish</data>

</GMAPI>

Page 227 of 463

The SendPage function allows you to create and send a message to the pager of a GoldMine user. The function
consists of the following components:

Message can consist of any text message that you create with this function to send to a pager; most pages can
accept messages of 70–100 characters.

From includes the sender’s name as an optional “signature.”

To identifies an optional GoldMine user who will receive the pager message. Information about the pager must be
entered in the Edit|Preferences|Pager tab, such as ID code or PIN number, telephone number of the pager, and
maximum message size in characters that the pager can accept.

Return Value

The SendPage function can return one of two values.

SendPage Return Values

Return Description

0 Error occurred during the attempt to send the message to the pager

1 Pager message was transmitted successfully

Displaying a Message in the GoldMine Status Bar

Syntax <GMAPI call=”StatusMsg”>
<data name=”Message”>Waiting for command</data>
<data name=”Delay”/>
</GMAPI>

The StatusMsg function displays a message in the GoldMine status bar.

Parameters

Message: the message to be displayed in the status bar.

Delay: an optional delay, after which time the message is removed from the status bar.

Returned XML

<GMAPI call="StatusMsg">
<status code="1">Success</status>
</GMAPI>

Converting TLog Timestamps

Syntax
<GMAPI call=”SyncStamp”>
<data name=”Stamp”>20040120:10:36:52</data>
</GMAPI>

The SyncStamp function converts a TLog timestamp to a date and time representation, and from a date and time
representation back to the TLog time stamp format.

Page 228 of 463

Parameter

The SyncStamp function takes one parameter, Stamp.

Return Value

When the Stamp parameter is exactly 17 characters long, formatted as Date:Time in form of
CCYYMMDD:HH:MM:SS, the return string is in TLog time stamp format, exactly seven characters long. When the
Stamp parameter is seven characters long, and formatted as a TLog timestamp, the return string is formatted as
CCYYMMDD:HH:MM:SS. An empty return string indicates an error.

Returned XML

<GMAPI call="SyncStamp">
<status code="1">A6P9FC8</status>
</GMAPI>

Updating the Sync Log File
Syntax

XML <GMAPI call="UpdateSyncLog" >
<data name="Table">Contact1</data>
<data name="RecID">9NDJRJN(EQ[)JW:</data>
<data name="Field">Key3</data>
<data name="Action">U</data>
</GMAPI>

Parameters

Table specifies the table name (such as “Contact1”) or the table ID.

RecID specifies the RecID of the updated record: the correct RecID must be passed, and the RecID value must be
exactly 15 characters long.

Field specifies the name of the field that has changed. This parameter is only relevant when the Action parameter
is U. Field is ignored when Action is N or D.

Action should be N when a new record has been appended, D when a record has been deleted, or U when a field
in a record has been updated.

Return Value

The UpdateSyncLog function returns the following XML:

<GMAPI call="UpdateSyncLog">
<status code="4">Field TLog entry created.</status>
</GMAPI>

UpdateSyncLog Code Attribute Values

1. Return 2. Description

Page 229 of 463

0 Error

1 New TLog entry created

2 New TLog entry updated

4 Field TLog entry created

8 Field TLog entry updated

16 Deleted record TLog entry created

32 New TLog Entry removed

Importing a Prepared TLog Import File
ReadImpTLog reads the status of a TLog import file, then deletes the import file when the process is completed.

Syntax

XML <GMAPI call="ReadImpTLog" >
<data name="File">c:\tlogs\mytlog.dbf</data>
<data name="Delete">1</data>
</GMAPI>

Parameters

File specifies the import file name—see below for the import file structure.

Delete specifies to delete the import file when the process has completed.

Return Value

ReadImpTLog function returns the following values in the code attribute:

ReadImpTLog Code Attribute Values

Code Description

0 Failure

1 Success -- Text is total number of imported TLog records

Notes

Your application can determine when the imported process completes by setting the Delete parameter to 1, and
noting when the import file is deleted. The TLog import must have the structure shown in the following table.

TLog Import Structure

Field Name Type Length

Page 230 of 463

Table ID char 10

RecID char 15

Field ID char 10

Action ID char 1

Forcing Logout

Syntax

XML <GMAPI call="ForceLogout" >
<data name="LogoutSelf">1</data>
<data name="Relogin">1</data>
<data name=”InMinutes”>1</data>
</GMAPI>

The ForceLogout command forces all users to logout of GoldMine.

Parameters

LogoutSelf: specifies if the currently logged in user should also be logged out. 1 for rue, 0 for false.

Relogin: Set to 1 to indicate for GoldMine to relogin after the users are logged out.

InMinutes: Specifies the number of minutes to wait before forcing the logout.

Reading Security and Rights
Retrieving User Permissions

The UserAccess function retrieves specific permission information for the logged-in user.

Syntax

XML <GMAPI call="UserAccess"/>

This command returns a data element for each of the following permissions for the logged in user. The text value
of the data element will be either 0 or 1, indicating if the permission is granted for the user.

Permissions Returned by UserAccess

Rights

o Master Rights

o Other User Calendar Access

o Other User History Access

o Other User Sales Access

Page 231 of 463

o Other User Report Access

o Other User Merge Form Acccess

o Other User Filter Access

o Other User Groups Access

o Other User Links Access

o Create Records

o Edit Records

o Delete Records

o Change Owner

o Field Views

o Schedule APs

o SQL Queries

o NetUpdate

o Build Groups

Returned XML

<GMAPI call="UserAccess">
<status code="1">Success.</status>
<data name="return">
<data name="Master Rights">1</data>
<data name="Other User Calendar Access">1</data>
<data name="Other User History Access">1</data>
<data name="Other User Sales Access">1</data>
<data name="Other User Report Access">1</data>
<data name="Other User Merge Form Access">1</data>
<data name="Other User Filter Access">1</data>
<data name="Other User Groups Access">1</data>
<data name="Other User Links Access">1</data>
<data name="Create Records">1</data>
<data name="Edit Records">1</data>
<data name="Delete Records">1</data>
<data name="Change Owner">1</data>
<data name="Field Views">1</data>
<data name="Schedule APs">1</data>
<data name="SQL Queries">1</data>
<data name="NetUpdate">1</data>
<data name="Build Groups">1</data>
</data>
</GMAPI>

Page 232 of 463

Retrieving Calendar Permissions

Using CalAccess, you can query whether the user logged in to GoldMine has permissions to read/write a particular
CAL record.

Syntax

XML <GMAPI call=”CalAccess”>
<data name=”RecordType”>C</data>
<data name=”User”>KEVIN</data>
<data name=”Number1”>22</data>
</GMAPI>

Parameters

Pass this command the record type and number1 value from the calendar record in question. Also pass the user
you wish to query if they have permission to this record or not.

RecordType is the RecType of the record.

User is the UserID of the record.

Number1 is the Number1 value of the record.

Return Value

The CalAccess function returns 1 if the user has rights to read/write.

Retrieving History Access

Using HistAccess, you can query if the user logged has rights to read/write a CONTHIST record.

Syntax

XML <GMAPI call=”HistAccess”>
<data name=”RecordType”>C</data>
<data name=”User”>KEVIN</data>
</GMAPI>

Parameters

Pass this command the record type value from the calendar record in question. Also pass the user you wish to
query if they have permission to this record or not.

RecordType is the RecType of the record.

User is the UserID of the record.

Return Value

The HistAccess function returns 1 if the user has rights to read/write.

Page 233 of 463

Macros
To facilitate the use of DDEAUTO fields, GoldMine allows you to select a macro as the service item. Upon
encountering a DDE service item that starts with an ampersand (&), GoldMine searches an internal table of macro
names. If a match is found, the macro is processed and the result is returned, as if a DDE function or expression
had been used. The GoldMine COM Server recognizes these same macros for use in such methods as Expr and
Macro.

Most macros are sensitive to the setting of the RECORDOBJ function’s SETRECORD subfunction. This function is
used primarily to gain access to additional contacts and other supplementary information. When the SETRECORD
type is set to PRIMARY, the following macros will return the value from the corresponding fields in the primary
information portion of the contact record. When the SETRECORD type is set to CONTACTS (additional contacts), or
another supplementary record type, the macros will return the value from the corresponding field in the
supplementary file (CONTSUPP.DBF).

Executing Macros
To evaluate any of the macros described in this section, use the Macro command for the GoldMine COM Server.

Syntax <GMAPI call=”Macro”>
<data name=”Macro”>&FullAddress</data>
</GMAPI>

Returned XML

The XML returned will of course vary based on the Macro requested.

For the example in the Syntax table above, the XML returned is:

<GMAPI call="Macro">
<status code="1">1150 Kelly Johnson Blvd. Colorado Springs, CO 80920

</status>
</GMAPI>

Available Data-Related Macros

&Address Returns a string containing the values of both &Address1 and &Address2,
separated by a carriage return and line feed character. If either &Address1 or
&Address2 does not contain any data, a single line of data is returned, without the
carriage return and line feed character.
This macro can be used to perform rudimentary blank line suppression within
linked applications that do not support blank address line suppression internally.
The action of this macro string is similar to the action of the &Addressmacro. The
&Address2macro can be used to return an additional contact address by using the
RECORDOBJ SETRECORD subfunction.

Page 234 of 463

&Address1 Returns the first Address field from the active contact record. Typically, this value
will be extracted from the Address1 field in the primary display portion of the
contact record; however, when the RECORDOBJ SETRECORD subfunction has been
used to change the returned record type to CONTACTS, then GoldMine returns the
value from the Address1 field on the additional contact record, if a value is
entered. When the Address1 field on the additional contact record is blank, then
the &Address1macro returns the value in the Address1 field in the primary display
portion of the contact record. When the RECORDOBJ SETRECORD type is set to
return a record type other than CONTACTS, the &Address1macro returns the value
in Address1 field in the primary display portion of the contact record.

&Address2

Returns the second Address field from the active contact record. Typically, this
value will be extracted from the Address2 field in the primary display portion of the
contact record; however, when the RECORDOBJ SETRECORD subfunction has been
used to change the returned record type to ADDITIONAL, then GoldMine returns
the value from the Address2 field on the additional contact record, if an entry
exists in the Address2 field on the additional contact record. When the Address2
field on the additional contact record is blank, then the &Address2macro returns
the value in the Address2 field in the primary display portion of the contact record.
When the RECORDOBJ SETRECORD type is set to return a record type other than
PRIMARY or ADDITIONAL, the &Address2 macro returns the value in the Address2
field of the primary display portion of the contact record.

&BrowseRecNo Xbase: Returns the record number of the last selected record in a browse window.
SQL: Returns the record ID of the last selected record in a browse window.

&CalRefresh Refreshes the graphical calendar display.

&City Returns the City field from the active contact record. The action of this macro
string is similar to the action of &Address1. The &Citymacro can be used to return
an additional contact city by using the RECORDOBJ SETRECORD subfunction.

&CityStateZip

Returns a format string of text containing the City, State, and Zip fields from the
active contact record. This string is returned in the following format:
City, State Zip
The action of this macro string is similar to the action of &Address1. The
&CityStateZipmacro can be used to return an additional contact city, state, and ZIP
Code by using the RECORDOBJ SETRECORD subfunction.

&CommonDir
Xbase: Returns the path information for the directory where the contact sets are
located.
SQL: Returns the BDE alias where the contact sets are located.

Page 235 of 463

&Contact Returns a Contact name from the active contact record. Normally, this value will be
extracted from the Contact field in the primary display portion of the contact
record; however, the RECORDOBJ SETRECORD subfunction can be used to change
the returned record type to additional contact, or another type of supplementary
record. When the RECORDOBJ SETRECORD type is set to return record types other
than PRIMARY, the &Contact macro returns the value in Contact field in CONTSUPP
for the current supplementary record.

&Country Returns the Country field from the active contact record. The action of this macro
string is similar to the action of &Address1. The &Country macro can be used to
return an additional contact country by using the RECORDOBJ SETRECORD
subfunction.

&Dial1

Returns the Phone1 entry from the active contact record. The returned phone
number is formatted for dialing. GoldMine applies the same rules used to dial the
phone via TAPI. If selected, PREDIAL.INI settings are applied to phone number
selection.

&Dial2
Returns the Phone2 entry from the active contact record. For details, see &Dial1
above.

&Dial3 Returns the Phone3 entry from the active contact record. For details, see &Dial1
above.

&DialFax Returns the FAX entry from the active contact record. For details, see &Dial1
above.

&EmailAddress Returns the primary e-mail address for the currently selected contact.

&Fax
Returns the fax number as it should be sent to an auto-dialer for automatic fax
transmission.

&Filter Returns the activated filter expression.

&FirstName Returns the first name of the current contact.

&FullAddress

Returns a string containing the complete address for the contact record, composed
of values of &Address1, &Address2, &City, &State, and &ZIP.
The action of this macro string is similar to the action of &Address1. The
&FullAddress macro can be used to return an additional contact address by using
the RECORDOBJ SETRECORD subfunction.

Page 236 of 463

&GetRoTabID

Returns the ID of the currently selected tab. Typically, this value will verify that the
correct tab is selected when a user starts a custom application.

The following values are valid:

0 = Summary
1 = Fields
2 = GM+View
3 = Notes
4 = Contacts
5 = Details
6 = Referral
7 = Pending
8 = History
9 = Links
10 = Members
11 = APs/Tracks
12 = Opportunities
13 = Projects
14 = Relationships/Org tree
15 = Cases
16 = HEAT View if installed, else it will go to the first tab
17+ = custom if installed, otherwise the first tab

The following example tests the selection of the Details tab:

<GMAPI call="Macro">&GetROTabID</GMAPI>

Returns:

<GMAPI call="Macro"><status

code="1">1</status></GMAPI>

&GetRoTabPos Returns the currently selected tab position. Since the tabs can be rearranged, this
method is not always reliable for determining the currently selected tab. For
details, see &GetRoTabID.

&GoldDir Xbase: Returns path information for the directory in which GoldMine is installed.
SQL: Returns path information for BDE alias in which GoldMine is installed.

&LastFirstName Returns the name of the current contact in the format:
last name, first name

&LicUsers
Returns the number of concurrent users allowed to log in to the installed copy of
GoldMine.

Page 237 of 463

&LicUsersAvailable Returns the number of users allowed to log in to the installed copy of GoldMine
license.

&NameAddress Returns a string containing the contact’s name, company, and complete address of
the current contact record. Each address line is separated by a carriage return and
line feed, and the entire string is formatted so that the string can be inserted
directly into a merge template. If any of the address lines on the contact record is
empty, that address line will be suppressed. This macro can be used to perform
rudimentary blank line suppression within linked applications that do not support
blank address line suppression internally.
The action of this macro string is similar to the action of the &ADDRESS macros,
and the &NAMEADDRESS macro can be used to return an additional contact
address by using the RECORDOBJ SETRECORD subfunction.

&NameTitleAddress

Returns a string containing the contact’s name, title, department, company, and
complete address of the current contact record. Each line is separated by a
carriage return and line feed, and the entire string is formatted so that the string
can be inserted directly into a merge template. If any of the lines on the contact
record is empty, that line will be suppressed. This macro can be used to perform
rudimentary blank line suppression within linked applications that do not support
blank address line suppression internally.
The action of this macro string is similar to the action of the &ADDRESS macros,
and the &NAMETITLEADDRESS macro can be used to return an additional contact
address by using the RECORDOBJ SETRECORD subfunction.

&NewRecID Returns a unique record ID, which can be used when creating new records.

&Notes Returns the Notes from the active contact record. Typically, this value will be
extracted from the Notes field in the primary display portion of the contact record;
however, the RECORDOBJ SETRECORD subfunction can be used to change the
returned record type to additional contact, or another type of supplementary
record. When the RECORDOBJ SETRECORD type is set to other than PRIMARY, the
&TITLE macro returns the value in Notes field in CONTSUPP for the current
supplementary record.

&Phone Returns a telephone number from the selected contact record.
The action of this macro string is similar to the action of the &ADDRESS1. The
&PHONE macro can be used to return an additional contact telephone number by
using the RECORDOBJ SETRECORD subfunction.

Page 238 of 463

&Profile(s)

Two related macros:
o &Profile: Returns the first matching profile record for the selected contact.
o &Profiles: Returns all profile records for the selected contact.
Both of these macros take optional parameters. Each parameter must be
separated by a period (.). The following examples show the syntax for the &Profile
and &Profilesmacros:
&Profile Example 1

&Profile.ProfileName.Reference.Flags

Retrieves the first profile that matches the ProfileName and Reference.
The Reference parameter is optional. If passed, the Reference parameter acts
as a “begin with” condition on the profile reference. If the Reference
parameter is not passed, all ProfileName profiles are evaluated.
The optional Flags parameter has the following values:
2 Returns the extended profile fields
4 Returns the ProfileName and Reference
The &Profile(s) macro can easily fill in a Word table with the selected contact’s
profile information because tabs separate each field value, and a CR/LF
separates each profile record.

&Profile Example 2

The following example returns the first e-mail address of the contact:
&Profile.E-mail Address

&Profiles Example 1

The following example returns all the computer profiles that begin with the
word notebook:

&Profiles.Computer.Notebook

&Profiles Example 2

The following examples use the Flags parameter to specify the profile fields to
return:

&Profiles.Computer.Notebook
Notebook ThinkPad 770|
Notebook Compaq Elite|
Notebook Dell 1200|
&Profiles.Computer.Notebook.2
Computer|Notebook ThinkPad 770|
Computer|Notebook Compaq Elite|
Computer|Notebook Dell 1200||
&Profiles.Computer.Notebook.4
Computer|Notebook ThinkPad 770|IBM|233Mz|
Computer|Notebook Compaq Elite|Compaq|200mz|
Computer|Notebook Dell 1200|Dell|166mz|

Page 239 of 463

&ProgramDataDir

Returns the place where the GM.ini, user.ini, and anything that needs to have
read/write access in GoldMine can be found. It is very similar to the split path
installs that GoldMine had when Windows XP was released. For non-split paths, it
will return the SysDir.

Example:

<GMAPI call="Macro">Programdatadir</GMAPI>

Returns :

<GMAPI call="Macro"><status

code="1">c:\code\GMDev8.0_

Main\bin\debug\</status></GMAPI>

&RoTabPage Returns the currently selected tab. Typically, this value will verify that the correct
tab is selected when a user starts a custom application. Values between 1 and 9
represent tabs in the first row of tabs; for example, 1 represents the Summary tab.
Values between 10 and 18 represent tabs in the second row, and 19–27 represent
tabs in the third row.

&SerialNo Returns the serial number of the installed GoldMine program.

Page 240 of 463

&SetRoTab#

Selects the tab that corresponds to the number (represented by #) in the active
contact record.

The following values are valid:

1 = Summary
2 = Fields
3 = GM+View
4 = Notes
5 = Contacts
6 = Details
7 = Referral
8 = Pending
9 = History
10 = Links
11 = Members
12 = APs/Tracks
13 = Opportunities
14 = Projects
15 = Relationships/Org tree
16 = Cases
17 = HEAT View if installed, else it will go to the first tab
18+ = custom if installed, otherwise the first tab

Example:

<GMAPI call="Macro">&SetROTab4</GMAPI>

Displays the Notes tab in the contact record.

&ShutDown Logs out the currently logged user, and quits GoldMine.

&State Returns the State field from the active contact record. The action of this macro
string is similar to the action of the &ADDRESS1. The &STATE macro can be used to
return an additional contact state by using the RECORDOBJ SETRECORD
subfunction.

&SysDir Returns the GoldMine system directory.

&SysInfo Displays system information as returned by Help > About GoldMine > System Info.

&Title

Returns the Title from the active contact record. Normally, this value will be
extracted from the Title field in the primary display portion of the contact record;
however, the RECORDOBJ SETRECORD subfunction can be used to change the
returned record type to additional contact, or another type of supplementary
record. When the RECORDOBJ SETRECORD type is set to other than PRIMARY, the
&TITLE macro returns the value in Title field in CONTSUPP for the current
supplementary record.

Page 241 of 463

&User_Var Returns the defined field value from all users, a specified user, or the currently
logged user. For details on defining values, see “Defining Field Values for use with
External Applications” in Maintaining GoldMine.
The &User_Var macro allows GoldMine users to store specific data that can be
retrieved later into applications that are linked with GoldMine. This macro can be
defined in the [user_var] section of both the GM.INI and the username.INI of
GoldMine.
Usage Syntax:

&User_Var.<variable name>.<GoldMine username>

Example:
&User_Var.Territory.Dan

(Where <variable name> is a descriptive name of the macro and
<GoldMine username> assigns a defined value to a specific GoldMine user.)
<GoldMine username> is optional, as GoldMine will assign these values to the
current GoldMine user.

&UserFullName Returns the full name of the currently logged GoldMine user as the name appears
in the FullName field in the Users Master File for the user.

&UserName Returns the login name of the currently logged GoldMine user.

&Version Returns the version number of the installed GoldMine program.

&WebSite Returns http://<Web site> for the active contact.

&ZIP Returns the Zip field from the currently active contact record. The action of this
macro string is similar to the action of the &ADDRESS1. The &ZIP macro can be
used to return an additional contact ZIP Code by using the RECORDOBJ SETRECORD
subfunction.

Macros for Merge Forms
The following macros are used primarily for creating links to GoldMine through the Merge Forms function. The
values returned by each of these macros are updated by GoldMine when a Merge Form is launched by selecting
Edit, Link, Print or Fax from the Merge Forms dialog box.

&PARAM1
(filename)

Returns the path and filename of the document template associated with the merge form
selected when Edit, Link, Print, or Fax was selected. This value is obtained from the Template
File field in the merge form’s Form Setting dialog box.

&PARAM2
(action)

Returns a value indicating whether the Edit, Link, Print, or Fax button was selected to launch
linked application.

&PARAM2 Parameters

Value Description

1 Edit selected

Page 242 of 463

2 Link selected

3 Print selected

4 Fax selected

&PARAM3
(range)

Returns a value corresponding to the setting of the Record Range options on theMerge
Forms dialog box when the Edit, Link, Print, or Fax button was selected.

&PARAM3 Parameters

Value Description

1 This contact selected

2 All contacts selected

3 Forward to last selected

&PARAM4
(scope)

Returns a value corresponding to the setting of the Primary and Additional check boxes on
theMerge Forms dialog box when the Edit, Link, Print, or Fax button was selected.

&PARAM4 Parameters

Value Description

1 Primary checked

2 Additional checked

3 Both Primary and Additional checked

&PARAM5
(flags)

Returns a value corresponding to the status of the Link to Doc, Save History, and/or Allow
Hot Link check boxes on theMerge Forms dialog box. In addition, the returned value
determines whether the form was merged as the result of an Automated Processes action.
Returns a seven-character string. Each position of the string can contain either 0, indicating
the item was not checked (or Automated Processes is not active), or 1, indicating the item
was checked (or Automated Processes is active).

Page 243 of 463

&PARAM5 Parameters

Position Description

1 Link to Doc

2 Save History

3 Allow Hot Link

4 Unused

5 Unused

6 Unused

7 Automated Processes status

&PARAM6
(LinkDoc record
number)

Returns a value containing the record number of the last Linked Document supplementary
record created as a result of launching a Merge Form. When you launch a merge form with
Link to Doc selected, GoldMine creates a linked document record to hold the saved
document. This value can be saved and used to update the linked document record by
passing the record number to the LinkDoc function.

&PARAM7
(contact record
pointer)

Returns a pointer to a minimized contact record that is created when Print or Fax is selected
on theMerge Forms dialog box, and the Record Range is All Contacts or Forward to Last.
This value can then be passed to the RecordObj function to further control a document
merge from the linked application.

&PARAM8
(merge code
value)

Returns the merge code entered in theMerge code field of theMerge Forms dialog box.

&PARAM9
(history record)

Returns the RecNo or RecID of the history record created by GoldMine. This macro is useful
for updating the history record.

Macros for the GoldMine License
The following macros return data for the current GoldMine license. The descriptions for each macro include the
corresponding field name from the form that appears in the Registration tab of the GoldMine Net-Update
window. For details on the Net-Update process, see “Using Net-Update” in the online Help.

&LicInfoLicTo Returns the Organization entry from the registration form.

&LicInfo_Contact Returns the Contact Name entry from the registration form.

&LicInfo_LicEmail Returns the E-mail address entry from the registration form.

Page 244 of 463

&LicInfo_Phone Returns the telephone number entry from the first Phone/Fax field.

&LicInfo_Fax Returns the fax number entry from the second Phone/Fax field.

&LicInfo_Address1 Returns the Address1 entry from the registration form.

&LicInfo_Address2 Returns the Address2 entry from the registration form.

&LicInfo_City Returns the city entry from the first City/State field.

&LicInfo_State Returns the state or province entry from the second City/State field.

&LicInfo_Zip Returns the ZIP Code entry from the first Zip/Country field.

&LicInfo_Country Returns the country entry from the second Zip/Country field.

Controlling the GoldMine User Interface
There are a number of commands that allow the programmatic control of the GoldMine user interface. For
example, menu commands can be executed; controls can be populated, enabled, or disabled; and windows can be
allowed to launch or vetoed.

There are three general groups of commands to accomplish these tasks. The first group of commands provides
information as to the windows and dialogs available to be controlled and the methods to subscribe to events
concerning those windows. The second group of commands manipulates the controls on GoldMine’s windows and
dialog boxes. The final group is event methods that are implemented in the intregration to handle events that are
raised based on the events subscribed to.

NOTE: The events in the GoldMine.UI class require a command to be called to subscribe to the desired
event. The events in the GoldMine.RecObj class and the GoldMine.GMSystemEvents class do not require
subscription.

Getting Window Information
The GetAvailableWindowsList and GetActiveWindowsList commands return information about the available and
active windows in GoldMine. This information is needed to supply data to the event subscription commands and
control manipulation commands.

GetAvailableWindowsList

GetAvailableWindowsList returns all of the available GoldMine windows in XML format.

Syntax

XML <GMAPI call="GetAvailableWindowsList"/>

Page 245 of 463

Returned XML

The XML returned is a long list of available windows for GoldMine. It has the following format. This represents a
truncated list of available windows. The actual list is too extensive to list in this document. All window names are
descriptive and self-explanatory as to which window they represent. Send the GetAvailableWindowList command
for a complete list of windows.

<GMAPI call="GetAvailableWindowsList">
<status code="1">Success</status>
<data name="WindowsList">
<data name="window">DIALOGFILEDFOLDERPROPERTIES</data>
<data name="window">DIALOGMAILSEARCH</data>
<data name="window">DIALOGEMAILACCNTPROPS</data>
<data name="window">DIALOGEMAILAUTOFILEMONTH</data>
<data name="window">DIALOGDIGITALIDEXPORTPRIVATE</data>
<data name="window">DIALOGSOFTPHONE</data>
<data name="window">DIALOGSIP_SP_SETTINGS</data>
</data>
</GMAPI>

GetActiveWindowsList

The GetActiveWindowsList supplies detailed information regarding the windows and dialog boxes currently active
in GoldMine.

Syntax

XML <GMAPI call="GetActiveWindowsList"/>

Returned XML

Below is an example XML document describing one active window, the current contact screen. For an accurate
representation of the window you wish to control, call GetActiveWindowsList with that window active. Doing so
will provide a reference for programming your integration.

All window elements are stored in the WindowsList element. Each Window has child elements providing detailed
information about the window. Some child elements store additional child elements when further nesting is
required to provide all properties of the windows and the controls they contain. Commands that manipulate the
controls on a window expect the handle the parent window (hwnd) and the control’s id, along with the properties
of the control that are being changed. Retrieve the hwnd and the control id from the GetActiveWindowsList
command.

<GMAPI call="GetActiveWindowsList">
<status code="1">Success</status>
<data name="WindowsList">
<data name="window">
<data name="hWnd">197868</data>
<data name="WindowName">OBJECTCURRENTGMRECORD</data>
<data name="WindowInternalName">OBJECT: GMRECORD</data>
<data name="Caption">GoldMine, Inc.</data>
<data name="WinType">Window</data>
<data name="WindowRect">

Page 246 of 463

<data name="Left">140</data>
<data name="Right">722</data>
<data name="Bottom">484</data>
<data name="Top">81</data>
</data>
<data name="ClientRect">
<data name="Left">144</data>
<data name="Right">718</data>
<data name="Bottom">480</data>
<data name="Top">111</data>
</data>
<data name="Controls">
<data name="msctls_updown32">
<data name="Enabled">1</data>
<data name="Visible">1</data>
<data name="ParentID">197868</data>
<data name="hWnd">1770672</data>
<data name="ID">700</data>
</data>
<data name="msctls_updown32">
<data name="Enabled">1</data>
<data name="Visible">1</data>
<data name="ParentID">197868</data>
<data name="hWnd">66798</data>
<data name="ID">704</data>
</data>
<data name="gmWndBrowse">
<data name="Enabled">1</data>
<data name="Visible">1</data>
<data name="ParentID">197868</data>
<data name="hWnd">66812</data>
<data name="ID">1003</data>
<data name="Text">History of GoldMine, Inc.</data>
<data name="Controls">
<data name="ScrollBar">
<data name="Enabled">1</data>
<data name="Visible">1</data>
<data name="ParentID">66812</data>
<data name="hWnd">66814</data>
<data name="ID">100</data>
</data>
</data>
</data>
</data>
</data>
</GMAPI>

Registering for Events
Before you can receive events from the GoldMine.UI class, you need to

subscribe to the specific events you wish to receive for the desired

Page 247 of 463

windows.

NOTE: When using Visual Basic 6.0, be sure to declare your GoldMine objects using the WithEvents
qualifier.

NOTE: Dim WithEvents GMObj as GoldMine.UI

RegisterVetoWindowLaunch

RegisterVetoWindowLaunch subscribes to an event for the specified window giving the integration the
opportunity to either veto or allow the window launch.

Syntax

XML <GMAPI call="RegisterVetoWindowLaunch" >
<data name=”Window”> DIALOGSCHEDULEDEFAULT</data>
<data name=”Monitor”>1</data>
</GMAPI>

Parameters

Window: the name of the window to monitor. The GetAvailableWindowsList command provides valid window
names.

NOTE: Only dialog boxes can be vetoed. For example, the schedule and complete windows are dialog
boxes. Core GoldMine windows cannot be vetoed (the record object, the email center, etc)

Monitor: specifies to either begin monitoring for the event (1) or to unsubscribe from the event (0).

Returned XML

The following XML is returned:

<GMAPI call="RegisterVetoWindowLaunch">
<status code="1">Success</status>
</GMAPI>

For information on handling the event, see .

RegisterWindowUpDown

RegisterWindowUpDown subscribes to an event for the specified window notifying the integration when the
desired window is launching or closing.

Syntax

XML <GMAPI call="RegisterWindowUpDown" >
<data name=”Window”> DIALOGSCHEDULEDEFAULT</data>
<data name=”Monitor”>1</data>
</GMAPI>

Page 248 of 463

Parameters

Window: the name of the window to monitor. The GetAvailableWindowsList command provides valid window
names.

Monitor: specifies to either begin monitoring for the event (1) or to unsubscribe from the event (0).

REturned XML

The following XML is returned:

<GMAPI call="RegisterWindowUpDown">
<status code="1">Success</status>
</GMAPI>

For information on handling the event, see .

RegisterCommandExec

RegisterCommandExec is used to subscribe to events raised when a particular control is manipulated on the
specified window. For example, your application can receive notification when the user combo (dropdown) box is
changed on the Schedule a Call dialog.

Syntax

XML <GMAPI call="RegisterCommandExec">
<data name="Window">DialogScheduleDefault</data>
<data name="ControlID">1</data>
<data name="CommandID">0</data>
<data name="Monitor">1</data>
</GMAPI>

Parameters

Window: The name of the window to monitor. The GetAvailableWindowsList command provides valid window
names.

ControlID: The ID of the control to monitor. This ID is provided in the child elements for the specified window
provided by the GetAvailableWindowsList.

CommandID: The type of event to monitor (i.e. button clicked). The possible values for the CommandID are
enumerated within the GoldMine object. Provided notification command ID’s include ButtonStates,
ComboBoxStates, EditControlNotifications, and ListBoxNotifications.

NOTE: The CommandID enumerations can be viewed in the Object Browser in Visual Basic 6.0

Monitor: Specifies to either begin monitoring for the event (1) or to unsubscribe from the event (0).

Returned XML

The following XML is returned:

<GMAPI call="RegisterCommandExec">
<status code="1">Success</status>
</GMAPI>

Page 249 of 463

For information on handling the event, see .

RegisterTabDetailsEvent

RegisterTabDetailsEvents is used to subscribe to events raised when a particular Record Object Tab is
manipulated. For example, your application can receive notification when the user clicks on an item in a tab, but
without the item being zoomed or opened.

Syntax

XML <GMAPI call="RegisterTabDetailsEvents">
<data name="Monitor">1</data>
</GMAPI>

Parameters

Monitor: Specifies to either begin monitoring for the event (1) or to unsubscribe from the event (0).

The following tab events are monitored:

Event Data Passed

AdditionalContactClick RecID,AccountNo,Reference,Phone,Contact

AdditionalContactEditClick (7.5 or higher) RecID,AccountNo,Reference,Phone,Contact

AdditionalContactNewClick (7.5 or higher) AccountNo (of the contact it will be attached to)

DetailsClick RecID,AccountNo,Type,Reference

DetailsEditClick (7.5 or higher) RecID,AccountNo,Type,Reference

DetailsNewClick (7.5 or higher) AccountNo

ReferralClick RecID,LinkedRecID,LinkedAccountNo,Referral,Reference

ReferralAddClick RecID (the recid of the referrer,not the referree)

ReferralEditClick (7.5 or higher) RecID,LinkedRecID,LinkedAccountNo,Referral,Reference

LinkedDocClick RecID,FileName,Sync,UserName

LinkedDocAddClick Returns Account No of current contact

LinkedDocEditClick (7.5 or higher) RecID,FileName,Sync,UserName

PendingEditClick (7.5 or higher) RecID,AccountNo,RecType,UserName

PendingClick RecID,AccountNo,RecType,UserName

ScheduleNew (7.5 or higher) AccountNo,RecType,UserName

HistoryEditClick (7.5 or higher) RecID,AccountNo,RecType,UserName

Page 250 of 463

HistoryClick RecID,AccountNo,RecType,UserName

The following Case tab events are also monitored. Each event returns the RecID of the selected case:

Event (All are 8.0 or higher only) User Action Returns

CaseReassign Reassign the case RecID

CaseEscalate Escalate the case RecID

CaseResolve Resolve the case RecID

CaseAbandon Abandon the case RecID

CaseGoto Open the case RecID

CaseSaveAsTemplate Save the case as a template RecID

CaseDelete Delete the case RecID

AdditionalContactClick

AdditionalContactClick

Returned XML

The following XML is returned for AdditionalContactClick:

<GMAPI event="AdditionalContactClick">
<RecID>99UZA3O%R*O%H?$</RecID>
<AccountNo>A1121345737(>C9^HBob</AccountNo>
<Reference/>
<Phone/>
<Contact>Frances</Contact>
</GMAPI>

Parameters

RecID: The record ID for the additional contact.

AccountNo: The account number of the parent contact.

Reference: The reference field value.

Phone: The phone field value.

DetailsClick

Returned XML

The following XML is returned for DetailsClick:

<GMAPI event="DetailsClick">
<RecID>99UZC5R(*2!2H?$</RecID>

Page 251 of 463

<AccountNo>A1121345737(>C9^HBob</AccountNo>
<Type>E-mail Address</Type>
<Reference>some.email@domain.com</Reference>
</GMAPI>

Parameters

RecID: The record ID for the detail.

AccountNo: The account number of the contact.

Type: The type of the detail.

Reference: The reference field value.

PendingClick

Returned XML

The following XML is returned for PendingClick:

<GMAPI event="PendingClick">
<RecID>BA5OXQT%ZO9K]WV</RecID>
<AccountNo>A1121345737(>C9^HBob</AccountNo>
<RecType>C</RecType>
<UserName>GUY</UserName>
</GMAPI>

Parameters

RecID: The record ID for the pending item.

AccountNo: The account number of the contact.

RecType: The record type of the pending item.

UserName: The owner name.

HistoryClick

Returned XML

The following XML is returned for HistoryClick:

<GMAPI event="HistoryClick">
<RecID>BA4U3BK%BK!J]WV</RecID>
<AccountNo>A1121345737(>C9^HBob</AccountNo>
<RecType>L</RecType>
<UserName>GUY</UserName>
</GMAPI>

Parameters

RecID: The record ID for the history item.

AccountNo: The account number of the contact.

Page 252 of 463

RecType: The record type of the history item.

UserName: The owner name.

LinkedDocClick

Returned XML

The following XML is returned for LinkedDocClick:

<GMAPI event="LinkedDocClick">
<RecID>BAAVH43(C?LC]WV</RecID>
<FileName>C:\documents and settings\john stillman\my documents\visual

studio projects\gmdev\bin\debug\MailBox\Attach\There ya go2.doc</FileName>
<Sync>1</Sync>
<UserName>GUY</UserName>
</GMAPI>

Parameters

RecID: The record ID for the linked document.

FileName: The path to the linked document.

Sync: 1 or 0 for is the doc synced.

UserName: The last user to use the document (not the owner).

For information on handling these events, see .

Handling GoldMine.UI Events
There are four events in the GoldMine.UI class that can be utilized. In order to be notified of the events, the
integrating application must register with GoldMine via the above commands.

This section will show examples of handling these events in VB and VB.NET. The method to handle the events may
vary depending on the development environment being used.

NotifyControlCommand

NotifyControlCommand is the event that notifies a client application that a button has been pressed, a checkbox
marked, or any other control change/activation event. Register for this event by calling RegisterCommandExec.

Parameters

sWindowName: This is a string (BSTR) that contains the nam of the window being called.

ControlID: a long that contains the ID of the control that is notifying.

CmdID: a long that contains the command that is being triggered

HWnd: a long that represents the hWnd of the Parent to the control.

Page 253 of 463

VetoWindow

The VetoWindow event is used to notify a client application that a window or dialog is requesting to be launched.
The client application returns a Boolean answer as to whether or not to allow the window/dialog to launch.
Subscribe to this event by calling RegisterVetoWindowLaunch.

Parameters

sWindowName: a string (BSTR) that contains the name of the window being called.

NOTE: Delphi does not support functions (a sub that returns a value) in its COM handler. Within the
VetoWindow event handler, Delphi users need to set a special property within the GoldMine.UI class to
indicate whether or not to veto the window. For Example: GMObj.VetoWindowDelphi:=true

Example

The following example uses Visual Basic 6.0. After declaring your object using the WithEvents keyword, Visual
Basic will place the name of the object in the drop down on the upper left of your code window. Select your object
from that drop down to view the list of event handling subs/functions available for that object. For the
VetoWindow event the function will be called Objectname_VetoWindow. For an example handling an event in
VB.NET using delegate functions, see the GoldMineShutdown event for the GoldMine.GMSystemEvents class.

Private Function GMObj_VetoWindow(ByVal sWindowName As String) As Boolean
If sWindowName = "DIALOGSCHEDULEDEFAULT" Then
Dim sResult As String
Dim iRes As Integer

sResult = GMObj.ExecuteCommand("<GMAPI call=""MsgBox"">
<data name=""Message"">Do you want to bring up the GoldMine schedule

window?
</data><data name=""Style"">4</data></GMAPI>")

Dim docResult As DOMDocument40
Set docResult = New DOMDocument40

docResult.loadXML sResult

Dim elRoot As IXMLDOMElement
Set elRoot = docResult.documentElement
Dim att As IXMLDOMNode
Set att = elRoot.childNodes(0)
If att.Attributes(0).baseName = "code" Then
iRes = att.Text
End If
If iRes = 6 Then
GMObj_VetoWindow = False
Else
GMObj_VetoWindow = True
End If
Set docResult = Nothing
Set elRoot = Nothing

Page 254 of 463

Set att = Nothing

End If

End Function

WindowUpDown

The purpose of the WindowUpDown event is to notify the client application that a particular window is coming up
or shutting down. This does not apply to the main GoldMine application window. To be notified that GoldMine is
shutting down, use the GoldMineShutdown event in the GoldMine.GMSystemEvents class.

This event is useful for a client application to perform additional processing of record data after the user has
submitted it by pressing OK on a dialog box. For example, data can be linked to other third party applications in
real time.

Parameters

sName: a string (BSTR) that contains the name of the window being called.

bUp: a Boolean which represents True=Up and False=Down

GMEvent

GMEvent is an omni-event holder that can provide information about what is happening in the GoldMine
application, and in some cases it can affect an action in GoldMine.

VARIANT_BOOL GMEvent(VARIANT_BSTR sXML)

sXML is XML that describes the event - possible events are UI events:

VetoWindow - same as the 6.7 event - looks like

<GMAPI event="VetoWindow">
<WindowName>NAME_OF_WINDOW_HERE</WindowName>
</GMAPI>

If event returns TRUE to GM then the window will not be launched

WindowUpDown - same as the 6.7 event - returns

<GMAPI event="WindowUpDown">
<WindowName>NAME_OF_WINDOW_HERE</WindowName>
<Up/>
<WindowhWnd>399692</WindowhWnd>
</GMAPI>

If the window is being closed, then a Down node will appear instead of the Up node

NotifyControlCommand - same as the 6.7 event - returns

<GMAPI event="NAME_OF_WINDOW_HERE">
<WindowName>DIALOGSCHEDULEDEFAULT</WindowName>
<ID>1</ID>
<Command>0</Command>
<WindowhWnd>97256300</WindowhWnd>
</GMAPI>

Page 255 of 463

The following are the new events specific to 7.0 and only can be used with the GMEvent structure

CalendarMonthView_DaySelectedWithActivities - event to show when a user has clicked a day with activities in
the month view.

Returns

<GMAPI event="CalendarMonthView_DaySelectedWithActivities">
<Date>20150624</Date>
<Timed>0</Timed>
<Timeless>1</Timeless>
<Events>0</Events>
</GMAPI>

Date - is the date clicled in YYYYMMDD format

Timed - the number of timed activities on that day

Timeless - the number of timeless activities

Events - the number of events on that day

CalendarDayActivityHighlighted - for week and day views, shows the details of an activity that a user has clicked
on

<GMAPI event="CalendarDayActivityHighlighted">
<ActvAccNo>A4032327210$Z7/!R </ActvAccNo>
<CalRecID>B6AANW4#Y>N(]WV</CalRecID>
<Contact>Dan Gorentz</Contact>
<CreatedBy>GUY </CreatedBy>
<User>GUY </User>
</GMAPI>

ActvAccNo - the contact AccountNo that this cal entry belongs to

CalRecID the record id of the calendar entry

Contact - the contact field for the record
CreatedBy - the user that created the record
User - the user its assigned to

VetoCalendarChangeView - can block the view from changing tabs

<GMAPI event="VetoCalendarChangeView">
<PrvView>1</PrvView>
<NewView>2</NewView>
</GMAPI>

View are enumerated as follows

0 - Day View
1 - Week View
2 - Month
3 - Year
4 - Planner

Page 256 of 463

5 - Outline
6 - PegBoard

PrvView - the view it is changing from

NewView - the view it is changing to

Returning TRUE to this event blocks the view change

CalendarUserSelectionChanged - tells the consumer that the user selection of visible user events has changed.
<GMAPI event="CalendarUserSelectionChanged">
<Users>GUY,MASTER</Users>
<CurrentView>0</CurrentView>
</GMAPI>

Users - a comma delimited list of users that are shown in the calendar.

CurrentView - the current view

VetoCalendarNextClick - can block the user from hitting the next button

Returns

<GMAPI event="VetoCalendarNextClick"/>

returning TRUE to this event keeps the user on the current selection

VetoCalendarPreviousClick - can block the user from hitting the previous button

<GMAPI event="VetoCalendarPreviousClick"/>

returning TRUE to this event keeps the user on the current selection

Manipulating Controls Programatically
The GoldMine.UI class responds to various commands to programmatically manipulate the controls on
GoldMine’s dialog boxes.

To specify the control to change or activate, read the parent window’s handle (hwnd) and the control’s ID from
the GetActiveWindowsList command. The control ID’s will always stay the same and will be unique only to the
scope of the dialog they exist on. In other words, the GoldMine user drop down box on the Schedule a Call dialog
will always have the same control ID. This control ID can be discovered during the design phase of your
application. Use the control ID as the identifier for checking the state of the control when reading the control
properties from the GetActiveWindowsList command.

PressButton

Use PressButton to press a button on a known form.

Page 257 of 463

Syntax

XML GetActiveWindowsList returned a window with the following control:
<data name=”Button”>
<data name=”Enabled”>1</data>
<data name=”Visible”>1</data>
<data name=”ParentID”>2232874</data>
<data name=”hWnd”>987600</data>
<data name=”ID”>2060</data>
<data name=”Text”>&Activate</data>

</data>

To press this button, the following XML should be sent:
<GMAPI call=”PressButton”>
<data name=”hWndParent”>2232874</data>
<data name=”ID”>2060</data>
</GMAPI>

NOTE: The hWndParent parameter of the PressButton command corresponds to the ParentID returned for
the control from GetActiveWindowsList, not hWnd, which is the hWnd of the control. Also, the ID
parameter corresponds to the ID parameter of the control returned by the GetActiveWindowsList, not the
hWnd.

Parameters

hWndParent: the handle to the parent window containing the control. Corresponds to the ParentID element
returned for the control by the GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by the GetActiveWindowsList
command.

SetControlText

SetControlText sets the text property of the specified control.

Page 258 of 463

Syntax

XML The Filters and Groups dialog contains the following control, the SQL field:
<data name=”Edit”>
<data name=”Enabled”>1</data>
<data name=”Visible”>1</data>
<data name=”ParentID”>398370</data>
<data name=”hWnd”>726100</data>
<data name=”ID”>104</data>
</data>

To set the text for this control, the following XML should be sent:
<GMAPI call=”SetControlText”>
<data name=”hWndParent”>398370</data>
<data name=”ID”>104</data>
<data name=”Text”>SELECT * FROM contact1</data>
</GMAPI>

Parameters

hWndParent: the handle to the parent window containing the control. Corresponds to the ParentID element
returned for the control by the GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by the GetActiveWindowsList
command.

Text: the text desired for the control.

SetCheckBox

SetCheckBox sets the value of a check box control.

Syntax

XML A dialog has the following control:
<data name=”Button”>
<data name=”Enabled”>1</data>
<data name=”Visible”>1</data>
<data name=”ParentID”>199202</data>
<data name=”hWnd”>199212</data>
<data name=”ID”>111</data>
<data name=”Text”>&Master rights</data>
</data>

To set the checkbox, the following XML should be sent:
<GMAPI call=”SetCheckBox”>
<data name=”hWndParent”>199202</data>
<data name=”ID”>111</data>
<data name=”Checked”>1</data>
</GMAPI>

Page 259 of 463

Parameters

hWndParent: the handle to the parent window containing the control. Corresponds to the ParentID element
returned for the control by the GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by the GetActiveWindowsList
command.

Checked: 1 to check the checkbox, 0 to uncheck

SelectRadio

The SelectRadio command allows an application to set a radio button array, or a single item. While the command
allows a single radio button to be set, this is not the best practice. Doing so results in more than one radio button
selected in a group or radio buttons.

Syntax

XML A dialog has the following two controls:
<data name=”Button”>
<data name=”Enabled”>1</data>
<data name=”Visible”>1</data>
<data name=”ParentID”>330708</data>
<data name=”hWnd”>134108</data>
<data name=”ID”>532</data>
<data name=”Text”>&Dark Background</data>
</data>
<data name=”Button”>
<data name=”Enabled”>1</data>
<data name=”Visible”>1</data>
<data name=”ParentID”>330708</data>
<data name=”hWnd”>134106</data>
<data name=”ID”>533</data>
<data name=”Text”>&Bright Background</data>
</data>

To select the Dark Background radio and unselect the Bright Background, the following
XML should be sent:

<GMAPI call=”SelectRadio”>
<data name=”RadioButton”>
<data name=”hWndParent”>199516</data>
<data name=”ID”>532</data>
<data name=”Value”>1</data>
</data>
<data name=”RadioButton”>
<data name=”hWndParent”>199516</data>
<data name=”ID”>533</data>
<data name=”Value”>0</data>
</data>
</GMAPI>

Page 260 of 463

Parameters

hWndParent: the handle to the parent window containing the control. Corresponds to the ParentID element
returned for the control by the GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by the GetActiveWindowsList
command.

Value: 1 to select the radio button, 0 to unselect

SetListBox/SetComboBox

Use the SetListBox/SetComboBox command(s) to select an item in a listbox on a GoldMine dialog box. The client
application can specify either a text value or an index. If a text value is used, the value must already exist within
the list.

Syntax

XML A dialog has the following control:
<data name=”ComboBox”>
<data name=”Enabled”>1</data>
<data name=”Visible”>1</data>
<data name=”ParentID”>330654</data>
<data name=”hWnd”>68972</data>
<data name=”ID”>537</data>
<data name=”Text”>MMM d, yy </data>
</data>

To select a different item in this combobox, use the following XML:
Using an Index:

<GMAPI call=”SetComboBox”>
<data name=”hWndParent”>330654</data>
<data name=”ID”>537</data>
<data name=”Index”>0</data>
</GMAPI>

Using a Text value:
<GMAPI call=”SetComboBox”>
<data name=”hWndParent”> 330654</data>
<data name=”ID”>537</data>
<data name=”Value”>MMMM dd, yyyy</data>
</GMAPI>

NOTE: SetComboBox and SetListBox have been grouped together in this document because they share the
same parameters and functionality for their respective control. However, SetComboBox should only be
used for comboboxes and SetListBox for listboxes.

Parameters

hWndParent: the handle to the parent window containing the control. Corresponds to the ParentID element
returned for the control by the GetActiveWindowsList command.

Page 261 of 463

ID: the ID of the control. Corresponds to the ID element returned for the control by the GetActiveWindowsList
command.

Value: the TEXT value to select in the combobox or listbox. The value must already exist in the list of the control.

OR

Index: the index number of the item to be selected in the combo box or list box.

SelectTab

Use SelectTab to select a particular tab on a dialog box. This command does not select the tabs on the contact
record. Use the SetRoTabX command for that purpose.

Syntax

XML A dialog has the following control:
<data name=”SysTabControl32”>
<data name=”Enabled”>1</data>
<data name=”Visible”>1</data>
<data name=”ParentID”>789580</data>
<data name=”hWnd”>330824</data>
<data name=”ID”>12320</data>
</data>

To select the tab with index of 1:
<GMAPI call=”SelectTab”>
<data name=”hWndParent”>789580</data>
<data name=”ID”>12320</data>
<data name=”Index”>1</data>
</GMAPI>

NOTE: The SelectTab command may not function as expected on all tabs within GoldMine. Due to the way
some dialog boxes were developed, changing the tab with the SelectTab command may not cause the
correct controls to be displayed on the desired tab. Always test the SelectTab command on the dialog box
you wish to execute it for during development of your application to verify it correctly switches the tab.

Parameters

hWndParent: the handle to the parent window containing the control. Corresponds to the ParentID element
returned for the control by the GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by the GetActiveWindowsList
command.

Index: the index number of the tab to be selected.

EnableCtrl

The EnableCtrl command allows the programmer to enable or disable any control.

Page 262 of 463

Syntax

XML A dialog has the following control:
<data name=”Button”>
<data name=”Enabled”>1</data>
<data name=”Visible”>1</data>
<data name=”ParentID”>789580</data>
<data name=”hWnd”>1117262</data>
<data name=”ID”>1</data>
<data name=”Text”>OK</data>
</data>

To disable the button:
<GMAPI call=”EnableCtrl”>
<data name=”hWndParent”> 789580</data>
<data name=”ID”>1</data>\
<data name=”Enable”>0</data>
</GMAPI>

Parameters

hWndParent: the handle to the parent window containing the control. Corresponds to the ParentID element
returned for the control by the GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by the GetActiveWindowsList
command.

Enable: set to 1 to enable the control, 0 to disable.

Executing a Menu Command
The MenuCommand function allows the programmatic execution of a menu item, as if the user has clicked the
item in the GoldMine menu.

Syntax

XML <GMAPI call="MenuCommand" >FileNewRecord</GMAPI>

OR
<GMAPI call=”MenuCommand”>
<data name=”MenuCommand”>FileNewRecord</data>
</GMAPI>

MenuCommand accepts one parameter, MenuCommand. This parameter can be any of the following menu
commands. The command name is descriptive and indicates which menu item it corresponds to:

FileNewRecord FileNewRecordToExistingCompany FileNewRecordAndOrgChart

FileNewRecordToExistingOrgChart FileNewRecordByType FileOpenDatabase

FilePrint1Report FileNewDatabase FileMaintainDatabases

Page 263 of 463

FileBackupDatabases FileRestoreDatabases FilePrintReports

FileSetupPrinter SynchronizationOneButtonSync SynchronizationWizard

GoldSyncAdministrationCenter SynchronizeWithOutlook SynchronizeWithPilot

SynchronizeWithWindowsCEPDA FileCopyMoveRecords ConfigureUsersSettings

ConfigureUserGroups ConfigureResources ConfigureRecordType

ConfigureCustomScreens ConfigureCustomFields ConfigureHTMLTab

ConfigureSyncSettings ConfigureLicenseManager ConfigureMyGoldMine

LogAway LogInAnotherUser LogInServiceSupport

Exit EditUndo EditCut

EditCopy EditPaste EditCopyContactDetails

EditContact DeleteContact Record-related Settings

Contact Details RecordDetailsOrganization RecordDetailsSummary

RecordDetailsFields RecordDetailsHTMLTab RecordDetailsNotes

RecordDetailsContacts RecordDetailsDetails RecordDetailsReferrals

RecordDetailsPending RecordDetailsHistory RecordDetailsLinks

RecordDetailsMembers RecordDetailsTracks RecordDetailsOpptys

RecordDetailsProjects RecordDetailsTickets RecordDetailsResize

TimerStart TimerStop TimerReset

TimerRestart EditToolbars EditCustomTemplates

EditPreferences ViewMyGoldMine ViewNewContactWindow

ViewContactGroups ViewCalendar ViewActivityList

ViewEmailCenter ViewEmailWaitingOnline ViewInfoCenter

ViewProjects ViewPersonalRolodex ViewLiteratureFulfillment

SalesToolsOpportunities SalesToolsScripts AnalysisSales

AnalysisStatistical AnalysisForecast AnalysisGraphical

AnalysisLeads AnalysisQuota ViewGoldMineLogs

ViewSyncRetrievalLogs LookupCompany LookupContact

LookupLastName LookupPhone LookupZIPCode

Page 264 of 463

LookupCity LookupState LookupCountry

LoookupAccountNo LookupKey1 LookupKey2

LookupKey3 LookupKey4 LookupKey5

LookupDetailRecords LookupEmailAddress LookupAdditionalContName

LookupFilters LookupSQLQueries TextSearchPrimaryFields

TextSearchNotes TextSearchAllFields TextSearchFieldsBelowTabs

GotoNextRecord GotoPreviousRecord GotoCycleLastViewedRecords

GotoLastRecord GotoRecordNumber GotoFirstRecord

DialPhone1 DialPhone2 GotoInternetSearch

DialFax RedialLastNumber DialPhone3

IncomingCall ContactInsertNote ManualDial

WriteMemoToContact WriteFAXtoContact WriteLetterToContact

ContactWriteCustomizeTemplates WriteCustomizeTemplates WriteMailMerge

EmailOutlookMessageToContact EmailPagerMessageToContact EmalMessageToContact

EmailCustomizeTemplates ContactTakePhoneMessage EmailMerge

ContactBrowseWebStie LinkFile ContactAssignProcess

ScheduleCall ScheduleNextAction AddDetail

ScheduleLiteratureRequest ScheduleForecastedSale ScheduleAppointment

ScheduleEvent ScheduleTodo ScheduleOtherAction

CompleteScheduledCall CompleteUnscheduledOutgoingCall ScheduleGoldMineEmail

CompleteMessage CompleteNextAction CompleteUnscheduledIncomingCall

CompleteSale CompleteOtherAction CompleteAppointment

CompleteToDo CompleteLetterMemo CompleteEvent

CompletePendingActivities AutomatedProcessesExecute CompleteLiteratureRequest

AutomatedProcessesSetup ServerAgenstStart AutomatedProcessesRemoveTrack

ActImport OutlookImport ServerAgentsAdministrator

ExportContactRecords ImportZIPCodes ImportContactRecords

XMLImport XMLExport RunQSW

Page 265 of 463

ICALExport CalPublish ICALImport

ToolsCleanupDOSNotes ToolsOptimizeOrgChartAccess PublishBusyTime

ToolsTerritoryRealignment MergePurgeWizard ToolsGlobalReplaceWizard

MergeTaggedRecords ToolsDeleteRecordsWizard MergeVisibleRecords

ToolsStrategicSolutions ToolsBDEAdministrator ToolsSyncSpy

WindowTile WindowTileWide ToolsSystemPerformance

WindowArrangeIcons WindowCloseAll WindowCascade

WindowStatusBar WindowTaskBar WindowToolBar

HelpHelpTopics HelpReleaseNotes WindowBackgroundSettings

HelpNewsgroups HelpUpdateGoldMine HelpGoldMineWebSite

CampaignManager LeadCenter HelpAbout

WebImportAdmin

Returned XML

The MenuCommand function returns after the menu command is executed. It does not wait for any events on the
resulting window before returning. The returned XML for a successful call will be:

<GMAPI call="MenuCommand"><status code="1">The command was

executed.</status></GMAPI>

In the event that there is a modal window active in the GoldMine user-interface, the COM Server cannot launch
another window (as would be the case if attempting to launch a menu item within the interface). When that
occurs, the following XML is returned to indicate a failure:

<GMAPI call="MenuCommand">
<status code="0">Access is denied.</status>
</GMAPI>

Opening a Mail Record
The OpenMailRecord function opens a mail record in the mail center when the RecID of the mail item is passed.

Syntax

XML To open a mail record:
<GMAPI call=”OpenMailRecord”>
<data name=”RecID”> 789580</data>
</GMAPI>

Parameters

RecID: the record ID of the mail item.

Page 266 of 463

Returned XML

The OpenMailRecord function returns after the command is executed. The returned XML for a successful call will
be:

<GMAPI call="OpenMailRecord"><status code="1">The command was

executed.</status></GMAPI>

In the event that the mail record is already open, the following XML is returned to indicate a failure:

<GMAPI call="OpenMailRecord">
<status code="-1">Already open.</status>
</GMAPI>

In the event that the system cannot open the mail record, the following XML is returned to indicate a failure:

<GMAPI call="OpenMailRecord">
<status code="0">Failure.</status>
</GMAPI>

Setting a Selected Record in a GoldMine Grid (GoldMine 8.0 or higher)
SetGridRecID allows you to set the selected record in a given GoldMine grid.

In the following example, you can set the Linked Document tab to a certain row:

1. We call SetROTab with a value of 10 to set the Link tab to focus
2. Perform GetActiveWindowList
3. Look for the gmWndBrowse object to retain it’s hWnd value.
4. Call the SetGridRecID function (see example)
5. If you had registered for Tab events, then you would also get the event

<GMAPI event="LinkedDocClick">
<RecID>CHNHXID(2AAS]WV</RecID>
<FileName></FileName>
<Sync>1</Sync>
<UserName>GUY</UserName>
</GMAPI>

Syntax (Example)

XML To set a selected record in a grid:
<GMAPI call="SetGridRecID">
<data name="hWnd">1057444</data>
<data name="RECID">CHNHXID(2AAS]WV</data>
</GMAPI>

Parameters

hWnd: The hWnd of the gmWndBrowse you wish to set.

RecID: The recid of the value in the list you wish to select. You must pass a valid recid that is represented in the
grid.

Page 267 of 463

Returned XML

The returned XML for a successful call will be:

<GMAPI call=”SetGridRecID”>
<status code=”1”>Success</status>
</GMAPI>

Returning Selected Records in a GoldMine Grid (8.0.1 or higher)
GetGridRecID returns the selected records in a given GoldMine grid.

Syntax (Example)

XML To get selected records in a grid:
<GMAPI call="GetGridRecID">
<data name="HWND">337700</data>
</GMAPI>

or
<GMAPI call="GetGridRecID">468730</GMAPI>

Parameters

hWnd: The hWnd of the gmWndBrowse from which you wish to get selected recids.

Returned XML

The returned XML for a successful call will be:

GMAPI call="GetGridRecID">
<status code="1">Success</status>
<data name="Return">
<data name="RecID">CGNPHUE)D0TV W<</data>
</data>
</GMAPI>

Or if there are multiple items selected:

<GMAPI call="GetGridRecID">
<status code="1">Success</status>
<data name="Return">
<data name="RecID">AO6R9GO$/X^1$M<</data>
<data name="RecID">ANWYLNL%XV]& W<</data>
<data name="RecID">AOCJ5LF)>ED0 W<</data>
<data name="RecID">AOCJ5LF+Y-(8 W<</data>
<data name="RecID">AOCJ5PO#E,5/ W<</data>
<data name="RecID">AWUX7WW :U3Z W<</data>
</data>
</GMAPI>

Page 268 of 463

GoldMine.RecObj Class
The GoldMine.RecObj class contains only events. These events notify the client application when the record object
has changed, when a field has changed on the contact record, or when the tab selected on the record object has
changed. It is not necessary to subscribe to these events, just implement the event handlers.

RecordObjectHasChanged

The RecordObjectHasChanged event indicates when the contact displayed in GoldMine has changed to a different
contact. This does not indicate data changes. This event is the equivalent of setting the LinkMode in Visual Basic to
vbLinkNotify.

Parameters

sCurrentRecord: a string that contains the AccountNo of the current record.

RecordFieldHasUpdated

The RecordFieldHasUpdated event indicates when the value of a field in contact1 or contact2 for the current
contact has been updated. This event does NOT notify when an Email Address or Web Site has changed.

Parameters

sField: a string that contains the fieldname of the updated field.

sLabel: the local label (or global if no local label is specified) of the field.

ContactTableID: the ID number of the contact table. Will be 1 for contact1 and 2 for contact2.

RecordTabHasChanged

The RecordTabHasChanged event indicates when the user in GoldMine has selected a different tab at the bottom
of the contact record screen.

Parameters

sCurrentTab: the numeric representation of the tab selected.

GoldMine.GMSystemEvents Class
The GoldMine.GMSystemEvents class contains one event, GoldMineShutDown, indicating when the GoldMine
application is shutting down. This gives the client application an opportunity to clean up and shut down as well.

GoldMineshutDown

The GoldMineShutDown event indicates when the GoldMine application is shutting down. It has no parameters.
Following is an example of implementing the GoldMineShutDown event in VB.NET using a delegate function. For
an example implementing an event handler in Visual Basic 6.0, see the VetoWindow event for the .

Private Sub GMShutdown()
MsgBox("GoldMine has closed", MsgBoxStyle.Information, "XML API")
End Sub

Page 269 of 463

Private Function CreateGMEventHandler() As Boolean
Try
'Here we try to setup an eventhandler for goldmine shutdown
'if we set this up before we're logged in it launches the api
'and mucks things up, here we create the varriable, and
'assign it an event

Dim GMEvent As New GoldMine.GMSystemEvents
AddHandler GMEvent.GoldMineShutDown, AddressOf GMShutdown
Catch ex As Exception
Return False
End Try
Return True
End Function

Business Logic Methods

Overview
GoldMine introduces Business Logic, a concept to simplify and streamline product integration with GoldMine.
Business Logic transactions wrap commonly used procedures into a single call. For example, to attach a new
detail to a record, you simply execute the WriteDetail function.

Business Logic Functions and Name/Value Pairs
To make these Business Logic methods useful, developers need a mechanism for passing multiple parameters to
the various methods. GoldMine provides a set of functions to control Name/Value containers in the GMXS32.DLL,
described in . Alternatively, all of the business logic functions are accessible via the GoldMine XML API. The XML
API uses all of the same business logic function names and data names (Name/Value pairs).

This chapter describes the Business Logic methods available. These methods may be called from the GMW_
Execute function (GMXS32.DLL) or via the GoldMine XML API (GMXMLAPI.DLL).

Controlling Database Session Handling
The SetSessionHandling function controls the way GoldMine handles database sessions. The default, the safest
method, is to open and close sessions for each request. This can be changed to increase performance to keep
sessions open. The function accepts one name/value pair, KeepOpen. Its possible values are 1 or 0. The function
returns one name/value pair, OldState, with possible values of 1 or 0, so you know what was previously set prior
to your change. Finally, the function returns a status of either 0 on failure, or 1 on success. This function applies
only to the GMXS32.DLL.

Creating or Updating a Contact Record
WriteContact creates or updates a contact record. If RecID is passed as null, then a record will be created.
Otherwise, the record will be updated. You may also create a new contact record with a RecID you provide. This
function will respect record curtaining and will not update areas of the contact record that the logged-in user
does not have permission to change. Contacts created through this function will have the Automated Process
marked to be attached to new records.

Page 270 of 463

Page 271 of 463

GoldMine API Version: 5.00.041

Required Name/Value Pairs

RecID is the record ID of the record to update. If null, a record will be created, unless the ExternRecID or
ExternAccNo name/value pairs are included.

Optional Name/Value Pairs

Any valid Contact1 or Contact2 field.

Special Name/Value Pairs

WriteContact Special NV Pairs

Name Description

Email E-mail address profile value. Additional e-mail addresses may be added to the contact
record by including this name/value pair with an existing RecID. Cannot update any e-mail
addresses with this function. See UpdateEmailAddress. Only one address will be marked as
primary. If additional addresses are added through this function, they will not be primary
unless the next name/value pair is set.

PrimaryEmail Indicates to mark the specified e-mail address as primary. Set to 1 to mark primary.

WebSite
Web site detail value. Additional Web sites may be added to the contact record by
including this name/value pair with an existing RecID. Cannot update any Web sites with
this function. See UpdateWebSite.

NonUSAPhone International phone format is used if NonUSAPhone = 1, Default is 0.

WebUserName Web username to assign to this contact. For details, see “ContactLogin.”

WebPassword Web password to assign to this contact. For details, see “ContactLogin.”

ExternRecID
User-supplied RecID to be used for a new record. RecID name/value pair must be empty to
use this functionality.

ExternAccNo User-supplied AccountNo to be used for a new record. RecID name/value pair must be
empty to use this functionality.

Output Name/Value Pairs

WriteContact Output NV

Record Description

RecID If new record created.

AccountNo AccountNo of the record

WriteCONTACT Error Codes

WriteContact Error Codes

Page 272 of 463

Code Description

Success

General Failure

-1 Incomplete request to create based on external RecID

-2 Could not create a new record

-3 Could not create a new record based on external RecID.

-4 Could not commit to disk

-5 No access or could not lock record

-6 Record does not exist.

-7 External RecID already exists on this system.

Updating an E-mail Address
UpdateEmailAddress is used to update the value of an existing e-mail address detail record.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

UpdateEmailAddress Required NV Pairs

Name Description

RecID RecID of the e-mail record to be modified

NewAddress New address to write

Optional Name/Value Pairs

UpdateEmailAddress Optional NV Pairs

Name Description

Accountno Accountno of the contact the e-mail address is associated with.

MIME Set to “1” to use MIME when sending to this address.

RTF Set to “1” to use RTF when sending to this address.

Primary Set to “1” to mark this updated e-mail address as primary.

Wrap Set to “1” to wrap lines when sending to this address.

Page 273 of 463

Updating a Web Site Record
The UpdateWebSite function is used to update the value of a Web Site detail record.

GoldMine API Version: 5.50.10111

Name/Value Pairs

UpdateWebSite NV Pairs

Name Description

RecID Web site record RecID—required

NewSite New Web site value to write—required

Primary Set to “1” to mark this Web site as the primary Web site for the contact record

Updating Notes of a Primary Contact Record
WriteContactNotes updates the Notes of a primary contact record and appends the proper header information to
the top of the Note. If both AccountNo and RecID are passed, only AccountNo will be used. The Note header will
use the current date/time and default to the logged-in user name.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

WriteContactNotes Required NV Pairs

Name Description

Notes Note text to add

AccountNo AccountNo of the Contact1 record to which to add notes. Not required if RecID is used.

AccountNo AccountNo of the Contact1 record to which to add notes. Not required if RecID is used.

RecID RecID of the contact1 record to which to add notes. Not required if AccountNo is used.

Optional Name/Value Pairs

UserID is the UserID used in the note header.

Output Name/Value Pairs

None.

Creating or Updating a Note in a Table
WriteNote creates or updates a note in the table provided by the parameter. The Note header uses the current
date/time and defaults to the logged-in user name.

Page 274 of 463

GoldMine API Version: 5.00.041

Required Name/Value Pairs

WriteNote Required NV Pairs

Name Description

Note Note text to write.

AccountNo
AccountNo of the contact associated with the note. Required for a new contact. For
updates, if it is passed and different than the existing AccountNo, it is checked for validity.

NotesRecID The Notes table RecID. Required for updates; returned on new notes.

Optional Name/Value Pairs

WriteNote Optional NV Pairs

Name Description

Table Table the note is associated with. Values can be OPMGR, CASES, CASE_RESOLUTION, or
CONTACT1. Defaults to CONTACT1. Can also pass Notes table abbreviated versions OP, CS,
CR, or C1.

LOPRECID
RecID for the associated table's row. Required for all new contacts except for contact
notes, because CONTACT1 > RecID is read when checking if the user has access.

UserID User to attach the note to.

OPPROJTYPE
Record type in case the table parameter is OPMGR or OP. Can be O for Opportunity or P
for Project.

Output Name/Value Pairs

None.

WriteNote Error Codes

WriteNote Error Codes

Code Description

1 Success

0 No PNV passed.

-1 No note passed to write.

-2 Could not find the Notes table. RecID passed.

-3 Contact is new, yet no AccountNo was passed, or bad LOPRECID.

Page 275 of 463

-4 User doesn't have access rights to the contact, or AccountNo is invalid.

-5 Could not initialize a new record in the Notes table.

-6 Unable to open the Notes table.

Creating or Updating an Additional Contact Record
WriteOtherContact creates or updates an additional contact record. If RecID is null, then a record will be created;
otherwise, the record will be updated. When RecID is passed as null, an AccountNo should be passed; otherwise,
an unlinked record will be created. In addition, a new additional contact may be created using a unique, user-
supplied RecID. If the logged-in user does not have master rights and the contact record associated with the
additional contact record is curtained, then no new additional contact records or modifications will be allowed.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

None.

Optional Name/Value Pairs

WriteOther ContactNotes Optional NV Pairs

Name Description

RecID RecID of the record to update. If null, a record will be created.

ExternRecID
User-supplied RecID to be used for a new additional contact. The RecID and ExternRecID
name/value pairs are mutually exclusive. If the RecID pair is supplied, this pair will be
ignored.

AccountNo AccountNo of linked Contact1 record

Contact Contact name

Title Title

Ref Reference

Dear Salutation

Phone Phone number

Fax Fax number

Ext Extension

Address1 Address Line 1

Address2 Address Line 2

Page 276 of 463

Address3 Address Line 3

City City

State State

Zip ZIP Code

Country Country

Notes Notes

LinkAcct Link Account RecID

Special Name/Value Pairs

WriteOtherContact Special Name/Value Pairs

Name Description

Email E-mail address of the additional contact

NonUSAPhone Set to 1 for a nonUSA phone format

UseMergeCodes Set to 1 if you want to set the Use Merge Codes option

MergeCodes Merge codes

Error Codes

WriteContact Error Codes

Code Description

1 Success

0 General Failure

-1 It will be a duplicate

-2 Couldn’t create external record

-3 Couldn’t find or lock the record

-4 Couldn’t write to the database

-5 No access to the contact linked to this record

Output Name/Value Pairs

RecID returns the new RecNo or RecID if a new record was created.

Page 277 of 463

Creating or Updating a Detail Record
WriteDetail creates or updates a detail record. If RecID is null, then a record will be created; otherwise, the record
will be updated. When a RecID is passed as null to create a record, an AccountNo should be passed; otherwise, an
unlinked record will be created. In addition, a new detail record may be created using a unique, user-supplied
RecID. If the logged-in user does not have master rights and the contact record associated with the detail record is
curtained, then no new detail records or modifications will be allowed.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

Detail is the name of the detail.

Optional Name/Value Pairs

WriteDetail Optional NV Pairs

Name Description

RecID RecID of the record to update. If null, a record will be created.

ExternRecID
A user-supplied RecID to be used for a new detail record. The RecID and ExternRecID
name/value pairs are mutually exclusive. If the RecID pair is supplied, this pair will be
ignored.

AccountNo AccountNo of linked Contact1 record.

Ref Value of the detail being created or updated.

Notes Notes for the detail record.

Special Name/Value Pairs

UField 1–Ufield 8 correspond to the extended detail fields; that is:

UField1 UField5

UField2 UField6

UField3 UField7

UField4 UField8

Output Name/Value Pairs

RecID returns the new RecNo if a record was created.

Error Codes

WriteDetailError Codes

Page 278 of 463

Name Description

Success

General Failure

-1 It will be a duplicate

-2 Couldn’t create external record

-3 Couldn’t find or lock the record

-4 Couldn’t write to the database

-5 No access to the contact linked to this record

Creating or Updating a Linked Document
WriteLinkedDoc creates or updates a linked document record. If RecID is null, then a record will be created;
otherwise, the record will be updated. When RecID is passed as null, an AccountNo should be passed; otherwise,
an unlinked record will be created.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

RecID is the RecID of the record to update. If null, a record will be created.

Optional Name/Value Pairs

Optional NV Pairs

Name Description

AccountNo AccountNo of linked Contact1 record.

FileName Full path and filename.

Ref Title of the document.

Notes Notes

Special Name/Value Pairs

SyncFile synchronizes the file with remote sites if set to 1.

Output Name/Value Pairs

RecID returns the new RecNo if a record was created.

Error Codes

These error codes were added in GoldMine API Version: 5.70.20222

WriteLinkedDoc Error Codes

Page 279 of 463

Name Description

Success

General Failure

-1 Contact not found

-2 Access denied

-3 Could not add the linked document

-4 Requested linked document does not exist

-5 Could not write the linked document

-6 The given accountno does not match the existing one

Creating or Updating a Referral
WriteReferral creates or updates a referral from one contact record to another.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

RecID is the RecID of the record to update. If null, a record will be created.

Optional Name/Value Pairs

WriteReferral Optional NV Pairs

Name Description

FromAccNo AccountNo of the ‘From’ referral.

ToAccNo AccountNo of the ‘To’ referral.

FromRef Reference line for the ‘From’ record.

ToRef Reference line for the ‘To’ record.

Notes Notes

AppendNotes Appends Notes with a time stamp. You must pass a valid RecID.

Special Name/Value Pairs

OppSummary is a 12-bit flag of opportunity summary check boxes in the Referrals properties. This is a sequence of
twelve 1s or 0s.

Output Name/Value Pairs

RecID returns the new RecNo if a Record was created.

Page 280 of 463

Creating or Updating Activities
WriteSchedule creates or updates a scheduled activity record. If RecID is null, then a record will be created;
otherwise, the record will be updated. When RecID is passed as null, an AccountNo should be passed; otherwise,
an unlinked record will be created.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

RecID is the RecID of the record to update. If null, a record will be created.

Name Description

AccountNo AccountNo of linked Contact1 record

RecType RecType. For a list of valid RecTypes, see the table structures for CAL.

CaseRecID
The Case record ID to link to the calendar event. You cannot attach a case and an
opportunity/project to the same event.

LOPRECID The opportunity or project to attach the event to. It cannot be used with a case recid.

UserID User name of activity

Contact Contact name

Ref Reference: line

Notes Notes

ActvCode Activity code

OnDate Date of activity (Required for scheduling recurring activities when using gm6s32.dll –
GoldMine 6.0)

OnTime Time of activity (Required for scheduling recurring activities when using gm6s32.dll –
GoldMine 6.0)

Duration Duration of activity

Alarm If set to 1, an alarm will set for the specified user. Default is 0.

AlarmDate Date of alarm. Must set Alarm to 1 to use.

AlarmTime Time of alarm. Must set Alarm to 1 to use.

RSVP If set to 1, the activity will be sent with an RSVP. Default is 0.

Private If set to 1, the activity will be marked as private. Default is 0.

Notify If set to 1, the scheduled user will receive a notification. Default is 0.

Page 281 of 463

Amount Sale amount. Only used when RecType = S

ProbSale Probability of sale. Only used when RecType = S

UnitsSale Number of units in sale. Only used when RecType = S

ccUsers List of additional users to schedule the activity for

bccUsers List of users to inform about the activity througha GoldMine e-mail.

Resources List of resources to reserve for this activity.

RecurType Use only for versions of GoldMine earlier than 6.0. For recurring activities. Specify one
of the following to indicate how the activity should be repeated:

Value Description
1070 Daily
1071 Weekly
1072 Bi-weekly
1073 Monthly
1074 Quarterly
1075 Yearly
1076 Every n days. Also use RecurNDays nv pair.
1080 First. Also use RecurOnDays nv pair. Ex. Schedule on the first
Monday of every month.
1081 Second. Also use RecurOnDays nv pair.
1082 Third. Also use RecurOnDays nv pair.
1083 Fourth. Also use RecurOnDays nv pair.
1084 Last. Also use RecurOnDays nv pair.

RecurNDays
Use only for versions of GoldMine earlier than 6.0. Recur every x days. Used when
RecurType is set to 1076.

Page 282 of 463

RecurOnDay

Use only for versions of GoldMine earlier than 6.0.
Used when RecurType is set to 1080-1084. For example, you wish the activity to be
schedule for the first Monday of every month, then RecurType would be set to 1080
and RecurOnDay would be set to 1092.

Value Description
1091 Sunday
1092 Monday
1093 Tuesday
1094 Wednesday
1095 Thursday
1096 Friday
1097 Saturday

RecurSkipWeekend Use only for versions of GoldMine earlier than 6.0.
Set to 1 (default) if the activities should not be scheduled on weekends, should the
scheduling pattern call for it to land on one. Otherwise 0.

RecurFromDate Use only for versions of GoldMine earlier than 6.0.
The date to begin scheduling the activities.

RecurToDate Use only for versions of GoldMine earlier than 6.0.
The date to end the scheduled activities.

GoldMine 6.0 NV Pairs

The following WriteSchedule NV pairs are specific to GoldMine versions 6.0 and greater. They apply to scheduling
recurring activities. The NV pairs for the previous versions of GoldMine are still valid, though in order to
implement extended recurrence patterns, these new pairs need to be used in lieu of the previous pairs. If your
application will only be used on GoldMine 6.0 systems, it is recommended to use the newer recurrence NV pairs
listed below.

Optional WriteSchedule NV Pairs

Name Description

RecurType For recurring activities. Specify one of the following to indicate how the activity
should be repeated:

Value Description
1 Hourly
2 Daily
3 Weekly
4 Monthly
5 Yearly

Page 283 of 463

RecurFormat

Set to 1 (default) to specify an UNTIL recurrence rule (defined by a start date/time
and end date/time) and is used in conjunction with RecurToDate.
Set to 2 to specify a COUNT recurrence rule (defined by a start date/time and an
integer representing the number of occurrences) and is used with RecurCount.

RecurCount
Represents the number of occurrences at which to bound the range (Used when
RecurFormat = 2, omit if RecurFormat = 1).

RecurToDate &
RecurToTime

Use to specify the end of the date and time range for scheduling recurring
activities. (Used when RecurFormat = 1, omit if RecurFormat = 2)

RecurInterval Represents how often the recurrence rule repeats

RecurOnDay

The day(s) when the recurrence occurs:
The following seven values can be used when RecurType equals 3 through 5. The
values can be combined using the bitwise AND operator.

Value Description
1 Sunday
2 Monday
4 Tuesday
8 Wednesday
16 Thursday
32 Friday
64 Saturday

The following values should only be used when RecurType is equal to monthly (4)
or yearly (5).

Value Description
200 Weekday
201 Weekend Day
202 Day

RecurMonthDay
The day of the month the activity should occur. Values 1 through 31 are valid.
Should only be used if RecurType is monthly (4) or yearly (5). If RecurMonthDay is
used, then RecurPos is ignored.

RecurPos Specifies if the activity should be scheduled on the first, second, third, fourth or
fifth day specified in RecurOnDay (as in, first Monday of each month, etc). Used
only when RecurType is monthly (4) or yearly (5). If RecurMonthDay is set also, this
value will be ignored.

RecurMonth Specifies which month the recurring activity is to be scheduled in when the
RecurType is set to monthly (5). Valid values are 1 through 12 and correspond to
months respectively (1 = January).

Page 284 of 463

RecurSkipWeekend
Skip weekends when scheduling recurring activities. Valid values or 1 (default) or 0.
Use when RecurType is daily (2), monthly (4), or yearly (5).

RecurSkipNon
WorkdayHours

Skip hours that are not designated as part of the workday (ex: 5pm through 8 am).
Valid values are 1 (default) or 0. Use when RecurType is set to hourly (1).

Output Name/Value Pairs

RecID returns the new RecID if a record was created.

Error Codes

These WriteSchedule error codes were added in GoldMine API Version: 6.0.21021

WriteSchedule Error Codes

Name Description

Success

General Failure

-10 Ondate > RecurEndDate

-11 No Ondate specified

-12 No RecurToTime (or RecurCount)

-13 No weekdays selected in the weekly pattern

-14 Not enough NV Pairs specified

Creating or Updating a History Record
WriteHistory creates or updates a history record, or completes a scheduled activity record. If RecID is null, then a
record will be created; otherwise, the record will be updated. When RecID is passed as null, an AccountNo should
be passed; otherwise, an unlinked record will be created. To complete a scheduled activity, you must pass
CalRecID.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

RecID is the RecID of the record to update. If null, a record will be created.

WriteHistory Optional Name/Value Pairs

WriteHistory Optional NV Pairs

Name Description

AccountNo AccountNo of linked Contact1 record.

Page 285 of 463

RecType RecType. For a list of valid RecTypes, see the table structures for CONTHIST.

UserID User name of activity

Contact Contact name

Ref Reference line

Notes Notes

ActvCode Activity code

ResultCode Result code

OnDate Date of activity

OnTime Time of activity

Duration Duration of activity

WRITE HISTORY Special Name/Value Pairs

WriteHistory Special NV Pairs

Name Description

CalRecID RecID of the scheduled activity (Cal table).

Success If set to 1, the activity was successful. Default is 1.

Private
If set to 1, the activity is marked as private.
Default is 0.

RSVP If set to 1, an RSVP is scheduled. Default is 0.

Link If Set to 1 indicates that it is linked to the contact record specified in AccountNo.

Amount Sales amount. Used where RecType = S

ProbSale Probability of sale. Used where RecType = S

UnitsSale Number of units in sale. Used where RecType = S

Output Name/Value Pairs

RecID returns the new RecNo if a record was created.

Creating or Updating a Case Record (GoldMine 8.0 or higher)
WriteCase creates or updates a Case for the GoldMine 8.0 service module.

Required Name/Value Pairs

The following fields are required for new records.

Page 286 of 463

Name Description

Accountno Accountno of the contact to link with the Case

Number The case number - required for new - alpha numeric 40 chars

Optional Name/Value Pairs

WriteCase Optional NV Pairs

Name Description

Recid A valid Case record ID to modify, passed only on a modify call. Required for updates.

Accountno Accountno of the contact to link with the Case

Number The case number - required for new - alpha numeric 40 chars

User The GoldMine user name to assign the case to. If not passed, assumed to be the logged in
user.

IsTemplate Use this case as a template - 1 = template, 0 = not

IsRead Has been read 1= true, 0 = false

Status
A numeric representation of the status. 0 = <unknown>, 1 = assigned, 2 = reassigned, 3 =
escalated, 4 = resolved, 5= abandoned, 6 = open, 7 = closed

Priority A priority code created by the users. Alpha numeric 40 chars

Source The source of the case - alpha numeric 40 chars

Category A category code created by the user - Alpha numeric 40 chars

Type Type code created by the user - Alpha numeric 40 chars

Offering A data field mainly used to list what you've offered to the case subject 200 chars

Subject A short description reference 200 chars

Description A long description of the case issues and steps

Notes This field is deprecated for adding notes to a case. Please use WriteNote.

ResolutionType A user defined resolution code - alpha numeric 40 chars

ResolutionNotes This field is deprecated for adding notes to a case. Please use WriteNote.

DueDate
The date that resolution is due. The format must be date then time in your locale's format
(3-16-07 10:00 am)

ResolvedBy The goldmine user that resolves the issue

Page 287 of 463

ResolvedDate The date of actual resolution. The format must be date then time in your locale's format
(3-16-07 10:00 am)

HTMLNotes Boolean that determines if the notes passed are pre formatted for HTML. 1= true, 0 =
false, default is 0

AppendNotes
Boolean that determines if notes are overwritten or a new note is appended to the end.
1= append, 0 = overwrite. Default is 1

Error Codes

WriteCase Error Codes

Code Description

1 Success

0 No NV container passed

-1 Required NV pairs not passed

-2 Valid case id not passed

-3 Could not open Cases table

-4 Could not find CaseID

-5 Could not open CaseTeamLink table

-6 Could not initialize new record

-7 Attempt to append new record failed

Output Name/Value Pairs

RecID returns the RecID in a name-value container if a new record was created.

Creating or Updating a Case Attachment (GoldMine 8.0 or
higher)

WriteCaseAttachment creates or updates a CaseAttachment.

Required Name/Value Pairs

The following fields are required for new records: CaseID, RecType, Describes, Title and Location. See the
following table for details.

Optional Name/Value Pairs

WriteCaseAttachment Optional NV Pairs

Page 288 of 463

Name Description

RecID A valid CaseAttachment table recid to modify, passed only on a modify call. Required for
updates.

CaseID A valid Case table recid to attach the file or link to. Required if new.

RecType The recType, an integer of 0 or 1. 0 = File, 1 = Link. Required if new.

Describes An integer of 0 or 1. 0 = Problem, 1 = Solution. Required if new.

Title The title for the file - Alpha numeric 100 chars. Required if new.

Location The URI for the file or link. Alpha-numeric 512 chars. Required if new.

Error Codes

WriteCaseAttachment Error Codes

Code Description

1 Success

0 No NV container passed

-1 New with invalid case id

-2 New and missing required values

-3 Could not open Cases table

-4 Could not find CaseID in case table

-5 Couldn't open CaseAttachement table

-6 Could not init new record or find and lock the record to be modified

-7 Invalid rectype passed

-8 Invalid describes value passed

Output Name/Value Pairs

RecID returns the RecID in a name-value container if a new record was created.

Adding a GoldMine User as a Case Team Member (GoldMine
8.0 or higher)

WriteCaseTeamLink adds a GoldMine user as a Team member for a case.

Required Name/Value Pairs

WriteCaseTeamLink NV Pairs

Page 289 of 463

Name Description

CaseID A valid Case table recid to add the user. Required for updates.

UserName The GoldMine User Name to add to the Case Team

Role The role for the user. User defined alpha numeric 40 chars.

Error Codes

WriteCaseTeamLink Error Codes

Code Description

1 Success

0 No NV container passed

-1 New with invalid case id

-2 New and missing required values

-3 Could not open Cases table

-4 Could not find CaseID in case table

-5 Could not open CaseAttachement table

-6 Could not init new record or find and lock the record to be modified

-7 Invalid rectype passed

-8 Invalid describes value passed

Output Name/Value Pairs

RecID returns the RecID in a name-value container if a new record was created.

Attaching an Automated Process
AttachTrack attaches an automated process to a contact record.

GoldMine API Version: 5.00.041

ATTACHTRACK Required Name/Value Pairs

Required NV Pairs

Name Description

AccountNo AccountNo of the contact record (Contact1) to which to attach the track.

Track

Page 290 of 463

UserID

Output Name/Value Pairs

RecID returns the new RecNo if a record was created.

Executing an SQL Query
SQLStream executes a SQL query and returns the data in a DataStream. For details, see .

GoldMine API Version: 5.00.041

Required Name/Value Pairs

SQL is the SQL statement to execute.

Optional Name/Value Pairs

SQLStream Optional NV Pairs

Name Description

Filter Xbase filter expression.

FldDlm Field delimiter. Defaults to CR.

RecDlm Record delimiter. Defaults to LF.

StartRec Starting record. Defaults to 1.

GetRecs Maximum records to return. Defaults to 100.

MaxBufSize Maximum buffer size. Defaults to 32k.

Raw (XML API
ONLY)

Indicates the format the data should be returned as. The default (“0”) puts the data into XML
format. Setting Raw to “1” returns the data stream in the old return packet format, as
described below.

Output Name/Value Pairs

Output is the return DataStream.

The packet header (the first 12 characters of the Output NV pair) record consists of two sections:

First byte can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another SQLStream call (be sure to set
the StartRec nv pair to one more than the number of records returned in the first call)

3 indicates the end-of-file (EOF)

4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in the packet.

Page 291 of 463

If the Raw parameter is set to 0 using the GoldMine XML API, the packet will be XML formatted. See the XML
Return Packet for information on interpreting this data format.

NOTE: If the return DataStream is too large for the specified buffer size, SQLStream returns a value of -5.
When the buffer in increased to an adequate size, SQLStream will return the data in a DataStream. The
practical upper limit for buffer size is 2 MB. If your query returns data in excess of 2 MB, we recommend
using DS_Query and DS_Fetch rather than SQLStream for better performance

Creating a Cont act Group
The CreateContactGroup function is used to create an empty contact group. Members are then added through the
AddContactGrpMembers function. For details, see “Adding Contacts to a Contact Group” on page .

GoldMine API Version: 5.70.20222

Required Name/Value Pairs

GroupName is the name of the group to be created.

Optional Name/Value Pairs

CreateContactGroupOptional NV Pairs

Name Description

GroupCode Group code.

UserName Group owner. The currently logged in user will be used if empty.

SyncGroup 1 (default) if the group should be synced. Otherwise 0.

Output Name/Value Pairs

CreateContactGroup Output NV Pairs

Name Description

GroupNo Group number of the created group. Use this to add members through the
AddContactGrpMembers function.

Return Codes

CreateContactGroup Return Codes

Code Description

1 Success

0 General Failure

-1 Missing group name

-2 Could not create the group

Page 292 of 463

Adding Contacts to a Contact Group
Once a contact group is created with CreateContactGroup, the AddContactGrpMembers function is used to add
contacts to that group. In addition, this function can be used to add members to existing groups.

GoldMine API Version: 5.70.20222

Required Name/Value Pairs

AddContactGrpMembers Optional NV Pairs

Name Description

GroupNo Group number.

Members
Multi value NV pair containing multiple NV pair containers. Each container stores
information for each contact to add to the group. See below for details of the child
containers.

Members NV Pair Child Container Name/Value Pairs

Members NV Pairs

Name Description

Accountno Accountno of the member to add

Reference Reference of the member.

Sort Sort value for the member

Members NV Pair Child Container Output Name/Value Pairs

Members Output NV Pairs

Name Description

MemberNo Recno/recid of the member record

Output Name/Value Pairs (parent container)

AddContactGrpMembers Output NV Pairs

Name Description

MembersAdded Number of members added.

Return Codes

Note that on the first instance the function encounters an error adding a member, it will stop adding members
and not continue through the list of requested members.

AddContactGrpMembers Return Codes

Page 293 of 463

Code Description

Success

General Failure

-1 Missing Group Number

-2 Unable to find group

-3 Cannot add member

-4 No members added

Using AddContactGrpMembers
Below are the steps you should take in order to populate the Members Name/Value pair correctly.

1. Create parent container using GMW_NV_Create.
2. Populate GroupNo Name/Value pair in parent container.
3. Create another container using GMW_NV_Create to serve as the child container (assign to a different long

variable).
4. Populate any common Name/Value pairs in the child container (i.e. Reference).
5. Loop through the contacts you want to add and do the following:

○ Assign Accountno name/value pair in the child container.
○ Assign any other optional name/value pairs in the child container (i.e. reference or sort).

6. Use the GMW_NV_AppendNvValue function to copy the contents of the child container to a new container
within the Members name/value pair of the parent container:

GMW_NV_AppendNvValue (lParentGMNV, “Members”, lChildGMNV)

7. Execute WriteSchedule.

Reading a Record
ReadRecord reads a record from the specified table, based on RecID. When the TableName=Contact1, all Contact2
fields will also be returned. Any record that is inaccessible through GoldMine due to record curtaining will not be
returned. Any fields inaccessible through GoldMine due to field-level access restrictions will not be returned.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

ReadRecord Required NV Pairs

Name Description

TableName GoldMine table to read.

RecID RecID of the Contact1 record to return.

Page 294 of 463

Optional Name/Value Pairs

Address Block returns the address as one block of text instead of in separate fields for Address1, Address2, City,
State, and so on, when equal to 1.

Special NVs

AccountNo can be used to find the record instead of RecID if TableName=Contact1.

Output Name/Value Pairs

All field values for the specified record.

ReadRecord Output NV Pairs

Name Description

Email Returns the primary e-mail address if TableName=Contact1.

Website Website profile will return if TableName=Contact1.

CurtainingState
Indicates level of curtaining for returned record. 0 – none, 1 – partial, 2- full. Use this to
save a call to IsContactCurtained.

Return Codes

ReadRecord Return Codes

Code Description

1 Success

0 General Failure

-1 No access to the record

-2 Record not found

-3 Invalid parameters

Reading a Contact1 or Contact2 Record
ReadContact reads a contact record from Contact1 and Contact2. Any record that is inaccessible through
GoldMine due to record curtaining will not be returned. Any fields inaccessible through GoldMine due to field
level access restrictions will not be returned.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

RecID is the RecID of the Contact1 record to return.

Page 295 of 463

Optional Name/Value Pairs

AddressBlock returns the address as one block of text instead of in separate fields for Address1, Address2, City,
State, and so on, when equal to 1.

Special NVs

AccountNo can be used to find the record instead of RecID if TableName=Contact1.

Output Name/Value Pairs

All Contact1 and Contact2 field values.

ReadContact Output NV Pairs

Name Description

Email Returns the primary e-mail address if TableName=Contact1.

Website Website profile will return if TableName=Contact1.

CurtainingState
Indicates level of curtaining for returned record. 0 = none, 1 = partial, 2 = full. Use this to
save a call to IsContactCurtained.

Return Codes

ReadContact Return Codes

Code Description

1 Success

0 General Failure

-1 No access to the record

-2 Record not found

-3 Invalid parameters

Returning Alerts Attached to a Contact Record
GetContactAlerts returns all alerts attached to a contact record.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

GetContactAlerts Required NV Pairs

Name Description

RecID RecID of the Contact1 record to return. You can optionally use AccountNo.

Page 296 of 463

AccountNo AccountNo of the Contact1 record. You may optionally use RecID.

Output Name/Value Pairs

The function returns the number of contact alerts in the AlertsCount Name/Value. For each alert, the function
returns five fields. Each set of alert fields has the alert number appended to the field name (represented by X in
the following table).

GetContact Alerts Output NV Pairs

Name Description

AlertsCount Number of alerts.

CodeX Three-character alert code.

DescX 80-character description.

NotesX 64k of RTF alert message (optional).

CreatorX User that assigned the alert.

SaveHist
Value of 1 indicates that GoldMine will save a history record when the user acknowledges
the alert.

Return Codes

GetContactAlerts Return Codes

Code Description

0 No PNV or no alerts found.

>0 The number of alerts returned.

Attaching an Alert
SetContactAlert attaches an alert to the specified contact record. To generate an alert list, execute the
GetAllAlerts function.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

SetContactAlert Required NV Pairs

Name Description

RecID RecID of the Contact1 record to which to attach this alert. You can optionally use
AccountNo.

AccountNo AccountNo of the Contact1 record. You can optionally use RecID.

Page 297 of 463

Code Three-character Alert Code.

Creator Creator of the Alert.

SaveHist A history record is generated each time the Alert is acknowledged if set to 1.

Output Name/Value Pairs

None.

The GMW_Execute function will return the following values:

GMW_ExecuteReturn Values for SetContactAlert

Return Description

0 Contact not found

1 Alert is added

2 Alert is already attached

Returning All Alerts
GetAllAlerts returns all alerts defined within GoldMine.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

None.

Output Name/Value Pairs

The function returns the number of contact alerts in the AlertsCount name value. For each alert, the function
returns five fields. Each set of alert fields has the alert number appended to the field name (represented by X
below):

GetAllAlerts Data Fields Returned

Name Description

AlertsCount Number of alerts.

CodeX Three-character alert code.

DescX 80-character description.

NotesX 64k of RTF alert message (optional).

Returning a User List
GetUsersList returns a list of all GoldMine users.

GoldMine API Version: 5.00.041

Page 298 of 463

Required Name/Value Pairs

None.

Output Name/Value Pairs

GetUsersList Required NV Pairs

Name Description

UserList Comma-delimited list of all user names

UserCount Number of users in the list

UserGroupsList Comma-delimited list of user groups

UserGroupsCount Number of user groups

The GMW_Execute function will return the same value as UserCount.

Returning a User Group Member List
GetGroupUsersList returns a list of all members of a GoldMine user group.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

GroupNo is the user group number. See the GetUsersList or GetUserMemberships functions for information on
how to retrieve a UserGroupsList and their numbers.

Output Name/Value Pairs

GetGroupUsers List Output NV Pairs

Name Description

UserList Comma-delimited list of all user names

UserCount Number of users in the list

The GMW_Execute function will return the same value as UserCount.

Returning Group Memberships for a Specified User
GetUserMemberships returns a list of all user group memberships for the specified UserID.

GoldMine API Version: 5.00.041

Required Name/Value Pair

UserID is the GoldMine user name.

Page 299 of 463

Output Name/Value Pairs

GetUserMemberships Output NV Pairs

Name Description

UserGroupsList Comma-delimited list of user group numbers of which the user is a member

UseGroupsCount Number of users in the list

The GMW_Execute function will return the same value as UserGroupsCount.

Saving a User Group
WriteGroupUsersList saves the user members to a user group. You must have Master Rights to execute this
function.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

WriteGroup UsersList Required NV Pairs

Name Description

GroupNo User group number. For details on retrieving a UserGroupList name and number,
see the GetUsersList or GetUserMemberships functions.

UserList Comma-separated list of users who are members of the specified group.

Output Name/Value Pair

UserCount is the number of updated user records.

The GMW_Execute function will return the same value as UserCount.

Retrieving the Names of User Groups
GetGroupName returns the descriptive names given for a comma-delimited list of group numbers.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

GetGroupNameRequired NV Pairs

Name Description

GroupList Comma-delimited list of group number for which to retrieve names (for example: 1,4,5,8)

Return Name/Value Pairs

GetGroupNameReturn NV Pairs

Page 300 of 463

Name Description

GroupCount Number of groups actually found

Each Group
Number

The corresponding name for the group number specified as the value

Example

GroupCount = 4

1 = MyGroup

2 = Techs

3 = Sales

4 = Management

Evaluating an Xbase Expression on a Contact Record
XbaseContactExpr parses a contact- related Xbase expression and return the result and type of the expression. It is
possible to parse multiple expressions in one call.

GoldMine API Version: 5.50.10111

Name/Value Pairs

XbaseContactExprNV Pairs

Name Description

AccountNo Account number of the contact to parse against

XbaseExpr Expression to parse, or

ExprCount Number of expressions to parse, and

XBaseExpr1 ..
XBaseExprN

Expressions to parse

Returned Name/Value Pairs

XbaseContactExpr Returned NV Pairs

Name Description

Result Result of parsing the expression

Page 301 of 463

Type

Type of the expression. Possible values:
0 – Error
1 – Number
2 – String
3 – Date
5 – Bool, or

Result1 . . ResultN Result of each expression

Type1 .. TypeN Type of each expression—see type above for possible values

Return Values

The XbaseContactExpr function returns the following status values:

XbaseContractExpr return values

Value Description

-2 Contact was not found

-1 No accountno given

0 No expression

1..N Number of correctly parsed expressions

Encrypting Text
The EncryptString function encrypts a plain text string to a Base64 ASCII encoded buffer.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

EncryptString Required NV Pairs

Name Description

Key Key to use. This can be any value.

ClearText Text to encrypt.

HashKey
Set to “1” to specify the key to be hashed before use. Provides better security if the key is
very simple.

Returned Name/Value Pairs

EncryptStringReturned NV Pairs

Page 302 of 463

Name Description

CryptText Encrypted string in an ASCII encoded buffer (Base 64).

Decrypting Encoded Text
The DecryptString function decrypts encoded text.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

DecryptStringRequired NV Pairs

Name Description

Key Key to use. Must be the same as when encrypting.

CryptText Text to decrypt.

HashKey
Set to “1” to specify the key to be hashed before use. Provides better security if the key is
very simple.

Returned Name/Value Pairs

DecryptString Returned NV Pairs

Name Description

ClearText Decrypted string. The text is padded with spaces to be on a 64-bit (8 bytes) boundary.

Retrieving the Default Contact Automated Process
Within GoldMine, a user can specify a particular Automated Process (AP) to be attached to new contact records.
The GetNewContactAP function returns the RecID of the Automated Process that is assigned to automatically
attach to new records. The NV Pair in which the Automated Process RecID is returned is called NewContactAP. The
function returns 1 on success, and 0 on failure.

Deleting Calendar Items
The DeleteSchedule function is used to delete scheduled activities.

GoldMine API Version: 5.50.10111

Required Name/Value Pair

DeleteSchedule Required NV Pair

Name Description

RecID RecID of the scheduled item to delete (Cal record RecID)

Page 303 of 463

Return Values

Value Description

0 OK

-1 Empty or bad RecID value

-2 Can’t open database

-3 Cal record not found

-4 Failed to delete

-9999 General exception (unknown error)

Deleting History Items
The DeleteHistory function is used to delete completed activities.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

DeleteHistory Required NV Pairs

Name Description

RecID RecID of the history item to delete (ContHist record ID)

Return Values

Value Description

0 OK

-1 Empty or bad RecID value

-2 Can’t open database

-3 ContHist record not found

-4 Failed to delete

-9999 General exception (unknown error)

Page 304 of 463

Handling GoldMine Security
An important part of your integration considerations should be how you will handle the security of your GoldMine
database. All business logic functions that write and read from the GoldMine database adhere to the security
settings for the user logged in through GMW_LoadAPI or GMW_LoadBDE. Additional functions are provided to aid
in managing GoldMine security.

Creating a New GoldMine Login
WriteGMUser enables you to create GoldMine user names. The user logged into the API must have master rights.

GoldMine API Version: 5.50.10111

Name/Value Pairs

WriteGMUser NV Pairs

Name Description

UserName Username to add

Password Password for the user

FullName Full name of the user

SQLUser SQL login to be used for this user if connecting to an MS SQL database

SQLPassword Password for the SQL login

MasterUser Set to “1” to enable master rights for this user, otherwise “0”

Return Values

WriteGMUser returns “1” on success and “0” on failure.

Reading a GoldMine Login
The ReadGMUser function returns detailed information about a GoldMine Login.

GoldMine API Version: 6.00.21021

Output Name/Value Pairs

ReadGMUserNV Pairs

Name Description

UserName Username to add.

Page 305 of 463

Password Password for the user

FullName Full name of the user

SQLUser SQL login to be used for this user if connecting to an MS SQL database

SQLPassword Password for the SQL login

MasterUser

Return Values

ReadGMUser returns “1” on success and “0” on failure.

Retrieving Security Access
GetUserAccess returns the security information specified for the currently logged-in user.

GoldMine API Version: 5.50.10111

GetUserAccess Return Name/Value Pairs

Name Description

SQLUser SQL Username specified for this user

Master Whether or not the user has master rights: 1 master, 0 not

Page 306 of 463

AccessRights

This name/value pair consists of a set of flags indicating the access rights the user has
to various areas of GoldMine. Each permission is either granted or denied based on
the value of its position in the set of flags. A value of “1” signifies the permission is
granted, and “0” if it is denied. Below is a chart of the positions in the set of flags and
their corresponding permission:

Position Permission
2 Others Calendar
3 Others History
4 Others Forecasts
5 Others Reports
6 Others Forms
7 Others Filters
8 Others Groups
9 Others Linked Documents
12 Create new contact records
13 Edit Fields
14 Delete contact records
15 Assign contact record owners
16 Edit tab folders
17 Schedule automated processes
19 Issue SQL Queries
20 Netupdate
21 Output To menu
25 Build groups
35 Real time tab
36 Toolbar settings

UsersCALENDAR The user group’s calendar that this user has permission to view. Valid if permission is
set. See AccessRights name/value pair.

UsersHISTORY The user group’s history that this user has permission to view. Valid if permission is
set. See AccessRights name/value pair.

UsersLINKS
The user group’s linked documents that this user has permission to view. Valid if
permission is set. See AccessRights name/value pair.

UsersGROUPS
The user group’s contact groups that this user has permission to view. Valid if
permission is set. See AccessRights name/value pair.

UsersREPORTS The user group’s reports that this user has permission to view. Valid if permission is
set. See AccessRights name/value pair.

Page 307 of 463

UsersFILTERS The user group’s filters that this user has permission to view. Valid if permission is set.
See AccessRights name/value pair.

UsersFORMS
The user group’s forms that this user has permission to view. Valid if permission is set.
See AccessRights name/value pair.

UsersSALES
The user group’s sales that this user has permission to view. Valid if permission is set.
See AccessRights name/value pair.

ForceLogoutAt The time (AM/PM) that this user will be forced to exit GM.

IdleLogout The amount of time (in minutes) that GM will remain idle before shutting down.

MenuExclusion
A string containing the menu ID's that are excluded from the user's instance of GM,
delimited by an underscore. Ex. "344_531_164_"

NewRecOwnership
A Boolean value that states whether or not new users are automatically assigned to
this user.

Retrieving Field-Level Access Rights
FieldAccessRights returns a list of all fields and the access right for the logged-in user for each.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

FieldAccessRightsOutput NV Pairs

Name Description

TotalFieldCount Number of fields returned

Field Names
(for example, COMPANY, CONTACT, KEY1)

Possible values:
N - No Access
R - Read Access
W - Read/Write Access

Example NV Container Returned from FieldAccessRights

TotalFieldCount = 3
COMPANY = R
CONTACT = W
ACCOUNTNO = N

Retrieving Visible Fields
NonCurtainedFields returns a \n delimited list of fields visible on partially curtained records. The list is returned in
the NonCurtainedList and SemiPartNonCurtainedList name/value pairs. The latter pair indicates which fields are
visible when the contact record is semi-partially curtained (all four top quadrants of the contact record are visible)
and is only returned in GoldMine 6.0 and greater.

Page 308 of 463

NOTE: You must pass an empty NV container with all calls that do not take any parameters.

Checking for Record Curtaining
IsContactCurtained tests a contact record for curtaining.

Required Name/Value Pairs

IsContactCurtained Required NVPairs

Name Description

RecID Record ID of the Contact1 record to test. AccountNo can be passed in place of this
Name/Value pair.

AccountNo
AccountNo of the Contact1 record to test. RecID can be passed in place of this Name/Value
pair.

Output Name/Value Pair

Curtain NV pair return values

Value Description

0 Not curtained

1 Partial curtaining

2 Fully curtained

The GMW_Execute function will return TRUE if the record was found.

Generating a Remote License File
CreateRemoteLicense generates a license file for a remote user or site. The resulting license.dbf (6.7 or lower) or
license.bin (7.0 or higher) file will be stored in a subdirectory off a specified path. If the path specified is C:\temp,
then the file will be in C:\temp\user where “user” is the GoldMine username provided to the function.

GoldMine API Version: 5.50.10111

Name/Value Pairs

CreateRemoteLicense Required NV Pairs

Name Description

UserName User or site name

LicPath
Location to place the license files. If left empty, the file will be put in a directory called UserLic
under the sysdir (GoldMine directory)

LicType U (undocked) or S (site)

Page 309 of 463

SiteUsers For a sublicense site, the number of users at that site

Return Name/Value Pairs

CreateRemoteLicense returns one NV pair called “Result” with the following return codes. This code is also
returned as the function’s result value.

CreateRemoteLicense Return Result Codes

Value Description

1 OK

0 General Error

-1 No Username

-2 User already undocked

-3 Cannot open user file

-4 User not found

-5 Undocked license count exceeded

-8 Cannot create the new license file

Removing a Remote License
RemoveRemoteLicense removes an undocked user or sub-license site.

GoldMine API Version: 5.50.10111

Name/Value Pairs

RemoveRemoteLicense NV Pairs

Name Description

UserName User Name or Site Name

LicType U (undocked) or S (sublicense site)

Return Name/Value Pairs

RemoveRemoteLicense returns one NV pair called “Result” is returned with the following return codes. This code
is also returned as the function’s result value.

RemoveRemoteLicense Return Result Codes

Value Description

1 Success

Page 310 of 463

0 General Error

E-mail Name/Value Functions
This set of functions allows the manipulation of GoldMine and Internet e-mail.

Reading a Mail Message
The ReadMail function reads an e-mail message based on either the RecID in the Mailbox table or the Cal/ContHist
tables. A flag is required to specify whether the function should look in the Cal tables or ContHist tables. The mail
message can be opened for editing or reading.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

None.

Optional Name/Value Pairs

ReadMail Optional NV Pairs

Name Description

MboxRecID Mailbox RecID. Either this NV pair or the RecID NV pair must be included.

RecID Cal/History RecID.

History Flag identifying location of RecID provided. 1 for History, 0 or nothing for Cal.

ForEdit 1 to open for editing, 0 or nothing if for reading.

Password Password to decrypt the message if it was encrypted on send.

READMAIL Output Name/Value Pairs

Output NV Pairs

Name Description

RecID Cal/History RecID

MboxRecID Mailbox RecID

Page 311 of 463

MailboxFlags

Collection of flags:
MAILBOX_ITEM_READ 0x0001
MAILBOX_ITEM_HIST 0x0002
MAILBOX_ITEM_OUTBOUND 0x0004
MAILBOX_ITEM_ATTACH 0x0008
MAILBOX_ITEM_REDIRECT 0x0010
MAILBOX_ITEM_GMASLINKS 0x0020

To List of all the To: recipients. Comma-delimited and quoted if needed.

Cc List of all the CC: recipients. Comma-delimited and quoted if needed.

Bcc List of all the Bcc recipients. Comma-delimited and quoted if needed.

ReplyTo Reply to address (if any)

From The from address of the message. Will usually be the default user account, but can
contain other addresses.

Subject Subject

Org Organization that will appear in the header.

MessageID MessageID from the header.

Status Message status from the header.

Date Internet standard date from the header.

XMailer XMailer from the header.

OtherHeaders Other headers not categorized above.

Body Message body. This will be different in edit mode.

Attachments A question mark delimited list of attachments.

Alarm 1 if set, 0 if not.

History 1 if from History, 0 if not.

Private 1 if private, 0 if not.

RSVP 1 if marked for RSVP, 0 if not.

ReturnReceipt 1 if requested, 0 if not.

Encrypted 1 if the message is encrypted, 0 if not.

Outgoing Message is an outgoing message (queued for delivery or already sent): 1 or 0.

Page 312 of 463

MailType Following types are possible:
SMM_Internet 0 This is the one to handle
SMM_GoldMine 1 Only exists for compatibility with GoldMine 4.0
SMM_Template 2 Template mails.

IsMIME 1 if MIME based message, 0 if not.

AccountNo Accountno of the linked contact (or empty).

LinkedContact If an additional contact is linked this will have the ContSupp RecID.

LinkedOppty RecID of the linked opportunity or project (if applicable).

Activity Activity Code

Result Result Code

CalDate Calendar/History date

CalTime Calendar/History time

Contact Contact name

CreateBy
User who created the mail or “Internet” if the message was retrieved from the mail
server.

Folder Folder in which the message is stored.

SubFolder Subfolder in which the message is stored. No value will be returned if the message(s)
already exist in the Inbox or Outbox.

RecType
RecType of the Calendar record:
In Cal: Q = Queued mail, M = Incoming
In History: MI = Incoming, MO = Outgoing

Reference Calendar/History reference. Usually initialized from the subject automatically.

User User who owns the message belongs.

HasTransferSet 1 if the e-mail message has a transfer set attached to it, 0 if not.

HasVCard 1 if the e-mail message has a Vcard attached to it, 0 if not.

HasWebImport 1 if the e-mail message has a WebImport attached, 0 if not.

Return Codes

ReadMailReturn Result Codes

Value Description

1 Success

Page 313 of 463

0 Failure

-1 Message is private

-2 Message not found, or cannot be loaded

-3 Exception

Queuing a Message for Delivery
The QueueMail function queues a message for delivery. The actual delivery is not handled through the DLL. It is
recommended to set up a specific user in GoldMine responsible for sending multiple users’ mail on a regular basis.

If the message to be queued already exists within GoldMine, pass either the Mailbox RecID or the
Calendar/History RecID with the history flag. When queuing a new message, do not provide values for the RecID
name/value pairs or the flag.

GoldMine API Version: 5.50.10111

QueueMail Optional NV Pairs

Name Description

MboxRecID The mailbox RecID. Either this NV pair or the RecID NV pair must be included.

RecID The Cal/History RecID.

History Flag identifying location of RecID provided. 1 for History, 0 or nothing for Cal.

To A list of To: addresses delimited by commas and double-quoted as needed

Cc A list of CC addresses delimited by commas and double-quoted as needed

Bcc List of Bcc addresses delimited by commas and double-quoted as needed

ReplyTo Reply-to address

OtherHeaders Special headers, if needed

Organization Organization field

From From address

Subject Subject of the message.

BodyText Body text

TextRTF Set to non-zero if the text should be in RTF format

NumAttachments Number of attachments to send

Attachment0..AttachmentN
Indexed list of attachments. The first attachment NV pair will be Attachment0,
then Attachment2, and so on.

Page 314 of 463

MailboxFlags See ReadMail

AccountNo Accountno of the contact to which the message is linked

OpptyRecID RecID of an opportunity or project to which the message should be linked

LinkedContact RecID of the contsupp record of an additional contact, if so linked

ActivityCode Activity code

CalDate Calendar date – the date to actually send the message

CalTime Calendar time – the time to actually send the message

Reference Reference in the calendar record

Result Result code

User User name

Private 1 to mark as Private, 0 if not

RSVP 1 to request a RSVP, 0 if not

Alarm 1 set alarm, 0 if not

ReturnReceipt Request a return receipt. The value portion of the pair should be the return
address to which to send the receipt.

SaveAsDraft Set to 1 if the message should be saved as a draft and not queued.

UseMIME
Set to 1 to force the message to be a MIME message even if no attachments
are available, otherwise 0.

AttachVCard Set to 1 to attach the user Vcard to the message, otherwise 0

SendNow Set to “1” to send the message immediately without queuing it. Pertains to a
GoldMine user only (no Internet recipients).

Password
Specify a password to set this message to be encrypted. See also the
EncryptUSMode name/value pair.

EncryptUSMode
Set to “1” and specify a password to use the US encryption mode. This will be
forced to “0” if the license does not allow it.

Return Name/Value Pairs

QueueMail Return NV Pairs

Name Description

RecID Calendar/History RecID

Page 315 of 463

MboxRecID Mailbox RecID

MailBoxFlags Mailbox flags (see above for description)

Updating a Mail Message
The UpdateMail function allows the modifying of the opportunity with which the mail is associated and indicates
whether the message has been read, its encryption state, and whether or not it is private.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

UpdateMail Required NV Pairs

Name Description

MboxRecID Mailbox RecID. Either this NV pair or the RecID NV Pair must be included

RecID Cal/History RecID

History Flag identifying the location of RecID provided. 1 for History, 0 or nothing for Cal.

Optional Name/Value Pairs

UpdateMail Optional NV Pairs

Name Description

OpptyRecID Opportunity with which the message is associated.

Private Set to 1 to mark the message as private, otherwise 0.

MarkRead Set to 1 to mark the message as having been read, 0 for unread.

Password Password to decrypt the message.

EncryptUSMode Set to 1 for 128-bit encryption, 0 for 32-bit encryption.

Saving a Mail Message into GoldMine
The SaveMail function enables you to save a mail message into GoldMine when the actual sending or retrieval of
the message took place in an outside application. The folder/subfolder specified to save the message to will be
created by GoldMine if needed. There’s no need to create it beforehand.

GoldMine API Version: 5.50.10111

The NV Pairs coincide with the QueueMail function. SaveMail also has the following additional NV pairs:

Optional Name/Value Pairs

SaveMail Optional NV Pairs

Name Description

Page 316 of 463

OutgoingMail Set to 1 if mail was sent by the user. Don’t include, or set to 0, if it was received mail

Folder
The name of the folder in which to put the mail. If nothing is given, it will be put in the
Inbox or Outbox according to the OutgoingMail NV pair

SubFolder
The name of the subfolder in which to put the mail. Folder must also be defined. To put it
in a sub-inbox, set Folder to “X-GM-INBOX”

Return Codes

The SaveMail function returns the following values:

SaveMail Return Codes

Value Description

Cannot initialize

-1 Cannot queue the message

-2 Can’t save the message (for incoming e-mail)

-3 Can’t complete the message to the requested folder

-4 An existing message was loaded. SaveMail works only with new messages.

Deleting a Message
The DeleteMail function deletes a message according to the settings specified for the user within GoldMine (use
trashcan or not, delete attachments or not). A message can be deleted based on either the Mailbox RecID or the
Calendar/History RecID with a flag to tell the function if it should look in the Calendar or History table.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

DeleteMailRequired NV Pairs

Name Description

MboxRecID Mailbox RecID for the record to be deleted, or

RecID Calendar/History RecID

History 1 if the RecID in the RecID NV pair is from the History table, or 0 if from the Calendar table

Filing a Message in History
The FileMail function files a mail message in history specified by the Mailbox table RecID.

GoldMine API Version: 5.50.10111

Page 317 of 463

Required Name/Value Pairs

FileMail Required NV Pairs

Name Description

MboxRecID Mailbox RecID for the record to be deleted

Optional Name/Value Pairs

FileMail Optional NV Pairs

Name Description

Folder Folder to file into

Subfolder Subfolder to file into

Result Result to be marked in history

ToUser Used to specify another username if filed on behalf of that user

Return Codes

FileMail Return Codes

Value Description

Success

General Failure

-1 Cannot initialize Internet-related structs

-2 Message doesn’t exist or can’t be loaded

-3 Cannot complete the message or the message is already filed

Preparing the NV Container for a New Mail Message
A number of options and templates are available to GoldMine users for sending e-mail within the GoldMine
program. For new messages being sent through the API, all of these can be accessed by utilizing the
PrepareNewMail function. This function will return a container containing the same NV pairs returned by the
ReadMail function reflecting the appropriate settings within GoldMine. You may then modify the container
accordingly and send the message with QueueMail.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

None.

Page 318 of 463

Optional Name/Value Pairs

PrepareNewMailOptional NV Pairs

Name Description

LinkToAccount AccountNo of the contact to link the new message to.

LinkToAddContact
RecID of the additional contact record to link to. LinkToAccount must also be
specified.

ManualTo Specific e-mail address to send to.

MailType Pass a 1 to indicate creation of an internal GoldMine mail message.

Return Name/Value Pairs

Same as ReadMail

Preparing the NV Container to Reply to a Mail Message
A number of options and templates are available to GoldMine users for sending e-mail within the GoldMine
program. All of these can be accessed for replying to messages sent through the API by utilizing the
PrepareReplyMail function. In addition, the body text of the message may be returned containing quoted text
from the message being replied to. This function will return a container containing the same NV pairs returned by
the ReadMail function reflecting the appropriate settings within GoldMine. You may then modify the container
accordingly and send the message with QueueMail.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

PrepareReplyMail Required NV Pairs

Name Description

FromRecID RecID from Cal or ContHist of the message replied to

FromHist 1 if the message is in History (contHist), otherwise assumed to be in Cal

QuoteText
Text to quote in the reply. If this NV pair is left empty, the full message text will be
quoted. If so, set in the user’s mail preferences.

ReplyToAll Reply to all recipients of the original message, not just the sender

ToEMail Set to 0 if replying to a non-mail activity

Optional Name/Value Pairs

PrepareReplyMailOptional NV Pairs

Page 319 of 463

Name Description

LinkToAccount AccountNo of the contact to whom to link the new message.

LinkToAddContact
RecID of the additional contact record to link to LinkToAccount must also be
specified.

Return Name/Value Pairs

Same as ReadMail—see .

Preparing an NV Container to Forward a Mail Message
A number of options and templates are available to GoldMine users for sending e-mail within the GoldMine
program. For forwarded messages being sent through the API, all of these can be accessed by using the
PrepareFwdMail function. In addition, PrepareFwdMail includes the original message body text and header
information to be forwarded. This function will return a container containing the same NV pairs returned by the
ReadMail function reflecting the appropriate settings within GoldMine. You may then modify the container
accordingly and send the message with QueueMail.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

PrepareFwdMail Required NV Pairs

Name Description

FromRecID RecID from Cal or Conthist of the message replied to

FromHist 1 if the message is in History (conthist), otherwise assumed to be in Cal

Redirect Pass a 1 to create a redirected mail instead of forwarded.

ForwardToGMUser Set to 1 to forward the mail to a GoldMine user instead of another contact record.

FwdToUser If ForwardToGMUser is set, then set to the desired GoldMine username to forward the
message to.

Optional Name/Value Pairs

PrepareFwdMail Optional NV Pairs

Name Description

LinkToAccount Accountno of the contact to link the new message to.

LinkToAddContact
RecID of the additional contact record to link to. LinkToAccount must also be
specified.

Page 320 of 463

Return Name/Value Pairs

Same as ReadMail—see .

Adding an E-mail Center Folder
Use AddFolder to create a folder and/or subfolder in the E-mail Center. If both the folder and the subfolder do
not exist, then both will be created.

GoldMine API Version: 5.50.10111

Name/Value Pairs

AddFolder NV Pairs

Name Description

Folder Folder name to be created—Required

SubFolder Optional subfolder name

User Optional user name. Defaults to the logged-in user

Deleting an E-Mail Center Folder
Use DeleteFolder to remove folders or subfolders from the E-Mail Center. If both a folder and subfolder are
supplied, only the subfolder will be deleted. Any messages included in the specified folder are also deleted.

GoldMine API Version: 5.50.10111

Name/Value Pairs

DeleteFolder NV Pairs

Name Description

Folder Folder name—Required

Subfolder Optional subfolder name.

Obtaining a List of E-Mail Center Folders
The FolderList function returns a sorted list of folders from the E-Mail Center. Folders are returned with a prefix
of “0” if the folder is a top-level folder, or a prefix of “1” if it is a subfolder. System folders are not returned, only
user folders.

GoldMine API Version: 5.50.10111

Return Name/Value Pairs

FolderList Return NV Pairs

Page 321 of 463

Name Description

FolderCount Number of folders in the list

Folder1..FolderN List of folders

Example List of Folders
FolderCount = 6
Folder1 = 0Filed
Folder2 = 1January 2000
Folder3 = 2February 2000
Folder4 = 0Sent
Folder5 = 1January 2000
Folder6 = 2February 2000

FromList
The FromList function returns a list of unique From addresses to use in outgoing e-mail.

GoldMine API Version: 5.50.10111

Return Name/Value Pairs

FromList Return NV Pairs

Name Description

FromCount Number of From addresses returned

From0..FromN List of addresses, indexed from 0 to FromCount-1

History Flag identifying the location of RecID provided. 1 for History, 0 or nothing for Cal

Accessing E-mail Templates
The TemplateList function returns a list of e-mail templates for a specified user.

GoldMine API Version: 5.50.10111

Optional Name/Value Pairs

TemplateList Optional NV Pairs

Name Description

User Username for whom to get the list of templates. Default is the currently logged-in user

IncludePublic Set to “1” to include public templates

Return Name/Value Pairs

TemplateList Return NV Pairs

Page 322 of 463

Name Description

TemplateCount Number of templates in the list.

Name1..NameN Names of the templates, indexed from 0 to TemplateCount-1.

RecID1..RecIDN RecIDs of the templates, indexed from 0 to TemplateCount-1.

Retrieving E-mail Account Information
The GetAccountsList function returns a set of name/value pairs describing all e-mail accounts defined for the
currently logged-in user. Because a user may have multiple e-mail accounts defined, the name/value pairs are
indexed to identify the account that corresponds to the setting. The index number is appended to the beginning of
each name. The indexes begin with zero (0).

GoldMine API Version: 5.50.10111

Return Name/Value Pairs

GetAccountsList Return NV Pairs

Name Description

AccountsCount Number of accounts

DefaultAccountID Default account number

Indexed Name/Value Pairs:

AccountID ID needed by the other e-mail account-related functions (for example, OnlineList)

DisplayName Name of the e-mail account displayed in the E-mail Center. If available, the account
name is used, and if the user requests that mailto:user@server
will always be shown, then they’re appended to the account name.

User User to whom the profile is assigned (same as the logged-in user)

AccountName User-defined descriptive name given to the e-mail account

POP3Server Address of the POP3 server

Username Username for the POP3 server

Password Password for the POP3 account

OwnUser
User who owns the account. This is used so one user can retrieve e-mail for another
user. The result is that e-mail messages retrieved by JOHN but with OwnUser set to
MARY, will appear in MARY’s e-mail center, not in JOHN’s.

mailto:user@server
mailto:user@server

Page 323 of 463

POPAuthMode POP server’s authentication mode. Possible values:
0 – PASS
1 – APOP
2 – RPA
3 – NTLM

DeleteMail Set to “1” to auto-delete mail from this account, otherwise “0”

AutoRetrieve Set to “1” to auto-retrieve messages from this account, otherwise “0”

UseSigFile Set to “1” to use a signature file with this account, otherwise, “0”

SigFile Path and filename to the signature file if UseSigFile is set

POPPort POP3 Server’s port number

TOPSupport Set to 1 if the account supports the TOP command

ShowInIMC Set to “1” to show this account in the Internet Mail Center

SMTPServer SMTP Server address

ReturnAddress Return e-mail address for this account

SMTPPort Port number for the SMTP server

SMTPUser Username for the SMTP server, if the server requires authentication.

SMTPPass Password for the SMTP server, if the server requires authentication

SMTPAUTH Set to “1” if the SMTP server requires authentication

SMTPAUTHMode

Possible Values:
0 – None
1 – Login
2 - NTLM

Retrieving a List of Messages Waiting Online
The OnlineList function returns a list of all messages waiting online for the requested account. Each message’s
corresponding NV pairs are indexed from 1 to N according to the number of available messages. The index
numbers are appended to the end of the NV pair name.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

OnlineList Required NV Pairs

Name Description

AccountID AccountID to retrieve. Get this value from GetAccountsList.

Page 324 of 463

Return Name/Value Pairs

OnlineList Returned NV Pairs

Name Description

Error Will include an error message if an error occurred and there is a message to
present (like server error messages).

NumMessages The number of messages available online.

Indexed Name/Value Pairs:

Message_Subject Subject of the message.

Message_DispDate Date as displayed in the GoldMine E-mail Center.

Message_Date Date in the message.

Message_Time Time the message was sent.

Message_Address Address that sent the message.

Message_Size Size in bytes.

Message_DispSize Size as displayed in GM.

Message_Type

Possible Values:
0 – Plain
1 – Plain MIME (no attachments)
2 – Complex MIME
3 – GM Sync set

Message_AccNo Accountno to which this message is linked.

Message_UID Server UID of this message.

Message_Num Message number on the server—use for retrieval/delete.

Message_Mailer Mailer that generated the message.

Message_ReplyTo Reply-to address for this message.

Message_To Address to which the message is sent.

Message_CC CC (copy) addresses for the message.

Message_Bcc Bcc (blind copy) addresses for the message.

Message_GMUsersTo Comma-delimited list of GoldMine users to whom the message is being sent.

Message_GMUsersCc List of GoldMine users to whom the message is being copied.

Message_Org E-mail organization field.

Page 325 of 463

Message_OtherHeaders Other headers associated with this message.

Message_Read 1 if the message has already been read, otherwise 0.

Message_Headers Formatted headers as they appear in the preview window.

Message_Body Message body (according to the number of lines previewed in the E-mail Center).

Return Values

OnlineList Return Values

Value Description

1 Success

0 General Failure

-1 Invalid Account ID

-2 Protocol Error—see the description in error

-3 Comm error—see the description in error

-4 Timeout or other error—see the description in error

-5 Unknown error

Retrieving Messages
The RetrieveMessages function retrieves specified messages that are online. The returned name/value pairs will
have a message number appended to the end of the name.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

RetrieveMessage Required NV Pairs

Name Description

AccountID Account ID to use.

AllMessages Set to “1” for all messages to be retrieved.

MessageList Tab (\t) delimited list of message numbers (taken from OnlineList) to retrieve.

Return Name/Value Pairs

RetrieveMessage Return NV Pairs

Name Description

Page 326 of 463

Message_CalRec Cal RecID of the message, ***** if an error occurred

Message_MboxRec Mailbox RecID of the message, ***** if an error occurred.

Return Values

RetrieveMessages Return Values

Value Description

1 Success

0 General Failure

-1 Invalid Account ID

-2 Protocol Error—see the error description in error

-3 Comm error—see the error description in error

-4 Timeout or other error—see the error description in error

-5 Unknown error

Deleting Online E-mail Messages
The DeleteMessages function allows deletions of messages waiting online.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

DeleteMessages Required NV Pairs

Name Description

AccountID Account ID to use.

AllMessages Set to “1” for all messages to be deleted.

MessageList Tab (\t) delimited list of message numbers (taken from OnlineList) to delete.

Return Name/Value Pairs
The returned name/value pair will have each message number appended to the end of the name.

GoldMine API Version: 5.50.10111

DeleteMessages Return NV Pairs

Name Description

Message_Deleted “1” if the message was deleted successfully.

Page 327 of 463

Return Values

DeleteMessages Return Values

Value Description

1 Success

0 General Failure

-1 Invalid Account ID

-2 Protocol Error—see the error description in error

-3 Comm error—see the error description in error

-4 Timeout or other error—see the error description in error

-5 Unknown error

Saving a Manual List of Recipients
The SaveManualRcptList function will receive a list of manually provided recipients and save them to an .ini file.
The name/value pair list will be Recipient1.RecipientN with the values being the addresses you wish to add to the
list. Any missing entry will be saved as an empty address.

GoldMine API Version: 5.50.10111

Retrieving a Manual List of Recipients
The GetManualRcptList function returns a list of the saved manual recipient list. The return value will be “1” for
success and “0” for failure. The container will have a name/value pair NumberOfRecipients with the number of
recipients. Finally, it will contain Recipient0..RecipientN with the actual addresses.

GoldMine API Version: 5.50.10111

Managing Internet E-mail Preferences
GetEmailPrefs and SetEmailPrefs allow you to get and set the Internet preferences for the user. The preferences
correspond with the Internet Preferences dialog box within GoldMine. The functions work the same, except the
former receives information from GoldMine and the latter updates the data in GoldMine.

GoldMine API Version: 5.50.10111

IMPORTANT: Before calling SetEmailPrefs, the values of the e-mail preferences in the NV
pair container must be preloaded with GetEmailPrefs. Otherwise, all e-mail preferences
not included in the container for SetEmailPrefs will be deleted from GoldMine.

Page 328 of 463

Optional input (SetEmailPrefs) and Output (GetEmailPrefs) Name/Value Pairs

GetEmailPrefs and SetEmailPrefs Name/Value Pairs

Name Description

UserName (GoldMine 6.0 or
greater ONLY)

The GoldMine user whose e-mail preferences you wish to retrieve or set

MultiActive 1 – Show all accounts in the mail center
0 – Show only the default account

PreviewLines
Number of lines to preview in the E-Mail Center prior to downloading the
message

QuoteAll 1 to quote entire message by default when replying, otherwise 0

NewQuoteStyle 1 to specify a custom quote string identifier, otherwise 0

QuoteString Quote string identifier to be used if NewQuoteStyle is set. Ex: >>

Organization User-specified signature .txt file

UseOrg 1 to include the signature specified in Organization

SaveHistDefault 1 – Save filed mail in history by default
0 – Do not

AttachDir Folder in which to save attachments.

OnlyGMMail 1 – When auto retrieving, retrieve only mail from other GoldMine clients.
0 – Auto retrieve mail from all clients

SkipLarge If automatic retrieval is set, set to 1 to skip large e-mail message larger than
size specified in MaxEmailSize, otherwise 0

MaxEmailSize Limit on size of messages to be automatically retrieved if SkipLarge is set to 1

SkipNoAddress 1 indicates to not skip addresses not on file, otherwise 0

WarnAboutRTF 1 – warn user before sending HTML mail
0 – Do not

GetUnreadMail If automatic retrieval is set, set to 1 to retrieve only unread mail, otherwise 0

UseHeaderDate 1 to use the date in the mail header, otherwise 0

CompleteOnReply 1 to complete the original message being replied to, otherwise 0

UUEncodeScan 1 to scan mail for UUEncoded Data, otherwise 0

VcardAction 100 if incoming Vcards are not to be saved

Page 329 of 463

Use8BitEncoding 1 to use 8 bit encoding, otherwise 0

AutoSpell 1 to automatically spell check messages before sending, otherwise 0

ForceWrapAt When forcing line wrap, wrap at this specified column number

WrapReplyAt Wrap quoted lines in reply at this specified column number

LoadPublicTemplates 1 to show public e-mail templates, otherwise 0

ReadOnGet 1 to Open ‘Read E-mail’ dialog on retrieval, otherwise 0

LinkOnGet 1 – Prompt user if incoming e-mail address is not on file
0 – Do not

SkipOnDispose 1 – Go to next message in reader after disposing of (deleting/filing) the current
one
0 – Close the reader

ShowHeaders Settings for the mail center preview window headers display:
0 – no headers
1 – summary of headers only
2 – full headers display

UseTrashCan 1 to use trash can for deleted mail, otherwise 0.

EmptyTrashOnExit 1 to empty trash when closing E-Mail Center, otherwise 0.

ConfirmEmptyTrash 1 to confirm before deleting from trash can, otherwise 0.

ShowFullAccountName 1 to show both the e-mail address and the account name (if available) for
online accounts, otherwise 0.

DiscardWebImportMessages
1 to discard Web import message after the data has been imported, otherwise
0.

AutoWebImport
1 to import data when retrieving E-Mail Center mail, otherwise 0 (setting this
to 0 does NOT assume BackgroundWebImp).

BackgroundWebImp 1 to import data on background e-mail retrieval, otherwise 0 (setting this to 0
does NOT assume AutoWebImport).

SyncContact Sticky setting from the E-mail Center to move the current contact record to
the one the selected message belongs to. Set to 1 to activate, 0 otherwise.

KeepOldTransfers 1 to keep the transfer set attachments after retrieving them, otherwise 0.

AllowDeleteAll 1 to enable ‘Delete All Server Mail’, otherwise 0.

SendVCard 1 to use user-supplied V-card, otherwise 0.

Page 330 of 463

DefaultLinkAddr When linking an incoming e-mail in GoldMine, if the
e-mail does not exist within GoldMine, a dialog box appears to the user. There
is a checkbox indicating whether to keep the setting of how the unlinked
message is handled. To keep the setting, set this NV pair to 1, otherwise 0.

SyncAttachmentDefault 1 to mark attachments for syncing by default, otherwise 0.

ShowOutlookInIMC 1 to show the Outlook folder in the E-Mail Center, otherwise 0.

LinkAttachToCont 1 to save attachments as linked documents, otherwise 0.

MarkIncomingAsPrivate 1 to mark incoming messages as private, otherwise 0.

DelAttachWithMsg 1 to delete attachments when deleting the mail, otherwise 0.

KeepUserVCard

Every time GoldMine is restarted and a message is sent, GoldMine creates a
VCard for the sending user so that a correct VCard for the user can be sent
with the mail if so requested. The VCard is created from information GoldMine
has for the logged-in user. Sometimes a user may want to manually edit the
VCard to add or change information not available to GoldMine. In this case,
the user can ask GoldMine to not recreate the VCard from scratch and
GoldMine will use the existing VCard that the user modified. Set to 1 to have
GoldMine not create a new VCard, otherwise 0.

BccToSelf 1 to always send a Bcc to the user, otherwise 0.

UseShortDate 1 to use the short date format, 0 to use the long format.

GMAttachAsLinks 1 to send attachments as links to GoldMine users, otherwise 0.

POPIdleDisconnect
Number of minutes to wait without activity only in the E-mail Center before
automatically disconnecting. The default is 10 minutes.

SkipOverWriteUI 1 to suppress file overwrite prompt, otherwise 0.

RetrieveOverwrite Default action to be taken when an e-mail attachment file already exists.
Possible values:
4 – auto name assignment
5 – do not save the file
6 – overwrite existing file
7 – new file name

DefaultOUTFolder Folder name under which to put sent mail (replace the default sent folder).

DefaultINFolder Folder name under which to put filed mail instead of the default Filed folder.

MonthlyFolderNames List of folder names to replace the standard month names used in GoldMine
by default. Each month must be * separated and the last entry must be ???*

Page 331 of 463

NewFilingMode
(GoldMine 6.0 and greater
ONLY)

1 to indicate to use two-level filing mode

ActiveAutoGetMail 1 to activate automatic mail retrieval, otherwise 0.

GetInterval
Frequency in minutes to check for mail automatically, if ActiveAutoGetMail is
set.

SendQueueWhen
AutoGet

1 to send queued messages when ActiveAutoGetmail is set, otherwise 0.

GetOldToNew 1 to download old messages first, otherwise 0.

UseHTMLByDefault 1 to use HTML when creating new e-mail, otherwise 0.

ExtractEmbedded
HTML

1 to extract embedded HTML as attachment, otherwise 0.

TCPTimeout Number of seconds until a communication timeout.

SendQueueFor A semicolon-delimited list of GoldMine user names for which this account
should send queued e-mail.

FakeSMTPDomain
Used to present the system as a user-defined name if the name returned by
the system is not acceptable by the SMTP server.

DefaultTemplate Specify the default template name for new outgoing messages.

DefaultReplyTemplate Specify the default template name for new reply messages.

DefaultFwdTemplate Specify the default template name for new forwarded messages.

Quarantine-to Name of the quarantine directory to which the quarantine rules move files.

In addition, each e-mail account set up for the user is supplied or returned through a special multi-value item
named Profiles. The Profiles NV pair contains a set of containers; each holds information for a different e-mail
account. You can determine the number of accounts by calling the GMW_NV_GetMultiValueCount function.

To retrieve the HGMNV pointers for the child containers, call GMW-NV-GetMultiNvValue for each account to
retrieve.

If you are setting e-mail preferences, you will want to set the NV values for an e-mail account by using either:

○ GMW_NV_AppendNvValue, to copy a prepared container to the Profiles NV pair
or

○ GMW_NV_AppendEmptyNvValue, to create an empty child container within the Profiles NV Pair for which
you can later set the values.

See “” for more information on these functions.

Profiles child containers have the following NV Pairs.

Profiles Child Container NV Pairs

Page 332 of 463

Name Description

POP3_Account The user-editable descriptive name for the account

POP3_Server The server name or address

POP3_User The server user name

POP3_Pass The password for the account

Return_Address The return address

SMTP_Server The SMTP server name or address

SigFile The path to the signature file to use

OwnUser The user to which this account belongs. This is used so one user can retrieve e-mail for
another user. The result is that e-mails retrieved by JOHN but with OwnUser set to
MARY will appear in MARY’s e-mail center, not in JOHN’s.

DelServerMail Set to 1 to delete the messages from the server upon retrieval, otherwise 0

AutoGetMail Set to 1 to automatically retrieve mail for this account.

UseSigFile Set to 1 to use the specified signature file

ShowInIMC Set to 1 to show this account in the E-mail Center.

UseTOPCmd Set to 1 if this server supports the TOP command, otherwise 0

POP3_Port The POP3 server’s port number

SMTP_Port The SMTP server’s port number

POP3_AuthMode The POP server’s authentication mode. Possible values:
0 – PASS
1 – APOP
2 – RPA

SMTP_AuthMode Possible values:
0 – None
1 – Login
2 – NTLM

SMTP_User The username for the SMTP server, if the server requires authentication

SMTP_Pass The password for the SMTP server, if the server requires authentication

Validating a Web User Name and Password
ContactLogin validates a WebUserName/WebPassword assigned to a contact.

GoldMine API Version: 5.50.10111

Page 333 of 463

Required Name/Value Pairs

ContactLogin Required NV Pairs

Name Description

UserName Contact’s Web user name.

Password Contact’s Web password.

Special Name/Value Pairs

ContactLogin Special NV Pairs

Name Description

NewUserName Changes the existing Web username. Must be used with NewPassword, and a valid
UserName. Password must also be passed for verification.

NewPassword
Changes the existing Web password. Must be used with NewUserName, and a valid
UserName/Password must be passed for verification.

Output Name/Value Pairs

ContactLogin Output NV Pairs

Name Description

AccountNo Returns the AccountNo of the contact record

RecID Returns the RecID for the contact record

Notes

This function is useful when writing an extranet solution for GoldMine. To enable GUI access to these features, set
ContWebAccess=1 under the [GoldMine] section of your username.ini. You can then select Edit > Record
Properties > WebAccess to set the Web user/pass (maximum of 15 characters each). GoldMine stores Web access
data in ContSupp with a RecType of W. Each user name and password must be unique. This information does not
synchronize.

Manipulating User-Defined Fields and Views
Beginning in GoldMine 6.00.21021, the ability to read and write changes to the user-defined fields and views was
added to the GoldMine API. Most of the following functions use multi-container NV pairs. This means that a single
NV pair may contain multiple containers, each with their own set of NV pairs. For example, when reading field
views, there will be an NV pair named “View”. This NV pair will contain an entire NV pair container for each field
view in GoldMine containing a set of NV pairs that describe that view. In addition, each of those containers will
store an NV pair named “Field”. This NV pair will contain an entire NV pair container for each field defined on that
view, each with its own set of NV pairs describing that field. For information on how to read and manipulate multi-
container NV pairs, please see .

Page 334 of 463

IMPORTANT: The GoldMine user logged into the API must have master rights in order to
use these functions.

Reading All Field Views
The GetContactViews function returns all of the field views, including the custom screens, main contact record,
and the summary tab fields. As described above, this function utilizes multi-container NV pairs. Execute
GetContactViews, passing an empty NV pair container, to retrieve the following NV pairs describing the field
views.

GoldMine API Version: 6.00.21021

Output Name/Value Pairs

GetContactViews Output NV Pairs

Name Description

NumViews The number of views, including the Main and Summary views.

SelectedViewID The view currently selected for the Field tab of the contact record.

View
A multi-value list containing a container for each of the actual views. See the table below
for details of the NV containers this value stores.

VIEW Name/Value Pairs

The View NV Pair in the container returned by GetContactViews contains NV Pair containers with the following NV
Pairs describing the field views defined in GoldMine.

View NV Pair Output Container

Name Description

ID The view ID

Name The view name

TabName The tab name, if this view has one

UserAccess The user that is allowed to access this view.

CurrContactset If set to 1, then the view is visible in the current contact set, otherwise the value is 0

FieldCount The number of fields this view has.

Field
A multi-value list containing a container for each of the actual fields on the view. See the
table below for details of the NV containers this value stores.

Page 335 of 463

Field Name/Value Pairs

The Field NV Pair in the View container contains NV Pair containers with the following NV Pairs describing the
fields displayed on the view defined in GoldMine.

Field NV Pair Output Container

Name Description

VerticalCenter Y coordinate of the colon on the view

HorizontalCenter X coordinate of the colon on the view

LabelSize The length allowed for the label

EditWidth The width of the editable space for the field on the view

IndexNumber This is the index associated with this field and is used to decide if the field is
searchable (as in the Key fields).

FieldLen The physical length of the field in the database.

HotKey Reserved for future use.

TabOrder The tab order position for the field (the order in which the field will be selected when
pressing the tab key)

ExprField If 1, indicates an expression field, otherwise 0

PhoneFaxField If 1, indicates if the field is a phone or fax field.

ExtendedProperties If 1, this field has extended properties

LogInHistory If 1, any changes made to this field will be logged as a history record on the contact

ReadAccess Indicates the user or group that can read the contents of the field

WriteAccess Indicates the user or group that can modify the contents of the field

FieldName The physical field name

FieldExpr The field expression if ExprField = 1

GlobalLabel The global label for the field

LocalLabel The local label for the field

RecNo
Unique identifier for the field on the view. Needed to modify or delete the field from
the view.

LabelExpr Expression to evaluate to generate the field label

LabelColorExpr Contains the number representing the color of the label

Page 336 of 463

FieldColorExpr Contains the number representing the color of the field.

LabelReference
Text value to refer to an expression label (in the list of fields for the view, for
example)

GetContactViews Return Values

GetContactViews Return Values

Value Description

1 Success

0 General Failure

-1 Not a master rights user

-2 Field views cannot be loaded

Deleting a Contact View
The DeleteContactView function deletes the view specified by the view ID. This function accepts one input NV
pair, ViewID. Retrieve the ViewID with the GetContactViews function.

GoldMine API Version: 6.00.21021

DeleteContactViews Return Values

DeleteContactViews Return Values

Value Description

1 Success

0 General Failure

-1 Not a master rights user

-2 Field view cannot be found

-3 The Main and Summary view cannot be deleted

-4 Failed to delete

Creating or Modifying a Contact View
The WriteContactView function enables adding and modifying contact views. In addition, fields displayed on the
contact views are added, modified or deleted through this function. This function does not modify the data
structure, only the display properties of the fields included in the view.

Page 337 of 463

The input NV container for this function has an NV pair named Field. This is a multi-value NV pair that stores
multiple NV pair containers, each describing a field to add, update, or delete on the view. Multiple field operations
can be performed in one call to WriteContactView. For example, an existing field could be updated, new fields can
be added to the view, and fields can be deleted; each operation has its own Field child container.

GoldMine API Version: 6.00.21021

input Name/Value Pairs

WriteContactView Input NV Pairs

Name Description

ID The view ID if updating an existing view. Retrieve this from GetContactViews. Omit if
creating a new view.

Name The view name

TabName The tab name, if this view has one

UserAccess The user that is allowed to access this view.

CurrContactset If set to 1, then the view is visible in the current contact set, otherwise the value is 0

Field
A multi-value list containing a container for each of the field operations to perform
(adding, deleting, modifying). See the table below for details of the NV containers to
include.

Field Name/Value Pairs

The Field NV Pair in the parent container contains NV Pair containers with the following NV Pairs describing the
fields to add, edit or delete from the view.

Field NV Pair Input Container

Name Description

Action NEW, UPDATE, or DELETE

RecNo
Unique identifier for the field on the view. Omit if adding a new field to the view. If
updating or deleting, retrieve this value by calling GetContactViews.

VerticalCenter Y coordinate of the colon on the view

HorizontalCenter X coordinate of the colon on the view

LabelSize The length allowed for the label

EditWidth The width of the editable space for the field on the view

HotKey Reserved for future use.

TabOrder The tab order position for the field (the order in which the field will be selected when
pressing the tab key)

Page 338 of 463

ExprField If 1, indicates an expression field, otherwise 0

LogInHistory If 1, any changes made to this field will be logged as a history record on the contact

ReadAccess Indicates the user or group that can read the contents of the field

WriteAccess Indicates the user or group that can modify the contents of the field.

FieldName The physical field name

FieldExpr The field expression if ExprField = 1

GlobalLabel The global label for the field

LocalLabel The local label for the field

LabelExpr Expression to evaluate to generate the field label

LabelColorExpr Contains the number representing the color of the label

FieldColorExpr Contains the number representing the color of the field.

LabelReference Text value to refer to an expression label (in the list of fields for the view, for
example)

WriteContactView output NV pairs

One NV pair is returned, FieldErrors, indicating the number of field-related errors reported. The function
continues adding fields even if some fail. For each field the API could not add, an entry is added to the field’s child
container in an NV pair called Error. The possible values for this pair are:

Field Error Codes

Value Description

-1 Invalid Action

-2 Requested field not found

-3 No Record ID given for updating or deleting a field

-4 Field cannot be deleted

-5 Field cannot be written

-6
For a new view, only new fields are possible (Action cannot equal MODIFY or DELETE if creating a
new view).

-7 Reserved

-8 Reserved

-9 Reserved

-10 -> -20 Invalid positioning

Page 339 of 463

WriteContactView Return Values

WriteContactView Return Values

Value Description

1 Success

0 General Failure

-1 Not a master rights user

-2 Field view cannot be loaded

-3 Field view could not be saved

Reading Custom Fields
The ReadCustomFields function returns information about the physical properties of custom fields defined in
GoldMine. This function contains a multi-value NV Pair, called Field, which stores multiple name/value containers,
each with specific details about each field. For information on manipulating and reading multi-value NV pairs, see .

GoldMine API Version: 6.00.21021

ReadCustomFields input NV pairs

ReadCustomFields Input NV Pairs

Name Description

NumFields The number of fields returned.

Field
A multi-value NV containing containers for each field returned. See the table below for details
on the NV pairs included.

Field NV Pair Container

The Field NV pair in the parent container returned by ReadCustomFields contains an NV pair container for each
custom field defined in GoldMine. The fields are described by the following NV pairs:

Field NV Pairs

Name Description

Description A text description of the field

Name The physical field name

Type The data type stored in the field. Possible values are C (char), D (date), and N (numeric)

Length The physical length of the field

Page 340 of 463

Decimals The number of decimal places, if numeric

ReadCustomfields Return Values

ReadCustomFields Return Values

Value Description

1 Success

0 General Failure

-1 Not a master rights user

-2 Cannot open ContUDef

Modifying the Structure of Custom Fields
The EditCustomField function adds, deletes, or updates a custom field.

IMPORTANT: The API will not rebuild the GoldMine database to reflect the physical
changes you may specify with this function. This must be initiated with the GoldMine
application.

GoldMine API Version: 6.00.21021

EditCustomField Input NV pairs

EditCustomField Input NV Pairs

Name Description

Action NEW, DELETE, or UPDATE

Description A meaningful description of the field

Name
The field name of an existing field to update or delete. Specify a new unique field name if
creating a new field.

Type The data type of the field: C (char), D (date), or N (numeric)

NewName The new name to assign to this field if updating an existing one

Length The physical length to make the field

Decimals The number of decimals for a numeric field

EditCustomField Return Values

EditCustomField Return Values

Page 341 of 463

Value Description

1 Success

0 General Failure

-1 Not a master rights user

-2 Cannot open ContUDef

-3 Invalid action

-4 Invalid field name

-5 Name is not unique

-6 Field not found

-7 Field not allowed to be deleted

-8 Invalid field type

-9 Missing field parameters

-10 Failure deleting field

-11 Cannot write record

Reading Calendar Preferences
ReadCalendarPrefs reads a passed user's calendar preferences. If user not passed, assumed to be the session's
logged in user. User must be master rights in order to read other's prefs.

READCALENDARPREFS Input NV pairs

ReadCalendarPrefs Input NV Pairs

Name Description

UserName The GoldMine user name to read the prefs of

READCALENDARPREFS OUTPUT NV pairs

ReadCalendarPrefs Output NV Pairs

Name Description

UserName The GoldMine user name to read the prefs of

UserList The list of Users that appear on the user's calendar

PegboardUserList List of users on the user's pegboard

Page 342 of 463

ShowAction Show actions on the calendar

ShowAppt Show appointments on the calendar

ShowCall Show calls on the calendar

ShowEvent The number of decimals for a numeric field

ShowLitReq Show literature requests on the cal

ShowMsg Show msgs on the cal

ShowOccasion Show occasions on the cal

ShowOpTask Show opportunity tasks on the cal

ShowOther Show other events on the cal

ShowProjTask Show project tasks on the cal

ShowPubEvent Show public events on the cal

ShowSales Show sales on the cal

ShowToDo Show to do's on the cal

ShowHistAction Show history actions on the cal

ShowHistCall Show call actions

ShowHistEvent Show event actions

ShowHistLitReq Show lit req actions

ShowHistMsg Show msg actions

ShowHistOpTask Show op task actions

ShowHistOther Show other actions

ShowHistProjTask Show proj task actions

ShowHistPubEvent Show pub event actions

ShowHistSales Show sales actions

ShowHistToDo Show todo actions

Page 343 of 463

DefaultView The default view of the calendar
0 - day
1 - week
2 - month
3 - year
4 - planner
5 - outline
6 - pegboard

AutoForwardCalls Automatically forward calls

AutoForwardMsgs Automatically forward messages

AutoForwardActions Automatically forward actions

AutoForwardAppts Automatically forward appointments

AutoForwardSales Automatically forward sales

AutoForwardOther Automatically forward other

SyncRecord Sync the record

ShowTotals Show totals

ShowIcons Show icons

RefreshRate In seconds

PegRefreshRate Pegboard refresh rate in secs

Color The windows color value for the cal color

TimeIncrement In minutes

FontSize Calendar font size

ShowWeekends Show weekends

FirstDayofWeek 0 = Sunday 7 = sat

nWeekends Bit mathed for days to consider the weekend

DayBegin Military time for the day beginning. 09:00

DayEnd Day end in military time - 17:00 for 5pm

CalShowActvCode Show activity code on cal

HistShowActvCode Show hist activity code

PublishICal Publish iCal file?

Page 344 of 463

PublishICalPath
The path to where to publish ical - must be in URI format (must start with
file:, http:, or ftp:)

PublishICalUser If path is ftp or http, the login user name

PublishICalPwd If path is ftp or http, the login user pwd

PublishICalUsersList The users to publish

PublishIcalAction Publish actions

PublishIcalAppt Publish appointments

PublishIcalCall Publish calls

PublishIcalEvent Publish events

PublishIcalLitReq Publish literature requests

PublishIcalMsg Publish msgs

PublishIcalOccasion Publish occasions

PublishIcalOpTask Publish opportunity tasks

PublishIcalOther Publish other events

PublishIcalProjTask Publish project tasks

PublishIcalPubEvent Publish public events

PublishIcalSales Publish sales

PublishIcalToDo Publish to do's

PublishIcalHistAction Publish history actions

PublishIcalHistCall Publish call

PublishIcalHistEvent Publish event

PublishIcalHistLitReq Publish literature request

PublishIcalHistMsg Publish message

PublishIcalHistOpTask Publish op task

PublishIcalHistOther Publish other

PublishIcalHistProjTask Publish project task

PublishIcalHistPubEvent publish public event

PublishIcalHistSales Publish sales

Page 345 of 463

PublishIcalHistToDo Publish todo

Publish2ICSFilterByDate Dates to publish

Publish2ICSStartDate The start date of the range

Publish2ICSEndDate The end date of the range

PublishICSFilterActivCode The activity code to filter on

PublishICSFilterRef The reference code to filter on

PublishICSFilterByLink Filter on the link? true or false

PublishHTML Publish cal to HTML?

PublishHTMLPath
The path to where to publish the HTML - must be in URI format (must
start with file:, http:, or ftp:)

PublishHTMLUser If path is ftp or http, the login user name

PublishHTMLPwd If path is ftp or http, the login user pwd

PublishHTMLUsersList The users to publish

PublishHTMLAction Publish actions

PublishHTMLAppt Publish appointments

PublishHTMLCall Publish calls

PublishHTMLEvent Publish events

PublishHTMLLitReq Publish literature requests

PublishHTMLMsg Publish msgs

PublishHTMLOccasion Publish occasions

PublishHTMLOpTask Publish opportunity tasks

PublishHTMLOther Publish other events

PublishHTMLProjTask Publish project tasks

PublishHTMLPubEvent Publish public events

PublishHTMLSales Publish sales

PublishHTMLToDo Publish to do's

PublishHTMLHistAction Publish history actions

PublishHTMLHistCall Publish call

Page 346 of 463

PublishHTMLHistEvent Publish event

PublishHTMLHistLitReq Publish literature request

PublishHTMLHistMsg Publish message

PublishHTMLHistOpTask Publish op task

PublishHTMLHistOther Publish other

PublishHTMLHistProjTask Publish project task

PublishHTMLHistPubEvent Publish public event

PublishHTMLHistSales Publish sales

PublishHTMLHistToDo Publish todo

Publish2HTMFilterByDate

Dates to publish
0 - today
1 - yesterday
2 - tomorrow
3 - this week
4 - last week
5 - next week
6 this month
7 last month
8 next month
9 - this year
10 - next year
11 - date range

Publish2HTMStartDate the start date of the range

Publish2HTMEndDate the end date of the range

PublishHTMFilterActivCode the activity code to filter on

PublishHTMFilterRef the reference code to filter on

PublishHTMFilterByLink Filter on the link? true or false

PublishFB publish free busy time if PublishFB is TRUE

PublishFBPath the path to where to publish free busy - must be in URI format (must start
with file:, http:, or ftp:)

PublishFBUser if path is ftp or http, the login user name

PublishFBPwd if path is ftp or http, the login user pwd

PublishFBAction Publish actions

Page 347 of 463

PublishFBAppt Publish appointments

PublishFBCall Publish calls

PublishFBEvent Publish events

PublishFBLitReq Publish literature requests

PublishFBMsg Publish msgs

PublishFBOccasion Publish occasions

PublishFBOpTask Publish opportunity tasks

PublishFBOther Publish other events

PublishFBProjTask Publish project tasks

PublishFBPubEvent Publish public events

PublishFBSales Publish sales

PublishFBToDo Publish to do's

PublishFBHistAction Publish history actions

PublishFBHistCall Publish call

PublishFBHistEvent Publish event

PublishFBHistLitReq Publish literature request

PublishFBHistMsg Publish message

PublishFBHistOpTask Publish op task

PublishFBHistOther Publish other

PublishFBHistProjTask Publish project task

PublishFBHistPubEvent Publish public event

PublishFBHistSales Publish sales

PublishFBHistToDo Publish todo

Page 348 of 463

PublishFBFilterByDate Dates to publish
0 - today
1 - yesterday
2 - tomorrow
3 - this week
4 - last week
5 - next week
6 this month
7 last month
8 next month
9 - this year
10 - next year
11 - date range

PublishFBStartDate The start date of the range

PublishFBEndDate The end date of the range

PublishFBFreq Frequency in minutes

READCALENDARPREFS RETURN VALUES

ReadCalendarPrefs Return Values

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

-3 Cannot open the cal table

Modifying Calendar Preferences
WriteCalendarPrefs writes a passed user's calendar preferences. The user must have master rights in order to
write another user's preferences.

WRITECALENDARPREFS Input NV pairs

WriteCalendarPrefs Input NV Pairs

Name Description

UserName The GoldMine user name to read the prefs of

Page 349 of 463

WRITECALENDARPREFS OUTPUT NV pairs

WriteCalendarPrefs Output NV Pairs

Name Description

UserName The GoldMine user name to read the prefs of

UserList The list of Users that appear on the user's calendar

PegboardUserList List of users on the user's pegboard

ShowAction Show actions on the calendar

ShowAppt Show appointments on the calendar

ShowCall Show calls on the calendar

ShowEvent The number of decimals for a numeric field

ShowLitReq Show literature requests on the cal

ShowMsg Show msgs on the cal

ShowOccasion Show occasions on the cal

ShowOpTask Show opportunity tasks on the cal

ShowOther Show other events on the cal

ShowProjTask Show project tasks on the cal

ShowPubEvent Show public events on the cal

ShowSales Show sales on the cal

ShowToDo Show to do's on the cal

ShowHistAction Show history actions on the cal

ShowHistCall Show call actions

ShowHistEvent Show event actions

ShowHistLitReq Show lit req actions

ShowHistMsg Show msg actions

ShowHistOpTask Show op task actions

ShowHistOther Show other actions

ShowHistProjTask Show proj task actions

ShowHistPubEvent Show pub event actions

Page 350 of 463

ShowHistSales Show sales actions

ShowHistToDo Show todo actions

DefaultView The default view of the calendar

AutoForwardCalls Automatically forward calls

AutoForwardMsgs Automatically forward messages

AutoForwardActions Automatically forward actions

AutoForwardAppts Automatically forward appointments

AutoForwardSales Automatically forward sales

AutoForwardOther Automatically forward other

SyncRecord Sync the record

ShowTotals Show totals

ShowIcons Show icons

RefreshRate In seconds

PegRefreshRate Pegboard refresh rate in secs

Color The windows color value for the cal color

TimeIncrement In minutes

FontSize Calendar font size

ShowWeekends Show weekends

FirstDayofWeek 0 = Sunday 7 = sat

nWeekends Bit mathed for days to consider the weekend

DayBegin Military time for the day beginning. 09:00

DayEnd Day end in military time - 17:00 for 5pm

CalShowActvCode Show activity code on cal

HistShowActvCode Show hist activity code

PublishICal Publish iCal file?

PublishICalPath
The path to where to publish ical - must be in URI format (must start with
file:, http:, or ftp:)

PublishICalUser If path is ftp or http, the login user name

Page 351 of 463

PublishICalPwd If path is ftp or http, the login user pwd

PublishICalUsersList The users to publish

PublishIcalAction Publish actions

PublishIcalAppt Publish appointments

PublishIcalCall Publish calls

PublishIcalEvent Publish events

PublishIcalLitReq Publish literature requests

PublishIcalMsg Publish msgs

PublishIcalOccasion Publish occasions

PublishIcalOpTask Publish opportunity tasks

PublishIcalOther Publish other events

PublishIcalProjTask Publish project tasks

PublishIcalPubEvent Publish public events

PublishIcalSales Publish sales

PublishIcalToDo Publish to do's

PublishIcalHistAction Publish history actions

PublishIcalHistCall Publish call

PublishIcalHistEvent Publish event

PublishIcalHistLitReq Publish literature request

PublishIcalHistMsg Publish message

PublishIcalHistOpTask Publish op task

PublishIcalHistOther Publish other

PublishIcalHistProjTask Publish project task

PublishIcalHistPubEvent Publish public event

PublishIcalHistSales Publish sales

PublishIcalHistToDo Publish todo

Publish2ICSFilterByDate Dates to publish

Publish2ICSStartDate The start date of the range

Page 352 of 463

Publish2ICSEndDate The end date of the range

PublishICSFilterActivCode The activity code to filter on

PublishICSFilterRef The reference code to filter on

PublishICSFilterByLink Filter on the link? true or false

PublishHTML Publish cal to HTML?

PublishHTMLPath
The path to where to publish the HTML - must be in URI format (must
start with file:, http:, or ftp:)

PublishHTMLUser If path is ftp or http, the login user name

PublishHTMLPwd If path is ftp or http, the login user pwd

PublishHTMLUsersList The users to publish

PublishHTMLAction Publish actions

PublishHTMLAppt Publish appointments

PublishHTMLCall Publish calls

PublishHTMLEvent Publish events

PublishHTMLLitReq Publish literature requests

PublishHTMLMsg Publish msgs

PublishHTMLOccasion Publish occasions

PublishHTMLOpTask Publish opportunity tasks

PublishHTMLOther Publish other events

PublishHTMLProjTask Publish project tasks

PublishHTMLPubEvent Publish public events

PublishHTMLSales Publish sales

PublishHTMLToDo Publish to do's

PublishHTMLHistAction Publish history actions

PublishHTMLHistCall Publish call

PublishHTMLHistEvent Publish event

PublishHTMLHistLitReq Publish literature request

PublishHTMLHistMsg Publish message

Page 353 of 463

PublishHTMLHistOpTask Publish op task

PublishHTMLHistOther Publish other

PublishHTMLHistProjTask Publish project task

PublishHTMLHistPubEvent Publish public event

PublishHTMLHistSales Publish sales

PublishHTMLHistToDo Publish todo

Publish2HTMFilterByDate

Dates to publish
0 - today
1 - yesterday
2 - tomorrow
3 - this week
4 - last week
5 - next week
6 this month
7 last month
8 next month
9 - this year
10 - next year
11 - date range

Publish2HTMStartDate The start date of the range

Publish2HTMEndDate The end date of the range

PublishHTMFilterActivCode The activity code to filter on

PublishHTMFilterRef The reference code to filter on

PublishHTMFilterByLink Filter on the link? true or false

PublishFB Publish free busy time if PublishFB is TRUE

PublishFBPath The path to where to publish free busy - must be in URI format (must
start with file:, http:, or ftp:)

PublishFBUser If path is ftp or http, the login user name

PublishFBPwd If path is ftp or http, the login user pwd

PublishFBAction Publish actions

PublishFBAppt Publish appointments

PublishFBCall Publish calls

PublishFBEvent Publish events

Page 354 of 463

PublishFBLitReq Publish literature requests

PublishFBMsg Publish msgs

PublishFBOccasion Publish occasions

PublishFBOpTask Publish opportunity tasks

PublishFBOther Publish other events

PublishFBProjTask Publish project tasks

PublishFBPubEvent Publish public events

PublishFBSales Publish sales

PublishFBToDo Publish to do's

PublishFBHistAction Publish history actions

PublishFBHistCall Publish call

PublishFBHistEvent Publish event

PublishFBHistLitReq Publish literature request

PublishFBHistMsg Publish message

PublishFBHistOpTask Publish op task

PublishFBHistOther Publish other

PublishFBHistProjTask Publish project task

PublishFBHistPubEvent Publish public event

PublishFBHistSales Publish sales

PublishFBHistToDo Publish todo

PublishFBFilterByDate Dates to publish
0 - today
1 - yesterday
2 - tomorrow
3 - this week
4 - last week
5 - next week
6 this month
7 last month
8 next month
9 - this year
10 - next year
11 - date range

Page 355 of 463

PublishFBStartDate The start date of the range

PublishFBEndDate The end date of the range

PublishFBFreq Frequency in minutes

WRITECALENDARPREFS RETURN VALUES

WriteCalendarPrefs Return Values

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

-3 Cannot open the cal table

Reading Personal Preferences
The ReadPersonalPrefs function gets the personal preferences for the passed or current user.

READPERSONALPREFS Input NV pairs

ReadPersonalPrefs Input NV Pairs

Name Description

UserName User name passed

READPERSONALPREFS OUTPUT NV pairs

ReadPersonalPrefs Output NV Pairs

Name Description

UserName User name passed

Title The user’s title

Dept The user’s department

Phone The user’s phone number

Fax The user’s fax

Page 356 of 463

READPERSONALPREFS RETURN CODES

ReadPersonalPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Updating Personal Preferences
The WritePersonalPrefs function updates the personal preferences for the passed or current user.

WRITEPERSONALPREFS Input NV pairs

WritePersonalPrefs Input NV Pairs

Name Description

UserName User name passed

WRITEPERSONALPREFS OUTPUT NV pairs

WritePersonalPrefs Output NV Pairs

Name Description

UserName User name passed

Title the user’s title

Dept The user’s department

Phone The user’s phone number

Fax The user’s fax

WRITEPERSONALPREFS RETURN CODES

WritePersonalPrefs Return Codes

Value Description

1 Success

0 No container passed

Page 357 of 463

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Reading Record Preferences
The ReadRecordPrefs function gets the record preferences for the passed or current user.

READRECORDPREFS Input NV pairs

ReadRecordPrefs Input NV Pairs

Name Description

UserName User name passed

READRECORDPREFS OUTPUT NV pairs

ReadRecordPrefs Output NV Pairs

Name Description

UserName User name passed

UseContactForTitle Use contact instead of company in title – 1 = cont, 0 company

SelectFieldContents When a field gets focus select its contents

AutoOpenOrgTree Open org tree when record object is maximized

ShowDatesInWords Show user-defined dates in words

DateFormat

0 = MMM d, yy
1 = MMMM dd, yyyy
2 = d MMM yy
3 = d. MMM yy
4 = dd MMMM yy

RightAlignNumbers Show numerics right-aligned

ShowSortByFieldInStatus Show sort-by field on status bar

ZipValidationMode 0= none, 1 primary, 2 show zip dialog

Show9DigitZip Show 5 or 9 digits in zip code lookup validation window

UseDarkBgd Use a dark background color on the RO

LargeFont Use a large font – doesn’t affect 640x480 resolution

LabelColor Windows color for the labels

DataColor Windows color for the data

Page 358 of 463

READRECORDPREFS RETURN CODES

ReadRecordPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Updating Record Preferences
The WriteRecordPrefs function updates the record preferences for the passed or current user.

WRITERECORDPREFS Input NV pairs

WriteRecordPrefs Input NV Pairs

Name Description

UserName User name passed

UseContactForTitle Use contact instead of company in title – 1 = cont, 0 company

SelectFieldContents When a field gets focus select its contents

AutoOpenOrgTree Open org tree when record object is maximized

ShowDatesInWords Show user-defined dates in words

DateFormat

0 = MMM d, yy
1 = MMMM dd, yyyy
2 = d MMM yy
3 = d. MMM yy
4 = dd MMMM yy

RightAlignNumbers Show numerics right-aligned

ShowSortByFieldInStatus Show sort-by field on status bar

ZipValidationMode 0= none, 1 primary, 2 show zip dialog

Show9DigitZip Show 5 or 9 digits in zip code lookup validation window

UseDarkBgd Use a dark background color on the RO

LargeFont Use a large font – doesn’t affect 640x480 resolution

Page 359 of 463

LabelColor Windows color for the labels

DataColor Windows color for the data

WRITERECORDPREFS RETURN CODES

WriteRecordPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Reading Schedule Preferences
The ReadSchedulePrefs function gets the schedule preferences for the passed or current user.

READSCHEDULEPREFS Input NV pairs

ReadSchedulePrefs Input NV Pairs

Name Description

UserName User name passed

READSCHEDULEPREFS OUTPUT NV pairs

ReadSchedulePrefs Output NV Pairs

Name Description

UserName User name passed

ConflictOn Check for timing conflicts when scheduling

CarryCompletionNotesOnFollowUp Carry over completion notes when scheduling follow ups

StartTimerOnComplete Start timer when completing activities

ShowDetailsInActivityListingWindow Show the details section in activity listing window

SyncContactWithActivityListingWindow Sync the contact window with the activity listing window

WarnAboutCompleteMultiLinkActiv Show alert when completing an activity with others associated.

WarnAboutEditMultiLinkActiv Show alert when editing an activity with others associated

WarnAboutDeleteMultiLinkActiv Show alert when deleting an activity with others associated

Page 360 of 463

READSCHEDULEPREFS RETURN CODES

ReadSchedulePrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Updating Schedule Preferences
The WriteSchedulePrefs function updates the record preferences for the passed or current user.

WRITESCHEDULEPREFS Input NV pairs

WriteSchedulePrefs Input NV Pairs

Name Description

UserName User name passed

ConflictOn Check for timing conflicts when scheduling

CarryCompletionNotesOnFollowUp Carry over completion notes when scheduling follow ups

StartTimerOnComplete Start timer when completing activities

ShowDetailsInActivityListingWindow How the details section in activity listing window

SyncContactWithActivityListingWindow Sync the contact window with the activity listing window

WarnAboutCompleteMultiLinkActiv Show alert when completing an activity with others associated.

WarnAboutEditMultiLinkActiv Show alert when editing an activity with others associated

WarnAboutDeleteMultiLinkActiv Show alert when deleting an activity with others associated

WRITESCHEDULEPREFS RETURN CODES

WriteSchedulePrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

Page 361 of 463

-2 User ini file doesn't exist

Reading Alarm Preferences
The ReadAlarmPrefs function gets the alarm preferences for the passed or current user.

READALARMPREFS Input NV pairs

ReadAlarmPrefs Input NV Pairs

Name Description

UserName User name passed

READALARMPREFS OUTPUT NV pairs

ReadAlarmPrefs Output NV Pairs

Name Description

UserName User name passed

AlarmType 0 = none, 1 – pop up, 2 – taskbar notifications

AlarmsLead Time before an event that an alarm fires

AlarmFreq Scan for alarm every xx seconds

TaskBarReminder Reminder shown for x minutes

IgnoreSnooze Amount of to snooze an ignored alarm

PageAlarm Page user with alarm when not acknowleged within xx minutes.

GMAlarmSound Path to the alarm sound

READALARMPREFS RETURN CODES

ReadAlarmPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Page 362 of 463

Updating Alarm Preferences
The WriteAlarmPrefs function updates the alarm preferences for the passed or current user.

WRITEALARMPREFS Input NV pairs

ReadAlarmPrefs Input NV Pairs

Name Description

UserName User name passed

AlarmType 0 = none, 1 – pop up, 2 – taskbar notifications

AlarmsLead Time before an event that an alarm fires

AlarmFreq Scan for alarm every xx seconds

TaskBarReminder Reminder shown for x minutes

IgnoreSnooze Amount of to snooze an ignored alarm

PageAlarm Page user with alarm when not acknowleged within xx minutes.

GMAlarmSound Path to the alarm sound

WRITEALARMPREFS RETURN CODES

WriteAlarmPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Reading Lookup Preferences
The ReadLookupPrefs function gets the lookup preferences for the passed or current user.

READLOOKUPPREFS Input NV pairs

ReadLookupPrefs Input NV Pairs

Name Description

UserName User name passed

Page 363 of 463

READLOOKUPPREFS OUTPUT NV pairs

ReadLookupPrefs Output NV Pairs

Name Description

UserName User name passed

SyncContact Sync the contact window with the search center window

InShrunkenMode Appear in shrunken mode when finding by

SyncDelay Lookup alignment delay when typing in tenths of a second

DefField Default lookup field 0 – contact, 1 = company

SelectAction

When a rec is selected in search cente
0 = move the search center window to the back
1 = close the search center window
2 = minimize the search center windowr

READLOOKUPPREFS RETURN CODES

ReadLookupPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Updating Alarm Preferences
The WriteLookupPrefs function updates the lookup preferences for the passed or current user.

WRITELOOKUPPREFS Input NV pairs

WriteLookupPrefs Input NV Pairs

Name Description

UserName User name passed

SyncContact Sync the contact window with the search center window

InShrunkenMode Appear in shrunken mode when finding by

SyncDelay Lookup alignment delay when typing in tenths of a second

Page 364 of 463

DefField Default lookup field 0 – contact, 1 = company

SelectAction

When a rec is selected in search cente
0 = move the search center window to the back
1 = close the search center window
2 = minimize the search center windowr

WRITELOOKUPPREFS Return Codes

WriteLookupPrefs Return Codes

Value Description

1 Success

0 no container passed

-1 Not a master rights user or invalid user name

-2 user ini file doesn't exist

Reading Pager Preferences
The ReadPagerPrefs function gets the pager preferences for the passed or current user.

READPAGERPREFS Input NV pairs

ReadPagerPrefs Input NV Pairs

Name Description

UserName User name passed

READPAGERPREFS OUTPUT NV pairs

ReadPagerPrefs Output NV Pairs

Name Description

UserName User name passed

GoldPageInstalled Is the goldpage application installed?

Terminal Terminal pager number

PIN The pin for the pager

MaxChars The number of max chars for a pager

PagerEmail Email page address

Page 365 of 463

READPAGERPREFS Return Codes

ReadPagerPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Updating Pager Preferences
The WritePagerPrefs function updates the pager preferences for the passed or current user.

WRITEPAGERPREFS Input NV pairs

WritePagerPrefs Output NV Pairs

Name Description

UserName User name passed

GoldPageInstalled Is the goldpage application installed?

Terminal Terminal pager number

PIN The pin for the pager

MaxChars The number of max chars for a pager

PagerEmail Email page address

WRITEPAGERPREFS Return Codes

WritePagerPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Page 366 of 463

Reading Miscellaneous Preferences
The ReadMiscPrefs function gets the miscellaneous preferences for the passed or current user.

READMISCPREFS Input NV pairs

ReadMiscPrefs Input NV Pairs

Name Description

UserName User name passed

READMISCPREFS OUTPUT NV pairs

ReadMiscPrefs Output NV Pairs

Name Description

ShowWhatsNew Show whats new in the info center when logging in

TimeIn24Hr Show time in 24/military style

DateInLocalFormat Show dates in local format

ShowPageStatus Show status while paging

OldMenu Use the old GM4 style menu

EPOCH The EPOCH year

MSMailUser The MS outlook username if not the same as the GM user name

READMISCPREFS Return Codes

ReadPagerPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Updating Miscellaneous Preferences
The WriteMiscPrefs function updates the miscellaneous preferences for the passed or current user.

Page 367 of 463

WRITEMISCPREFS Input NV pairs

WriteMiscPrefs Input NV Pairs

Name Description

ShowWhatsNew Show whats new in the info center when logging in

TimeIn24Hr Show time in 24/military style

DateInLocalFormat Show dates in local format

ShowPageStatus Show status while paging

OldMenu Use the old GM4 style menu

EPOCH The EPOCH year

MSMailUser The MS outlook username if not the same as the GM user name

WRITEMISCPREFS Return Codes

WriteMiscPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Reading the Database Engine Type (7.0 or higher)
The GetDbEngineType function gets the database engine type based on a passed table name.

GETDBENGINETYPE Input NV pairs

GetDbEngineType Input NV Pairs

Name Description

Table The table name you are trying to open - if not passed, assumed to be CONTACT1

GETDBENGINETYPE Return Codes

GetDbEngineType Return Codes

Value Description

Page 368 of 463

0 No container passed

-1 Table name not passed

-2 Table name invalid

-3 Could not open table

1 Table is MSSQL

2 Table is Firebird

3 or higher Unknown DB type

Reading a List of GoldMine User Groups
The GetGMUserGroups function returns a list of GoldMine user groups and their users.

GETGMUSERGROUPS OUTput NV pairs

GetGMUserGroups Output NV Pairs

Name Description

GROUP NV container for EACH group containing:
GroupNumber – the group’s internal number
Name – the name of the group
UserCount – the number of users in the group
UserList – a list of the users in the group delimited by ;

GETGMUSERGROUPS Return Codes

GetGMUserGroups Return Codes

Value Description

1 Success

0 No container passed

-1 Could not open data tables

Creating or Updating GoldMine User Groups
The WriteGMUserGroup function creates or updates a GoldMine user group.

WRITEGMUSERGROUP Input NV pairs

WriteGMUserGroup Input NV Pairs

Name Description

Page 369 of 463

Name The name of the group to update or create

RecID The record number of the group if updating

WRITEGMUSERGROUP Return Codes

WriteGMUserGroup Return Codes

Value Description

0 No container passed

-1 No group name

-2 Could not write data

-3 Not a master user

-4 Could not lock record

1 Success

Adding a GoldMine User to a Group
The AddGMGroupUser function adds a GoldMine user to a group.

ADDGMGROUPUSER Input NV pairs

AddGMGroupUser Input NV Pairs

Name Description

UserName The name of the user to add to the group

GroupName The group name or the group number to add the user to

ADDGMGROUPUSER Return Codes

AddGMGroupUser Return Codes

Value Description

0 No container passed

-1 No name or group passed

-2 Could not open users table

-3 Could not lock user record

-4 Could not find user record

Page 370 of 463

-5 Invalid group passed

-6 Not a master user

1 Success or user already group member

Removing a GoldMine User from a Group
The RemoveGMGroupUser function removes a GoldMine user from a group.

REMOVEGMGROUPUSER Input NV pairs

RemoveGMGroupUser Input NV Pairs

Name Description

UserName The name of the user to remove from the group

GroupName The group name or the group number to remove the user from

REMOVEGMGROUPUSER Return Codes

RemoveGMGroupUser Return Codes

Value Description

0 No container passed

-1 No name or group passed

-2 Could not open users table

-3 Could not lock user record

-4 Could not find user record

-5 Invalid group passed

-6 Not a master user

1 Success or user already group member

Creating or Updating an Opportunity or Project
The WriteOpProj function updates an opportunity or project.

WRITEOPPROJ Input NV pairs

In addition to the following, the user can pass the custom user defined fields (GM 6.6 or higher) that they have
created.

Page 371 of 463

WriteOpProj Input NV Pairs

Name Description

RecID If the item is an update – the recid of the item to update

OpID The opportunity rec id to attach to

RecType O or P

AccountNo The contact to attach to’s account no

User The gm user to assign the item to

Flags Flags for the item

Company The company this item involves

Contact The contact the item involves

Name Name of the item

Status The status of the item

Cycle The cycle of the item

Stage The item’s stage

Source The item’s source

F1 The F1 value

F2 or CompRecID The rec id of the company from Company field

F3 or Units The number of units this item involves

StartDate The start date

ClosedDate The date closed

CloseBy The date to close by

ForProb The probability of the item success

ForAmt The projected value of the item

CloseAmt The actual value of the item

Notes Item notes

WRITEOPPROJ Return Codes

WriteOpProj Return Codes

Page 372 of 463

Value Description

1 Success

0 No container passed

Working with GoldMine Plug-ins

Overview
This chapter contains information geared toward individuals with at least an intermediate knowledge of
programming.

GoldMine 7.0 supports integrations based on ActiveX controls or HTML. To use either of these integration
methods, you must first create an ActiveX control or an HTML file or web site to integrate with.

Using ActiveX Plug-in Support
The ActiveX structure allows the most control and can be made with almost any language, including C++, Delphi,
VB and the .NET languages. When used in conjunction with the other GoldMine APIs, Active X is extremely
powerful.

Within the ActiveX support, there are 5 methods that can be implemented in your control to allow for stronger
interaction with GoldMine. These functions are not necessary to implement:

public void GMOnStart(long hWnd)

This is the only function that passes a parameter. The parameter is the HWND (window handle) of the container
window in GoldMine. You can then use the Windows API SendMessage() call to control what happens to the
container. This is for situations where you want to implement a Close button, since the control is late bound in
GoldMine, and cannot expose events.

public void GMOnActivate()

This function will tell you when the user has given your control’s container focus in GoldMine.

public void GMLostFocus()

Called whenever the user gives focus to another object when your control had focus.

public void GMOnDestruct()

Called when the window is just about to close. This allows you the opportunity to clean up.

public void GMHandleFile(BSTR sPath)

Used to open associated files with your plug-in. the passed Path is the path to the file itself that your plug-in
described it could handle.

Page 373 of 463

Page 374 of 463

Using HTML Plug-in Support
HTML plug-in support also has great potential. The HTML will attempt to call a JavaScript or VBScript function
named like the last 3 ActiveX methods, with exactly the same capabilities:

GMOnActivate()
GMLostFocus()
GMOnDestruct()

The GMOnStart() function is not supported in HTML.

Plug-In Description File
The plug-in description file is a well formed XML file that describes the plug-in. The extension for the file is .GME
(for GoldMine Extension).

HTML Plug-in Description File
The following example shows the structure for the HTML plug-in.

<PlugInDefs>
<PlugInDef>
<URL>http://gmail.google.com/gmail</URL>
<QueryString>q=<<&Address1>>, <<&City>>,

<<&State>>, <<&Zip>></QueryString>
<Description>

<Language Locale="1033" IsDefault="1">
<Name>G-Mail</Name>
<Publisher>Google</Publisher>
<Description>Launches Google's Gmail Service</Description>
<Menu>Launch GMAIL</Menu>
<MenuPath>Web Based Tools\\Google</MenuPath >

</Language>
<Language Locale="4000">
<Name>eegay ale-may</Name>
<Publisher>oogle-Gay</Publisher>
<Description>aunches-Lay oogle-Gay’s eegay ale-may Urvice-

Say</Description>
<Menu>aunch-Lay eegay ale-may</Menu>
<MenuPath>eb-Way ased-Bay ools-Tay\\oogle-Gay</MenuPath >

</Language>
</Description>
<OnDemand>1</OnDemand>
<Startup>1</Startup>
<MultipleInstance>0</MultipleInstance>
<Modal>0</Modal>
<DefaultPos>
<top>50</top>
<left>50</left>

Page 375 of 463

</DefaultPos>
<DefaultSize>
<width>800</width>
<height>600</height>
</DefaultSize>
<Visible>1</Visible>
<IconFile>google.ico</IconFile>
<InternalName>GOOGLE_MAIL</InternalName>
</PlugInDef>
</PlugInDefs>

The root node must be PlugInDefs, and as the name implies, multiple plug-ins can be installed under one
definition file. For each plug-in, there is one PlugInDef. The child nodes for PlugInDef are:

Node Description

<URL> The URI for the html or site – must be http://, https:// or file://

<QueryString>

The querystring to be tacked on to the end of the URL. Can contain GoldMine field
macros that will be evaluated on launch of the plug-in. The macro wrapping structure
is <<field>>, like <<&Contact>> or <<Contact1->AccountNo>>. Please note that you
must XMLEncode the macros like above.

<Description> These values describe the item to the user.

<Language> Uses the locale code associated with the target language. One Langauge structure
must be marked as IsDefault, and this one is used in case the target language is not
supported by the plug-in. Always use XML entities in place of extended characters. (Ñ
would be Ñ)

<Name> The dialog name and used for security

<Publisher>
Your company name – creates a sub menu under the Plug-ins menu if MenuPath not
passed

<Description> Used in the Help->About Plug-ins button (not there yet)

<Menu> The text that the user sees for a menu item.

<MenuPath> Creates a hierarchical set of menus, with each submenu delimited by “\\” – double
backslashes

<OnDemand>
Determines if the plug-in is added to the plug-ins menu. 1 = True, 0 = False. If false –
then the item is started up with GoldMine.

<StartUp>

Determines if the item is started up with GoldMine. This is for situations where you
want it to come up – but if the user closes the window – you want them to be able to
access the plug-in via a menu. 1 = startup with GoldMine, 0= don’t start with
GoldMine.

Page 376 of 463

<MultipleInstance> Determines if multiple instances of the plug-in are allowed. 1 = allow multiple
instances, 0 = false. If false, if the user chooses the menu item for that plug-in – then
GoldMine will bring that window to the front and give it focus. non-OnDemand, Modal
and non-visible plug-ins are automatically single instance.

<Modal> Determines if any action can occur outside of the window in GoldMine. 1= Modal, 0 =
Modeless. Startup/non-OnDemand items cannot be modal. Modal items are strictly
single instance.

<DefaultPos>
Describes the coordinates where your dialog will first show up. This is only used the
first time the plug-in is run, and is ignored for Modal plug-ins, which are automatically
centered in relation to the GoldMine window.

<top> Number of pixels from the top of the screen.

<left> Number of pixels from the left of the screen.

<DefaultSize> describes the height and width of the dialog for first time use, or for modal windows –
which cannot be resized.

<width> Width of the window in pixels.

<height> Height of the window in pixels.

<Visible> Determines if the user can see the window. Not recommended for HTML based plug-
ins.

<IconFile> If you have an ico file that you want the item to use, then put it in the plug-ins folder
and specify it here.

<InternalName>

This is a name that you give to your plug-in that can then be used in the INI files to
block/grant access. If it is not passed it will be made up of a concatenation of the
Publisher name and the Name fields for the default locale, using only the following
characters:
“ABCDEFGHIJKLMNOPQRSTUVWXYZ_1234567890”

ActiveX Plug-in Description File
The following example shows the structure for the ActiveX plug-in.

<PlugInDefs>
<PlugInDef>
<ProgID>myApp.ClassInstance</ProgID>
<Installer>myAppInstaller.exe</Installer>
<Description>

<Language Locale="1033" IsDefault="1">
<Name>My Fantastical App</Name>
<Publisher>JCS</Publisher>
<Description>This app does it all!!!</Description>
<Menu>The most amazing app EVER</Menu>
<MenuPath>You\\Can\\Expect\\To Be\\AMAZED</MenuPath >

Page 377 of 463

</Language>
<Language Locale="4000">
<Name>eegay ale-may</Name>
<Publisher>oogle-Gay</Publisher>
<Description>aunches-Lay oogle-Gay’s eegay ale-may Urvice-

Say</Description>
<Menu>aunch-Lay eegay ale-may</Menu>
<MenuPath> ou-Yay\\an-Kay\\Expect-ay\\o-tay ebay\\AMAZED-AY</MenuPath >
</Language>
</Description>
<OnDemand>1</OnDemand>
<Startup>1</Startup>
<MultipleInstance>0</MultipleInstance>
<Modal>0</Modal>
<DefaultPos>
<top>50</top>
<left>50</left>
</DefaultPos>
<DefaultSize>
<width>800</width>
<height>600</height>
</DefaultSize>
<Visible>1</Visible>
<IconFile>MYAPP.ico</IconFile>
<InternalName>BEST_APP_EVER</InternalName>
<HandledFileExtensions>doc;xls;pdf;txt;ini</HandledFileExtensions>
<Methods>
<Method>
<Language Locale="1033" IsDefault="1">
<Menu>Launch The app</Menu>
</Language>
</Method>
<Method call="Configure">
<Language Locale="1033" IsDefault="1">
<Menu>Configure the bliss</Menu>
</Language>
<Language Locale="4000">
<Menu>Onfigure-Kay ah-they iss-blay</Menu>
</Language>
</Method>
</Methods>
</PlugInDef>
</PlugInDefs>

Although it is very similar to the HTML plug-in description, there are 2 primary differences: the ProgID and
Installer nodes instead of the URL and QueryString nodes.

The ProgID is the ProgID for your ActiveX control, and the Installer is the installer name for the application. The
Installer should be located in a folder named Installers under the plug-in directory.

Page 378 of 463

There is also the “HandledFileExtensions” element that can be added to handle files of certain extensions with
your plug-in internally in GoldMine. This means that if there is a linked document, email attachment, or other
internally attached file that would normally launch a third party application, the path to the file will be passed to
your plug-in via the GMHandleFile call. This does not mean external to GoldMine that opening that file will launch
GoldMine and your plug-in. However, it should be a simple task to write an .exe wrapper for your plug-in (since its
ActiveX based, after all) and associate the file types to that exe wrapper.

The Methods Section allows you to call custom methods in your application. When in use the Description’s Menu
node becomes a sub-menu with all of the methods that you have described. A method is described by the Method
node with an optional attribute “call” which tells GoldMine what internal method to call. The internal method
must be public and expect no parameters. It must also return nothing (void or sub). The language portion works
exactly like the description node’s does – except it only has the Menu entry.

Security and Plug-in Directories
Using GM.INI or the User.INI, a user/admin can block the use of plug-ins altogether, block individual plug-ins and
also add user specific directory for more plug-ins.

Security
For security, GM.INI has precedence over the user INI file. There are two methods – Optimistic and Pessimistic.
You can have different methods for GM.INI and the user INI, but Pessimistic will win out.

The Optimistic method is as follows:

[PlugIns]
allow_by_default=1

The Pessimistic method is as follows:

[PlugIns]
deny_by_default=1

If you had allow_by_default=0, then this would be the same as deny_by_default=1 – and vice versa. If the keys are
missing, then the method is assumed to be Optimistic.

If you are using the Optimistic method, then you do not have to add anything besides blocked plug-ins to the INI
files. If you are using the Pessimistic method, then you must give a plug-in permission to run.

For example, if you have a plug-in with a Name node of “Evil Plugin …”

The INI name for this would be EVILPLUGIN unless you added the InternalName element to your plug-in
description.

To block the plug-in with Optimistic mode:

[PlugIns]
allow_by_default=1 or deny_by_default=0
EVILPLUGIN=0

To allow a plug-in with Pessimistic mode:

[PlugIns]

Page 379 of 463

deny_by_default=1 or allow_by_default=0
GOODPLUGIN=1

Adding a Local Plug-in Directory
By default – the plug-in directory is under %SysDir%/Plug-ins and in server installs this means that all users will
have the plug-ins under that folder. If a user wanted to add his own local plug-in directory – he could add it to his
user INI:

[PlugIns]
LocalPath=c:\personal\GMPlugIns

The user will still get the global level programs (assuming they’re not blocked) – so make sure there’s no
duplication between the two.

Sample Plug-ins
The following are examples of the GoldMine plug-in capabilities

gmail.gme
This plug-in opens a browser window to the Google mail address. It demonstrates the basic capability of opening a
browser window from GoldMine.

<?xml version="1.0" encoding="UTF-8"?>
<PlugInDefs>
<PlugInDef>
<URL>http://gmail.google.com/gmail</URL>
<Description>
<Language Locale="1033" IsDefault="1">
<Name>G-Mail</Name>
<Publisher>Google</Publisher>
<Description>Launches Google's Gmail Service</Description>
<Menu>Launch GMAIL</Menu>
</Language>
</Description>
<OnDemand>1</OnDemand>
<Startup>1</Startup>
<MultipleInstance>0</MultipleInstance>
<Modal>0</Modal>
<DefaultPos>
<top>50</top>
<left>50</left>
</DefaultPos>
<DefaultSize>
<width>800</width>
<height>600</height>
</DefaultSize>
<Visible>1</Visible>
</PlugInDef>
</PlugInDefs>

Page 380 of 463

External.gme
This plug-in allows a user to store more than the 254 custom fields for a contact record externally. Users can
select any contact record, then select the plug in, to either add new information or update existing information
depending on what is found in the database.

<?xml version="1.0" encoding="UTF-8"?>
<PlugInDefs>
<PlugInDef>
<URL>http://localhost/gmplus.asp</URL>
<QueryString>accountno=<<&Accountno>></QueryString>
<Description>
<Language Locale="1033" IsDefault="1">
<Name>Extra Fields</Name>
<Publisher>Robie</Publisher>
<Description>Access External Tables</Description>
<Menu>Access External Tables</Menu>
</Language>
</Description>
<OnDemand>1</OnDemand>
<MultipleInstance>1</MultipleInstance>
<Modal>0</Modal>
<DefaultPos>
<top>50</top>
<left>50</left>
</DefaultPos>
<DefaultSize>
<width>600</width>
<height>590</height>
</DefaultSize>
<Visible>1</Visible>
</PlugInDef>
</PlugInDefs>

gmplus.asp
Following is the source listing for gmplus.asp, which is the corresponding ASP page for the External.gme plug-in.

NOTE: The following code sample uses text wrapping in order to fit the sample on these pages. Make sure
that the lines in your actual code do not wrap.

<html>
<body>
<h3>External Location Information</h3>
<%
Dim action
Dim DSNConnection
Dim SQLTable
'Update the DSN information here to access the SQL database HERE.

Page 381 of 463

DSNConnection = "Driver=SQL

Server;Server=CompanyServerName;Database=GMplus;Uid=sa;Pwd=sa;"
'Update to table in database
SQLTable = "GoldPlus"

'add/edit additional fields here
Dim strdocument, strlocation, strextrastuff1, straccountno
'add/edit additional fields here too
strdocument = Replace(Request("document"), "'", "''")
strlocation = Replace(Request("location"), "'", "''")
strextrastuff1 = Replace(Request("extrastuff1"), "'", "''")
straccountno = Replace(Request("accountno"), "'", "''")

'This section updates fields if the accountno is found in the database
if Request("action")="update" then

set conn=Server.CreateObject("ADODB.Connection")
conn.Open (DSNConnection)

'This is the SQL statement that updates information, so you will need to

add/edit fields here too.
set rs = Server.CreateObject("ADODB.recordset")
strSQL = "UPDATE "+ SQLTable +" SET document = '" + strdocument +"',

location = '" + strlocation + "', extrastuff1 = '" + strextrastuff1 + "'

WHERE accountno = '" + straccountno + "'"
Conn.Execute (strSQL)

conn.close
set conn = nothing
set strSQL = nothing
'This does a redirect to the update page once the data is entered into the

SQL database
Response.write("<meta http-equiv=refresh

content=0;url=gmplus.asp?accountno=" + straccountno + ">")

'***

**

'This section does the addition of the fields if they are not found in the

database
else if Request("action")="add" then

set conn=Server.CreateObject("ADODB.Connection")
conn.Open (DSNConnection)

'This adds new information if it is not found in the database
set rs = Server.CreateObject("ADODB.recordset")
strSQL = "INSERT INTO "+ SQLTable +"

(accountno,document,location,extrastuff1) VALUES ('" + straccountno +

"','" + strdocument + "','" + strlocation + "','" + strextrastuff1 + "')"
Conn.Execute (strSQL)

Page 382 of 463

conn.close
set conn = nothing
set strSQL = nothing
'This does a redirect to the update page once the data is entered into the

SQL database.
Response.AddHeader "Location", "/gmplus.asp?accountno='" + straccountno +

"'"
end if

set conn=Server.CreateObject("ADODB.Connection")
conn.Open (DSNConnection)

set rs = Server.CreateObject("ADODB.recordset")
rs.Open "SELECT accountno, document, location, extrastuff1 from "+

SQLTable +" where accountno ='"+ straccountno +"'" , conn

'***

'if the AccountNo is NOT found, display the ADD form
if rs.eof AND rs.bof then
%>
<form action="gmplus.asp" method="get">
<input type="hidden" name="action" value="add">
<% Response.Write("<input type=hidden name=accountno value="+ straccountno

+">")%>
<table border="1">
<tr>
<td>Document</td><td><input type="text" name="document" size="30"></td>
<tr>
</tr>
<td>Location</td><td><input type="text" name="location" size="30"></td>
<tr>
</tr>
<td>Extra Stuff 1</td><td><input type="text" name="extrastuff1"

size="30"></td>
</tr>
</table>
<input type="Submit" value="add">
</form>

<%'***

else
'if the AccountNo IS found, display the UPDATE form
%>
<form action="gmplus.asp" method="get">
<input type="hidden" name="action" value="update">
<% Response.Write("<input type=hidden name=accountno value="+ straccountno

+">")%>
<table border="1">
<tr>

Page 383 of 463

<td>Document</td><td><input type="text" name="document" value="<%= rs

("document") %>" size="30"></td>
</tr>
<tr>
<td>Location</td><td><input type="text" name="location" value="<%= rs

("location") %>" size="30"></td>
</tr>
<tr>
<td>Extra Stuff 1</td><td><input type="text" name="extrastuff1" value="<%=

rs("extrastuff1") %>" size="30"></td>
</tr>
</table>
<input type="Submit" value="update">
</form>

<%'***

end if
end if
%>
</body>
</html

Using Xbase Expressions

Overview
This chapter contains information geared toward individuals with at least an intermediate knowledge of
programming.

IMPORTANT: Improper use of these functions may result in data that is not recoverable. Be sure to back up
your data frequently.

TIP: For details on data backups, see “Backing up Data” in Maintaining GoldMine.

GoldMine offers a variety of Xbase expression functions to:

■ Manipulate data for comparison, such as for creating filters and groups.
■ Store data, such as for global replacements and updates to field data (LOOKUP.INI).
■ Evaluate and return data when using DDE and GMXS32.DLL function calls.

To ensure that your Xbase functions work correctly, GoldMine also features a real-time expression tester. To
activate the tester on an active record window, press Ctrl-Shift-D.

TIP: Xbase functions are also known as dBASE functions.

Filter expressions work equally well on Xbase or SQL tables. With SQL, the Xbase filter is evaluated on the client
side, not the server side.

The following pages list Xbase functions in three sections:

■ Function/Parameter Types
■ Conditionals, Operators, and Logical Evaluators
■ Xbase Functions

Function/Parameter Types
Xbase functions recognize and return several types of data. These data types represent the format of the data,
such as a number. To properly evaluate and return a value, a function must include the correct parameter types.
For example, a function may require that a date be passed as a parameter. Trying to pass a name to the function
would not be accepted. In many cases, you can use a special function to convert one data type to another.

Page 384 of 463

Page 385 of 463

Data types may be referenced literally, either as a field name of a specific type, or as the result of an Xbase
function.

The following list describes valid data types for Xbase functions and shows examples of use when referenced as a
literal, field value, or function result.

String Sequence of any printable character.
Literal use: "my string"
Field use: Upper(Contact1->Company)
Function Use: Upper(Substr("test123",5,3))

Date Special numeric value representing a date.
Literal use: {03/10/1999}
Field use: DTOS(Contact2->UBirthday)
Function use: DTOS(DATE())

Numeric

Value representing a number.
Literal use: 100
Field use: STR(Contact2->UBalance)
Function use: STR(100 + VAL("100"))

Boolean
Value that results whenever a comparison is made. Boolean values are either TRUE or
FALSE.

For an expanded description of Boolean expressions, see “Using Boolean Expressions” in the Online Help.

Conditionals, Operators, and Logical Evaluators
A function can manipulate values by using one of the following:

■ Conditional: Compares one value to another, using the specified standard or condition, such as “equal to,”
“greater than,” and so on.

■ Operator: Performs an arithmetic operation on the values, such as addition or multiplication.
■ Logical evaluator: Compares values as a true/false condition, so that a value either meets or fails the standard

for selection. This type of comparison is also known as a Boolean operator.

You can use the following conditionals, operators, and logical evaluators in conjunction with the Xbase functions.

Conditionals
Conditional: >

Description: Greater than

Applies to: All types

Page 386 of 463

Examples:

1>2 returns: FALSE

"BBC">"ABC" returns: TRUE

Date()>Date()-10 returns: TRUE

Conditional: <

Description: Less than

Applies to: All types

Examples:

300<400 returns: TRUE

"MARCELA"<"NELSON" returns: TRUE

Date() < Date()-7 returns: FALSE

Conditional: <>

Description: Greater/Less than (not equal)

Applies to: All types

Examples:

250<>2500 returns: TRUE

"ABC"<>UPPER("abc") returns: FALSE

Date()<>Date()+3 returns: TRUE

Conditional: >=

Description: Greater than or Equal to

Applies to: All types

Examples:

100>=99 returns: TRUE

"ABC">="BBC" returns: FALSE

Date()+10>=-Date() returns: TRUE

Conditional: <=

Description: Less than or equal to

Page 387 of 463

Applies to: All types

Examples:

100<=99 returns: FALSE

"ABC"<="BBC” returns: TRUE

Date()+10<=Date() returns: FALSE

Operators
Operator: +

Description: Adds one value to another value

Applies to: All types

Examples:

"ABC"+"DEF" returns: "ABCDEF"

100+23 returns: 123

Date()+7 returns: date one week from today

Operator: -

Description: Subtracts one value from another value

Applies to: Numeric and Date types

Examples:
123-100 returns: 23

Date()-140 returns: date of two weeks ago

Operator: /

Description: Divides one number by another

Applies to: Numeric type

Example: 100/4 returns: 25

Operator: *

Description: Multiplies one value by another

Applies to: Numeric type

Example: 100*5 returns: 500

Page 388 of 463

Operator: %

Description: Modulus

Applies to: Numeric type

Example: 100%33 returns: 1

Logical Evaluators
Logical: .OR.

Description: Returns TRUE if either condition is TRUE

Example: State="CA" .OR. Zip="99999"

Logical: .AND.

Description: Returns TRUE only if all conditions are TRUE

Example: Company="GoldMine, Inc." .AND. Phone1="(310)454-6800"

Logical: .NOT.

Description: Returns the opposite of the condition being tested

Example: .NOT. City="San Francisco”

Xbase Functions
GoldMine recognizes four types of Xbase functions as valid

■ String: Use primarily for manipulating string data types. A string function can return other data types.
■ Date: Use for any date-related operations. A date function can return other data types.
■ Numeric: Use for numeric operations. A numeric function can return other data types.
■ Miscellaneous: Additional functions that fall outside of the previous three categories of data types. These may

return any type of data.

For convenience, functions are listed under these four categories, according to how they are most typically used.
For example, under “Date Functions,” you will find those functions that return numeric or string types from dates.

Page 389 of 463

String Functions
ALLTRIM(<string>) Returns a string value with both leading and trailing spaces

from <string>.
Return type: String
Example
“[“+ALLTRIM(“ This is a test “)+”]”
returns [This is a test].

ASC(<char>) Returns the ASCII decimal value for <char>.
Return type: Numeric
Example
ASC(“A”)
returns 65.

AT(<string1>,
<string2>)

Returns the first position of <string1> in <string2>.
Return type: String
Example
AT(“a”, “once upon a time”)
returns 11.

CHR(<byte>)

Returns the ASCII character value for <byte>.
Return type: String
Example
CHR(65)
returns A.

FMTTIME(<time>) Returns a character string (hh:mmap format) derived from <time>.
Return type: String
Example
FMTTIME(TIME())
returns 2:28p.

HTTPSTR(<string>) Returns <string> with all nonletter/number characters replaced with %values.
Return type: String
Example
HTTPSTR(“www.Website.com/some dir/”)
returns www.Website.com%2Fsome%20dir%2F.

IIF(<condition>,<true
result>,<false result>)

Returns either <true result> or <false result>, depending on the Boolean
evaluation of <condition>.
Return type: Logical
Example
IIF (99 < 100, “Value is Less than 100”, “Value is more than 100”)
returns “Value is Less than 100”.

Page 390 of 463

LEFT(<string>, <length>)

Returns the leftmost <length> characters from <string>.
Return type: String
Example
LEFT("Four score and seven",10)
returns Four score.

LEN See LENGTH below.

LENGTH(<string>) Returns the number of characters in <string>.
Return type: Numeric
Example
LENGTH("This is a test")
returns 14.

LOWER(<string>)

Returns <string> in lower-case letters.
Return type: String
Example
LOWER("TEST THIS FUNCTION")
returns test this function.

LTRIM(<string>)

Returns <string> with all leftmost spaces removed.
Return type: String
Example
"[" + LTRIM(" This is a test " + "]"
returns [This is a test].

LTRIMPAD(<string>,
<length>, <fill>)

Returns <string> with leftmost spaces removed and padded to <length> with
<fill> character.
Return type: String
Example
"["+LTRIMPAD(" 1341", 10, "0")+"]"
returns 0000001341.

MID(<string>, <start>,
<length>)

Returns the string of <length> characters starting at position <start> within
<string>.
Return type: String
Example
MID("Four score and seven",6,5)
returns score.

PAD(<string>, <length>,
<fill>, <mode>)

Returns <string> padded to <length> with the <fill> character.
<fill>
This optional parameter defaults to a space.
<mode>
can be 0 for right pad (default), 1 for centered, and 2 for left pad.
Return type: String
Example
PAD(“TEST”, 8, “x”, 1)
returns xxTESTxx.

Page 391 of 463

PADL(<string>, <length>,
<fill>)

Returns <string> padded to <length> with the <fill> character.
<fill>
This optional parameter defaults to a space. PADL pads from the left.
Return type: String
Example
PADL("TEST", 8, "x")
returns xxxxTEST.

PADR(<string>, <length>,
<fill>)

Same as PADL, except that PADR pads the string to the right.
Return type: String
Example
PADR("TEST", 8, "x")
returns TESTxxxx.

PROPER(<string>) Returns a string in which the first letter of each word in <string> is capitalized,
and the all following letters are lower-case.
Return type: String
Example
PROPER("fighting IRISH")
returns Fighting Irish.

RAT(<string1>,string2>)

Returns the last position of <string1> in <string2>.
Return type: Numeric
Example
RAT("t", "this is a test.")
returns 14.

RIGHT(<string>, <length>)

Returns the rightmost <length> characters from <string>.
Return type: String
Example
RIGHT("Four score and seven",5)
returns seven.

RTRIM(<string>) Returns <string> with all rightmost spaces removed.
Return type: String
Example
"[" + RTRIM(" This is a test " + "]"
returns [This is a test].

STR(<value>,<length>,
<decimals>,<fill char>)

Returns the numeric <value> formatted as a string. The <value> parameter is
required. All other parameters are optional. The <length> parameter pads the
number to the left with spaces or with the <fill char> if specified.
Return type: String
Example
STR(456, 7, 2, "0")
returns 0456.00.

Page 392 of 463

STRTRAN(<string1>,
<string2>, <string3>)

Returns a string based on <string1> with all occurrences of <string2>
translated to <string3>.
Return type: String
Example
STRTRAN("A1B1C1D1", "1", "x")
returns AxBxCxDx.

SUBSTR(<string>,
<start>, <length>)

Returns the string of <length> characters starting at position <start> within
<string>.
Return type: String
Example
SUBSTR("Four score and seven",6,5)
returns score.

TRIM(<string>) See RTRIM.

UPPER(<string>) Returns the <string> in upper case.
Return type: String
Example
UPPER("this is a test")
returns THIS IS A TEST.

WORD(<string>, <pos>)

Returns the <pos> word within <string>.
Return type: String
Example
WORD("this is a test for the WORD function", 4)
returns test.

Date Functions
ACCDATE(<string>) Returns a date value for <string>, where <string> is a valid GoldMine AccountNo.

Return type: Date
Example
ACCDATE(Contact1->ACCOUNTNO)
returns 4/20/99.

AGE(<date>) Returns the age in years since <date>.
Return type: Numeric
Example
AGE(Contact2->UBDATE)
returns 32.

Page 393 of 463

CTOD(<string>)

Returns a date value based on <string>. The <string> parameter should be in the
format: mm/dd/yy.
Return type: Date
Example
CTOD("4/20/99")+5
returns 4/25/99.

DATE()

Returns today’s date in date format. To add/subtract from this value, simply use the
number of days in your expression. For example: DATE()+7 will add seven days to
today's date.
Return type: Date
Example
Assuming today’s date is 4/20/99, DATE()+7
returns 4/27/99.

DAY(<date>) Returns that day of the month for the specified <date>.
Return type: Numeric
Example
DAY(DATE())
returns 18.

DOBINDAYS(<date>) Returns the number of days until the month/day in <date>.
Return type: Numeric
Example
DOBINDAYS(STOD("19681024"))
returns 232.

DOW(<date>)

Returns the day of the week in numeric format; for example, Sunday = 0, Monday =
1, and so on
Return type: Numeric
Example
DOW(STOD("19990909"))
returns 4.

DOY(<date>)

Returns the number of days elapsed from the beginning of the year in <date> to the
month/day in <date>.
Return type: Numeric
Example
DOY(Contact2->UDATE)
returns 220.

DTOC(<date>) Returns a character string (MM/DD/YY format) derived from <date>.
Return type: String
Example
DTOC(Contact2->UDATE)
returns 10/24/99.

Page 394 of 463

DTOS(<date>) Returns a character string (YYYYMMDD format) derived from <date>.
Return type: String
Example
DTOS(Contact2->UDATE)
returns 19991024.

MONTH(<date>)

Returns that numeric month for the specified <date>.
Return type: Numeric
example:
Example
MONTH(Contact2->UDATE)
returns 2.

STOD(<string>)

Converts a <string> value into a date value. <string> should be in the format
YYYYMMDD.
Return type: Date
Example
STOD("20000121")
returns 1/21/2000.

WDATE(<date>,
<format>)

Returns the <date> formatted in variety of ways, based on the optional parameter
<format>.

<format>

0 mm, dd, yy Jan 21, 00
1 ddd, mmm dd, yy Thu, Jan 21, 00
2 mmm dd Jan 21
3 Long date style Thursday, Jan 21, 2000
The Long date style format 3 is taken from the Windows Regional Settings.
Return type: String
Example
WDATE(Contact2->UDATE, 1)
returns Thu, Jan 21, 00.

YEAR(<date>) Returns the numeric year value of <date>.
Return type: Numeric
Example
YEAR(Contact2->UDATE)
returns 2000.

Numeric Functions
CEILING(<number>) Returns the nearest integer that is greater than or equal to the numeric expression.

Return type: Numeric
Example
CEILING(3.1)
returns 4.

Page 395 of 463

COUNTER(<string>, <inc>,
<start>, <action>)

Returns a sequence of consecutive numbers each time the expression is evaluated.
Each of the parameters is described below.
<name>
This counter must be unique, and can be a maximum of 10 characters.
<inc>
Each evaluation of the function increments the counter by the <inc> value.
<start> and <action>
Optional parameters
When <action>is 1, the <start> value is used to reset the counter. The counter is
deleted when <action>is 2.
COUNTER works similarly to the SEQUENCE function. The key difference is that
COUNTER stores the count value between GoldMine sessions, and it is shared by all
GoldMine users. The COUNTER function updates a database counter, so COUNTER
is much slower than SEQUENCE, which updates a memory counter. The SEQUENCE
counter is local to the operation, and its count is lost at the end of the operation.
GoldMine can track an unlimited number of uniquely named counters. The counter
values are stored in the LOOKUP table.
Return type: Numeric
Example
COUNTER("InvoiceNo", 1, 1000)
returns 1000.

FLOOR(<number>)

Returns the nearest integer that is less than or equal to the numeric expression
Return type: Numeric
Example
FLOOR(2.8)
returns 2.

INT(<number>)

Returns the integer part of a number without rounding.
Return type: Numeric
Example
INT(123.95)
returns 123.

RANDOM(<range>) Returns a random number.
<range> can be any number between 1 and 32,761. The returned random number
will range between zero and <range>, not including the range limit. If not specified,
the <range> parameter defaults to 32,761. You can generate random numbers up
to two billion with the expression random(32761) * random(32761).
Return type: Numeric
Example
RANDOM(10)
Returns a number between 0–9.

Page 396 of 463

SEQUENCE(<start>, <inc>) Returns a sequence of consecutive numbers each time the expression is evaluated.
When the expression is first evaluated, the <start> parameter starts the counter.
Each subsequent evaluation of the function increments the counter by the <inc>
value. The SEQUENCE counter is local to the operation, and its count is lost at the
end of the operation.
Return type: Numeric
Example 1
SEQUENCE(1000,10)
returns 1010.
Example 2
SEQUENCE(1000,10)
SEQUENCE(1000,10)
returns 1020.

VAL(<string>)

Converts <string> to a numeric value.
Return type: Numeric
Example
VAL("123.45")
returns 123.45.

Miscellaneous Functions
RECCOUNT() Returns the number of records in Contact1. (May be time-consuming on large SQL

tables.)
Return type: Numeric
Example
RECCOUNT()
returns 35671

RECNO() Returns the current record number (Xbase) or RecID (SQL) for the active Contact1
record.
Return type: Numeric
Example
RECNO()
returns 351.

RECNOCOUNT()

Returns the current record number and total records. This function is not available
for SQL tables.
Return type: String
Example
RECNOCOUNT()
returns 236 of 2204.

Page 397 of 463

TIME()

Returns the current time.
Return type: Time
Example
TIME()
returns 14:56:22.

Xbase Database Structures

Overview
This chapter is provided for programmers who want to integrate their programs with GoldMine Xbase format
database structures.

Third-party developers are encouraged to integrate their products with GoldMine, thereby enhancing both
products. If you design a commercial program that works with GoldMine, please contact GoldMine Inc. so we
can include your program in our Enhancement Guide.

This chapter describes the file organization and structures of GoldMine databases in an Xbase format. Each
database file is listed separately and includes its associated index files, database structure, and special notes. For
information about working with GoldMine databases in an SQL format, see SQL Database Structures. The
following pages describe the database structures of most GoldMine .DBF files. This chapter does not include a
discussion of every database. Security and system database files are not included in this section. You should not
interface with these files. For an in-depth discussion on interfacing with GoldMine, visit the
Public.GoldMine.Programming newsgroup, which you can access directly from http://www.goldmine.com/.

Most GoldMine files are stored in the GOLDMINE\GMBASE directory. These files include most database and
index files. The contact sets (CONT*.*) are stored in a separate directory to allow GoldMine to handle multiple
contact sets.

If you will be developing an application to read and write to the GoldMine databases, we recommend that you
use Dynamic Data Exchange (DDE) as described in Working with Dynamic Data Exchange (DDE) or the functions
contained within GMXS32.DLL, as described in Using GMXS32.DLL for Database Access and Sync Log Updates. If
you choose to write directly to our files without using DDE, you must be aware of the field/index structure and
synchronization methodology used by GoldMine to ensure full compatibility.

To view how GoldMine uses RECTYPEs for various purposes, create a contact set, create sample contacts, and
then create sample activities, and so on. Place obvious values in each of the fields. Use a database viewing
utility, such as BR4, MS-Access, or Excel to view the sample records.

TIP: Do not view your live contact database with an external application. Do not edit GoldMine
fields with an external application.

Page 398 of 463

http://www.goldmine.com/

Page 399 of 463

CAL.DBF
Directory: GMBASE

Description: Calendar file—contains a record for each scheduled activity. The different record types are
distinguished by the contents of the RECTYPE field. Different RECTYPEs may use each field
for a different purpose.

Index File: CAL.MDX

CAL Indexes

Name Key

Cal Rectype+userID+DTOS(onDate)+onTime

Calcont AccountNo+rectype+DTOS(onDate)+onTime

Caldate UserID+DTOS(onDate)+onTime

Calprob Rectype+userID+Str(999-duration,3)

Calalarm AlarmFlag+userID+DTOS(ALARMDATE)+alarmTime

Calrlink lopRecID+RECTYPE+DTOS(ONDATE)+ONTIME

Calrecid recId

CAL Structure

Field Name Type Len Description

USERID String 8 User Name

ACCOUNTNO String 20 Account Number of linked contact

ONDATE Date 8 Activity date

ONTIME String 5 Activity Time

ENDDATE Date 8 Ending Date of Scheduled Activity

ALARMFLAG String 1 Alarm Flag

ALARMTIME String 5 Alarm Time

ALARMDATE Date 8 Alarm Date

ACTVCODE String 3 Activity Code

RSVP String 1 RSVP Notification

Page 400 of 463

DURATION Integer 3 Duration/Probability

RECTYPE String 1 See: Rectype

ACONFIRM String 3 Meeting Confirmation

APPTUSER String 10 Meeting Confirmation User

STATUS String 4 First character is flag, second char =1 if notes exist

DIRCODE String 10 DirCode of the current contact file

NUMBER1 Integer 11 Sales Potential

NUMBER2 Integer 8 Units of a Forecasted Sale

COMPANY String 60 Company/Contact Name

REF String 80 Reference

NOTES Memo 1 Notes

LINKRECID String 15 Linked Record ID

ldoCrecid String 15 Reserved for future use

LOPRECID String 15 Linked Opportunity Manager Record ID

CREATEBY String 8 Created by User

CREATEON Date 8 Creation Date

CREATEAT String 6 Creation Time

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

RECID String 15 Record ID

Rectype

The RECTYPE field contains the Calendar’s activity type. The following values are possible contents of
RECTYPE:

A Appointment F Literature fulfillment S Sales potential

C Call Back M Message T Next action

D To-do O Other

E Event Q Queued e-mail

Page 401 of 463

CONTACT1.DBF
Directory: COMMON

Description: Contact file—contains the main fields of contact records

Index File: CONTACT1.MDX

CONTACT1 Indexes

Name Key

Contacc AccountNo

Contcomp Upper(company)+Substr(accountNo,10,4)

Contname Upper(contact)+Substr(accountNo,10,4)

Contzip zip+Substr(accountNo,10,4)

Contcity Upper(city)+Substr(accountNo,10,4)

Contkey1 Upper(key1)+Substr(accountNo,10,4)

Contkey2 Upper(key2)+Substr(accountNo,10,4)

Contkey3 Upper(key3)+Substr(accountNo,10,4)

Contkey4 Upper(key4)+Substr(accountNo,10,4)

Contkey5 Upper(key5)+Substr(accountNo,10,4)

Contlast Upper(lastName)+Substr(accountNo,10,4)

CONTSTAT Upper(STATE+CITY)+SUBSTR(ACCOUNTNO,10,4)

CONTCNTY UPPER(COUNTRY+STATE)+SUBTR(ACCOUNTNO,10,4)

Contphon phone1+Substr(accountNo,10,4)

Cn1Recid recid

CONTACT1 Relations

Related File->Field Contact1 Field

Contact2->AccountNo Contact1->AccountNo

ContHist->AccountNo Contact1->AccountNo

ContSupp->AccountNo Contact1->AccountNo

Cal->AccountNo Contact1->AccountNo

Page 402 of 463

CONTACT1 Structure

Field Name Type Len Description

ACCOUNTNO String 20 See: Account Number

COMPANY String 40 Company Name

CONTACT String 40 Contact Name

LASTNAME String 15 Contact’s Last Name

DEPARTMENT String 35 Department

TITLE String 35 Contact Title

SECR String 20 Secretary

PHONE1 String 25 Phone 1

PHONE2 String 25 Phone 2

PHONE3 String 25 Phone 3

FAX String 25 Fax

EXT1 String 6 Phone Extension 1

EXT2 String 6 Phone Extension 2

EXT3 String 6
FAX Extension used as EXT3 to maintain compatibility with
previous versions

EXT4 String 6 Phone Extension 3

ADDRESS1 String 40 Address 1

ADDRESS2 String 40 Address 2

ADDRESS3 String 40 Address 3

CITY String 30 City

STATE String 20 State

ZIP String 10 Zip Code

COUNTRY String 20 Country

DEAR String 20 Dear (Salutation)

SOURCE String 20 Source (Lead)

KEY1 String 20 Key 1

Page 403 of 463

KEY2 String 20 Key 2

KEY3 String 20 Key 3

KEY4 String 20 Key 4

KEY5 String 20 Key 5

STATUS String 3 See : Internal Status

NOTES Memo Notes

MERGECODES String 20 Merge Codes for primary contact

CREATEBY String 8 Creation User

CREATEON Date 8 Creation Date

CREATEAT String 5 Creation Time

OWNER String 8 Record Owner

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 6 Last Modified Time

RECID String 15 Record ID

Account Number

The ACCOUNTNO field contains the following information:

Positions Value

1–6 Date in YYMMDD format

7–11 Seconds since midnight

12–17 Randomly generated

18–20 First three characters of the contact or company name

Internal Status

○ Position 1 of the Internal Status field keeps track of the type of phone number for the contact. If the first
character is U, the phone numbers are formatted for USA-style phone numbers: (999)999-9999.

○ Position 2 indicates the curtain level (0=none, 1=partial, 2=full)
○ Position 3 indicates a record alert is present if the value is 1.

Page 404 of 463

CONTACT2.DBF
Directory: COMMON

Description: Contact file—contains the additional fields of contact records. Each complete contact record
has a record in this file. User-defined field data is stored in this file.

Index File: CONTACT2.MDX

CONTACT2 Index

Name Key

Contact2 accountNo

Cn2Recid recId

CONTACT2 Structure

Field Name Type Len Description

ACCOUNTNO String 20 Account Number

CALLBACKON Date 8 Call Back Date

CALLBACKAT String 8 Call Back Time (unused compatibility field)

CALLBKFREQ Smallint 3 Call Back Frequency

LASTCONTON Date 8 Last Contact Date

LASTCONTAT String 8 Last Contact Time

LASTATMPON Date 8 Last Attempt Date

LASTATMPAT String 8 Last Attempt Time

MEETDATEON Date 8 Meeting Date

MEETTIMEAT String 8 Meeting Time

COMMENTS Date 65 Comments

PREVRESULT String 65 Previous Results

NEXTACTION String 65 Next Action

ACTIONON Date 8 Next Action Date

CLOSEDATE Date 8 Expected Close Date

USERDEF01 String 10 User Defined 1

Page 405 of 463

USERDEF02 String 10 User Defined 2

USERDEF03 String 10 User Defined 3

USERDEF04 String 10 User Defined 4

USERDEF05 String 10 User Defined 5

USERDEF06 String 10 User Defined 6

USERDEF07 String 10 User Defined 7

USERDEF08 String 10 User Defined 8

USERDEF09 String 10 User Defined 9

USERDEF10 String 10 User Defined 10

RECID String 15 Record ID

CONTGRPS.DBF
Directory: COMMON

Description: Groups file—the CONTGRPS file is used for both the group header, which defines each group,
and members for each group.

Index File: CONTGRPS.MDX

CONTGRPS Indexes

Name Key

GroupNo UPPER(userID+code)

GroupAcc accountno+userID

GrpRecID recId

CONTGRPS Structure (header records)

Field Name Type Len Description

USERID String 15 Group user

CODE String 8 Group code

ACCOUNTNO String 20 See: Header Info

REF String 24 Group reference

RECID String 15 Record ID/Group number

Page 406 of 463

Header Info

The ACCOUNTNO field contains the following information when the CONTGRPS record is a group header
record:

Positions Value

1–8 “*M”

15–20 Total members in group

The next available group number is stored in the CODE field in the first physical record in CONTGRPS.DBF.

CONTGRPS Structure (member records)

Field Name Type Len Description

USERID String 15 Group number (from group header)

CODE String 8 Member sort value

ACCOUNTNO String 20 Linked contact accountno

REF String 24 Member reference

RECID String 15 Record ID

CONTHIST.DBF
Directory: COMMON

Description: Contact history file—contains a record for each completed activity

Index File: CONTHIST.MDX

CONTHIST Indexes

Name Key

ContHist accountNo+DTOS(onDate)+RECID

ContHusr USERID+SRECTYPE+DTOS(ONDATE)+RECID

CNHRLink lopRecId+DTOS(ONDATE)

CnHRecid recId

CONTHIST Structure

Field Name Type Len Description

Page 407 of 463

USERID String 8 User

ACCOUNTNO String 20 Account No.

SRECTYPE String 1 First character of RecType

RECTYPE String 10 See: Record Type

ONDATE Date 8 Action Date

ONTIME String 5 Action Time

ACTVCODE String 3 Activity Code

RESULTCODE String 3 Result Code

STATUS String 2 First character is flag, second character =1 if notes exist

DURATION String 8 Duration

UNITS String 8 Units of a Forecasted Sale

REF String 80 Reference

NOTES Memo 1 Notes

LINKRECID String 15 Linked Record ID

LOPRECID String 15 Linked Opp. Mgr. Record

CREATEBY String 8 Creation User

CREATEON Date 8 Creation Date

CREATEAT String 6 Creation Time

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 6 Last Modified Time

RECID String 15 Record ID

NUMBER1 Float Store value from the DURATION field in numeric format

NUMBER2 Float Store value from the UNITS field in numeric format

EXT String 5 Notes or email message format

COMPLETEDID String 15 The CAL record ID of the completed activity

Record Type

The RECTYPE field contains the completed activity’s type. The following values are possible contents of
RECTYPE:

Page 408 of 463

A Appointment M Sent message CI Incoming call

C Phone call O Other CM Returned message

D To-do S Sale CO Outgoing call

E Event T Next action MG E-mail message

F Literature fulfillment U Unknown MI Received e-mail

L Form CC Call back MO Sent e-mail

CONTSUPP.DBF
Directory: COMMON

Description: Supplementary contact set—contains a record for each additional contact record, referral
and profile record. The different record types are distinguished by the contents of the
RECTYPE field. Different RECTYPEs may use each field for a different purpose.

Index File: CONTSUPP.MDX

CONTSUPP Indexes

Name Key

ContSupp accountNo+recType+UPPER(contact)

Contspfd UPPER(RECTYPE+CONTACT+CONTSUPREF)

Cnsrecid recId

CONTSUP Structure

Field Name Type Len Description

ACCOUNTNO String 20 Account No.

RECTYPE String 1 See: Record Type

CONTACT String 30 Contact Name/Profile

TITLE String 35 Contact Title/Referral’s Account Number

CONTSUPREF String 35 Reference

DEAR String 20 Dear (Salutation)

PHONE String 20 Phone

Page 409 of 463

EXT String 6 Phone Extension

FAX String 20 FAX number

LINKACCT String 20 Linked Account

NOTES Memo 1 Notes

ADDRESS1 String 40 Additional Contact Address 1

ADDRESS2 String 40 Additional Contact Address 2

ADDRESS3 String 40 Additional Contact Address 3

CITY String 30 Additional Contact City

STATE String 20 Additional Contact State

ZIP String 10 Additional Contact Zip

COUNTRY String 20 Additional Contact Country

MERGECODES String 20 Merge Codes

STATUS String 4 First character is flag, second char =1 if notes exist

LINKEDDOC Memo 10 Linked Document

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

RECID String 15 Record ID

Record Type

The RECTYPE field contains the record type. The following values are possible contents of RECTYPE:

C Additional contact record O Organizational chart

E Automated Process attached event P Profile record/extended profile record

H Extended profile header R Referral record

L Linked document

The RECTYPE value H can be linked to records with the RECTYPE value P. Assigning extended information
settings to a profile (assigned to a tab, or extended fields used) creates an H record type to store the settings.
The profile record stores a character string in the Phone field that matches the H record’s ACCOUNTNO field

Page 410 of 463

INFOMINE.DBF
Directory: GMBASE

Description: InfoCenter file—stores all data for the InfoCenter

Index File: INFOMINE.MDX

INFOMINE Indexes

Name Key

infomine UPPER(rectype+LEFT(TSECTION,80)+LEFT(TOPIC,10)

infosort sortKey

infotran recType+recID

infrecid recId

INFOMINE Structure

Field Name Type Len Description

ACCOUNTNO String 20 Account No.

CREATEBY String 8 Creation User

RECTYPE String 10 Record Type

SORTKEY String 20 Sort Key

TSECTION String 100 Section

TOPIC String 80 Topic

KEYWORDS String 80 Keywords

OPTIONS String 10 Options

OPTIONS1 String 20 Options1

OPTIONS2 String 20 Options2

LINKEDDOC Memo 1 Linked Document

NOTES Memo 1 Notes

USERREAD String 8 Read Access

USERWRITE String 8 Write Access

Page 411 of 463

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

RECID String 15 Record ID

LOOKUP.DBF
Directory: GMBASE

Description: Lookup file—contains a record of each defined look-up entry

Index File: LOOKUP.MDX

LOOKUP Indexes

Name Key

Lookup UPPER(FIELDName+entry)

lkurecid recId

LOOKUP Structure

Field Name Type Len Description

FIELDNAME String 11 Field Name

LOOKUPSUPP String 10 Lookup Options

ENTRY String 40 Description

RECID String 15 Record ID

MAILBOX.DBF
Directory: GMBASE

Description: E-mail Center mailbox file—stores all GoldMine e-mail

Index File: MAILBOX.MDX

MAILBOX Indexes

Name Key

mboxlink LinkRecId

Page 412 of 463

mboxuser userId+folder+FOLDER2+DTOS(MAILDATE)

mbxrecid recId

MAILBOX Structure

Field Name Type Len Description

LINKRECID String 15 Linked Record ID

FLAGS String 8 See: Flags

USERID String 8 User Name

FOLDER String 20 See: Folder

FOLDER2 String 20 Subfolder

ACCOUNTNO String 20 Account No.

CREATEON Date 8 Creation Date

MAILSIZE String 8 Mail Size

MAILDATE Date Mail Date

MAILTIME String 8 Mail Time

MAILREF String 100 Reference

RFC822 Memo 1 Entire Mail Message

RECID String 15 Record ID

Flags

The FLAGS field is a String type, but actually stores a number. When the number is converted to binary, the
following rules apply:

Bit On Off

1 Read Not Read

2 In History Not in History

3 Outbound Inbound

4 Attachments No Attachments

Folder

The FOLDER field contains the name of the folder in which mail is stored. GoldMine uses the following
predefined folders:

Page 413 of 463

X-GM-INBOX -Inbox

X-GM-OUTBOX -Outbox

X-GM-TEMPLATES -Templates

OPMGR.DBF
Directory: GMBASE

Description: Opportunity Manager file—stores all data maintained in the Opportunity Manager

Index File: OPMGR.MDX

OPMGR Indexes

Name Key

OpMgr UPPER(recType+userID+stage)

OpId opId+recType

OPACCNO ACCOUNTNO+RECTYPE+OPID

OpRecID recID

OPMGR Structure

Field Name Type Len Description

OPID String 15 Opportunity ID

RECTYPE String 3

ACCOUNTNO String 20 Account No.

USERID String 8 User Name

FLAGS String 10 Flags

COMPANY String 40 Company

CONTACT String 40 Contact

NAME String 50 Name

STATUS String 50 Status

CYCLE String 50 Cycle

Page 414 of 463

STAGE String 30 Stage

SOURCE String 30 Source

F1 String 20

F2 String 20

F3 String 10

STARTDATE Date 8 Start Date

CLOSEDDATE Date 8 Close Date

CLOSEBY Date 8 Close by

FORAMT Float 10 For Amount

FORPROB Integer 4 Probability

CLOSEAMT Float 10 Close Amount

Notes Memo 1 Notes

RECID String 15 Record ID

Record Type

The following OpMgr rectypes are valid, where x represents O for opportunity records, or P for project
records:

O Opportunity header record xT Team member

P Project header record xI Issue

xC Contact xF Field

xP Competitor xK Task

PERPHONE.DBF
Directory: GMBASE

Description: Personal Rolodex file—contains a record of each entry in the user’s Rolodex

Index File: PERPHONE.MDX

PERPHONE Indexes

Name Key

Page 415 of 463

Perphone UPPER(recType+userID+contact)

pphrecid recId

PERPHONE Structure

Field Name Type Len Description

RECTYPE String 1 Record Type

USERID String 8 User Name

STATUS String 2 Status

CONTACT String 30 Contact Name

PHONE1 String 16 Phone Number

RECID String 15 Record ID

RESITEMS.DBF
Directory: GMBASE

Description: Resources file—stores data regarding equipment, facilities, and other resources that you
can schedule from the Resources’ Master File.

Index File: RESITEMS.MDX

RESITEMS Indexes

Name Key

resource name

rscrecid recid

RESITEMS Structure

Field Name Type Len Description

NAME String 8 Name

CODE String 10 Code

RESDESC String 40 Description

CUSTODIAN String 8 Custodian

NOTES Memo 1 Notes

Page 416 of 463

RECID String 15 Record ID

SPFILES.DBF
Directory: GMBASE

Description: Contact files directory—contains a record for each GoldMine contact set

Index File: SPFILES.MDX

SPFILES Index

Name Key

Spfiles UPPER(dirPath)

Sflcode dirCode

sflrecid recId

SPFILES Structure

Field Name Type Len Description

DIRNAME String 35 Contact file description

DIRPATH String 100 Contact file path

USERID String 8 Contact file user

DIRCODE String 10 Contact Set Code

DBPASSWORD String 36 Database Password

DRIVER String 25 Database Driver

RECID String 15 Record ID

SQL Database Structures

Overview
Third-party developers are encouraged to integrate their products with GoldMine, thereby enhancing both
products. If you design a commercial program that works with GoldMine, please contact GoldMine so we can
include your program in our Enhancement Guide.

This chapter describes the file organization and structures of Goldmine SQL format databases in an SQL format.
Each database file is listed separately and includes its associated index files, database structure, and special
notes. For information about working with the GoldMine Xbase format database, see Xbase Database
Structures. The following pages describe the database structures of most GoldMine .DBF files. This chapter does
not include a discussion of every database. Security and system database files are not included in this section.
You should not interface with these files. For an in-depth discussion on interfacing with GoldMine, visit the
Public.GoldMine.Programming newsgroup, which you can access directly from http://www.goldmine.com/.

If you will be developing an application to read and write to the GoldMine databases, we recommend that you
use Dynamic Data Exchange (DDE) as described in Working with Dynamic Data Exchange (DDE) or the functions
contained within GMXS32.DLL, as described in Using GMXS32.DLL for Database Access and Sync Log Updates. If
you choose to write directly to our files without using DDE, you must be aware of the field/index structure and
synchronization methodology used by GoldMine to ensure full compatibility.

To view how GoldMine uses RECTYPEs for various purposes, create a contact set, create sample contacts, and
then create sample activities, and so on. Place obvious values in each of the fields. Use a database viewing
utility, such as MS-Access, MSSQL Enterprise Manager, or isql to view the sample records.

TIP: Do not view your live contact database with an external application. Do not edit GoldMine
fields with an external application.

CAL Table
Description: Calendar file—contains a record for each scheduled activity. The different record types

are distinguished by the contents of the RECTYPE field. Different RECTYPEs may use each
field for a different purpose.

Page 417 of 463

http://www.goldmine.com/

Page 418 of 463

CAL Indexes

Name Index Tags Unique?

CALCONT ACCOUNTNO+RECTYPE+ONDATE+ONTIME+RECID No

CAL RECTYPE+USERID+ONDATE+ONTIME+RECID No

CALDATE USERID+ONDATE+ONTIME+RECID No

CALPROB RECTYPE+USERID No

CALALARM ALARMFLAG+USERID+ALARMDATE+ALARMTIME No

CALRLINK LOPRECID+RECTYPE+ONDATE+ONTIME No

CALRECID RECID Yes

CAL Structure

Field Name Type Len Description

USERID String 8 User Name

ACCOUNTNO String 20 Account Number of linked contact

ONDATE Date 8 Activity date

ONTIME String 5 Activity Time

ENDDATE Date 8 Ending Date of Scheduled Activity

ALARMFLAG String 1 Alarm Flag

ALARMTIME String 5 Alarm Time

ALARMDATE Date 8 Alarm Date

ACTVCODE String 3 Activity Code

RSVP String 1 RSVP Notification

DURATION Integer 3 Duration/Probability

RECTYPE String 1 See: Record Type

ACONFIRM String 3 Meeting Confirmation

APPTUSER String 10 Meeting Confirmation User

STATUS String 4 First character is flag, second char =1 if notes exist

DIRCODE String 10 DirCode of the current contact file

Page 419 of 463

NUMBER1 Integer 11 Sales Potential

NUMBER2 Integer 8 Units of a Forecasted Sale

COMPANY String 60 Company/Contact Name

REF String 80 Reference

NOTES Memo 1 Notes

LINKRECID String 15 Linked Record ID

ldoCrecid String 15 Reserved for future use

LOPRECID String 15 Linked Opportunity Manager Record ID

CREATEBY String 8 Created by User

CREATEON Date 8 Creation Date

CREATEAT String 6 Creation Time

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

RECID String 15 Record ID

Record Type

The RECTYPE field contains the calendar’s activity type. The following values are possible contents of
RECTYPE:

A Appointment F Literature fulfillment S Sales potential

C Call Back M Message T Next action

D To-do O Other

E Event Q Queued e-mail

CONTACT1 Table
Description: Contact file—contains the main fields of contact records

CONTACT1 Indexes

Name Index Tags Unique?

Page 420 of 463

CONTACC ACCOUNTNO No

CONTCNTY U_COUNTRY+U_STATE+ACCOUNTNO No

CONTCOMP U_COMPANY+ACCOUNTNO No

CONTNAME U_CONTACT+ACCOUNTNO No

CONTZIP ZIP+ACCOUNTNO No

CONTCITY U_CITY+ACCOUNTNO No

CONTKEY1 U_KEY1+ACCOUNTNO No

CONTKEY2 U_KEY2+ACCOUNTNO No

CONTKEY3 U_KEY3+ACCOUNTNO No

CONTKEY4 U_KEY4+ACCOUNTNO No

CONTKEY5 U_KEY5+ACCOUNTNO No

CONTLAST U_LASTNAME+ACCOUNTNO No

CONTSTAT U_STATE+U_CITY+ACCOUNTNO No

CONTPHON PHONE1+ACCOUNTNO No

CN1RECID RECID Yes

CONTACT1 Relations

Related File->Field Contact1 Field

Contact2->AccountNo Contact1->AccountNo

ContHist->AccountNo Contact1->AccountNo

ContSupp->AccountNo Contact1->AccountNo

Cal->AccountNo Contact1->AccountNo

CONTACT1 Structure

Field Name Type Len Description

ACCOUNTNO String See: Account Number

COMPANY String 40 Company Name

CONTACT String 40 Contact Name

LASTNAME String 15 Contact’s Last Name

Page 421 of 463

DEPARTMENT String 35 Department

TITLE String 35 Contact Title

SECR String 20 Secretary

PHONE1 String 25 Phone 1

PHONE2 String 25 Phone 2

PHONE3 String 25 Phone 3

FAX String 25 Fax

EXT1 String 6 Phone Extension 1

EXT2 String 6 Phone Extension 2

EXT3 String 6
FAX Extension used as EXT3 to maintain compatibility
with previous versions

EXT4 String 6 Phone Extension 3

ADDRESS1 String 40 Address 1

ADDRESS2 String 40 Address 2

ADDRESS3 String 40 Address 3

CITY String 30 City

STATE String 20 State

ZIP String 10 Zip Code

COUNTRY String 20 Country

DEAR String 20 Dear (Salutation)

SOURCE String 20 Source (Lead)

KEY1 String 20 Key 1

KEY2 String 20 Key 2

KEY3 String 20 Key 3

KEY4 String 20 Key 4

KEY5 String 20 Key 5

STATUS String 3 See: Internal Status

NOTES Memo Notes

Page 422 of 463

MERGECODES String 20 Merge Codes for primary contact

CREATEBY String 8 Creation User

CREATEON Date 8 Creation Date

CREATEAT String 5 Creation Time

OWNER String 8 Record Owner

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 6 Last Modified Time

U_COMPANY String 40 Upper-case shadow of Company field

U_CONTACT String 40 Upper-case shadow of Contact field

U_LASTNAME String 15 Upper-case shadow of contact’s Last Name field

U_CITY String 30 Upper-case shadow of City field

U_STATE String 20 Upper-case shadow of State field

U_COUNTRY String 20 Upper-case shadow of Country field

U_KEY1 String 20 Upper-case shadow of Key 1 field

U_KEY2 String 20 Upper-case shadow of Key 2 field

U_KEY3 String 20 Upper-case shadow of Key 3 field

U_KEY4 String 20 Upper-case shadow of Key 4 field

U_KEY5 String 20 Upper-case shadow of Key 5 field

RECID String 15 Record ID

Account Number

The ACCOUNTNO field contains the following information:

Positions Value

1–6 Date in YYMMDD format

7–11 Seconds since midnight

12–17 Randomly generated

18–20 First three characters of the contact or company name

Page 423 of 463

Internal Status

○ Position 1 of the Internal Status field keeps track of the type of phone number for the contact. If the first
character is U, the phone numbers are formatted for USA-style phone numbers: (999)999-9999.

○ Position 2 indicates the curtain level (0=none, 1=partial, 2=full).
○ Position 3 indicates a record alert is present if the value is 1.

CONTACT2 Table
Description: Contact file—contains the additional fields of contact records. Each complete contact record

has a record in this file. User-defined field data is stored in this file.

CONTACT2 Index

Name Index Tags Unique?

CONTACT2 ACCOUNTNO No

CN2RECID RECID Yes

CONTACT2 Structure

Field Name Type Len Description

ACCOUNTNO String 20 Account Number

CALLBACKON Date 8 Call Back Date

CALLBACKAT String 8 Call Back Time (unused compatibility field)

CALLBKFREQ Smallint 3 Call Back Frequency

LASTCONTON Date 8 Last Contact Date

LASTCONTAT String 8 Last Contact Time

LASTATMPON Date 8 Last Attempt Date

LASTATMPAT String 8 Last Attempt Time

MEETDATEON Date 8 Meeting Date

MEETTIMEAT String 8 Meeting Time

COMMENTS Date 65 Comments

PREVRESULT String 65 Previous Results

NEXTACTION String 65 Next Action

ACTIONON Date 8 Next Action Date

Page 424 of 463

CLOSEDATE Date 8 Expected Close Date

USERDEF01 String 10 User Defined 1

USERDEF02 String 10 User Defined 2

USERDEF03 String 10 User Defined 3

USERDEF04 String 10 User Defined 4

USERDEF05 String 10 User Defined 5

USERDEF06 String 10 User Defined 6

USERDEF07 String 10 User Defined 7

USERDEF08 String 10 User Defined 8

USERDEF09 String 10 User Defined 9

USERDEF10 String 10 User Defined 10

RECID String 15 Record ID

CONTGRPS Table
Description: Groups file—the CONTGRPS file is used for both the group header, which defines each group,

and members for each group.

CONTGRPS Indexes

Name Index Tags Unique?

GROUPNO USERID+U_CODE+RECID No

GROUPACC ACCOUNTNO+USERID No

GRPRECID RECID Yes

CONTGRPS Structure (header records)

Field Name Type Len Description

USERID String 15 Group user

CODE String 8 Group code

ACCOUNTNO String 20 See: Header Info

REF String 24 Group reference

Page 425 of 463

U_CODE String 8 Upper-case shadow of member sort value

RECID String 15 Record ID/Group number

Header Info

The ACCOUNTNO field contains the following information when the CONTGRPS record is a group header
record:

Positions Value

1–8 “*M”

15–20 Total members in group

The next available group number is stored in the CODE field in the first physical record in CONTGRPS.DBF.

CONTGRPS Structure (member records)

Field Name Type Len Description

USERID String 15 Group number (from group header)

CODE String 8 Member sort value

ACCOUNTNO String 20 Linked contact accountno

REF String 24 Member reference

U_CODE String 8 Upper-case shadow of member sort value

RECID String 15 Record ID

CONTHIST Table
Description: Contact history file—contains a record for each completed activity

CONTHIST Indexes

Name Index Tags Unique?

CONTHIST ACCOUNTNO+ONDATE+RECID No

CONTHUSR USERID+SRECTYPE+ONDATE+RECID No

CNHRLINK LOPRECID+ONDATE No

CNHRECID RECID Yes

Page 426 of 463

CONTHIST Structure

Field Name Type Len Description

USERID String 8 User

ACCOUNTNO String 20 Account No.

SRECTYPE String 1 First character of RecType

RECTYPE String 10 See: Record Type

ONDATE Date 8 Action Date

ONTIME String 5 Action Time

ACTVCODE String 3 Activity Code

RESULTCODE String 3 Result Code

STATUS String 2 First character is flag, second character =1 if notes exist

DURATION String 8 Duration

UNITS String 8 Units of a Forecasted Sale

REF String 80 Reference

Field Name Type Len Description

NOTES Memo 1 Notes

LINKRECID String 15 Linked Record ID

LOPRECID String 15 Linked Opp. Mgr. Record

CREATEBY String 8 Creation User

CREATEON Date 8 Creation Date

CREATEAT String 6 Creation Time

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 6 Last Modified Time

RECID String 15 Record ID

NUMBER1 Float Store value from the DURATION field in numeric format

NUMBER2 Float Store value from the UNITS field in numeric format

EXT String 5 Notes or email message format

Page 427 of 463

COMPLETEDID String 15 The CAL record ID of the completed activity

Record Type

The RECTYPE field contains the record type. The following values are possible contents of RECTYPE:

C Additional contact record O Organizational chart

E Automated Process attached event P Profile record/extended profile record

H Extended profile header R Referral record

L Linked document

The RECTYPE value H can be linked to records with the RECTYPE value P. Assigning extended information
settings to a profile (assigned to a tab or extended fields used) creates an H record type to store the settings.
The profile record stores a character string in the PHONE field that matches the H record’s ACCOUNTNO field.

CONTSUPP Table
Description: Supplementary contact set—contains a record for each additional contact record, referral and

profile record. The different record types are distinguished by the contents of the RECTYPE
field. Different RECTYPEs may use each field for a different purpose.

CONTSUPP Indexes

Name Index Tags Unique?

CONTSUPP ACCOUNTNO+RECTYPE+U_
CONTACT+RECID

No

CONTSPFD RECTYPE+U_CONTACT+U_CONTSUPREF No

CNSRECID RECID Yes

CONTSUPP Structure

Field Name Type Len Description

ACCOUNTNO String 20 Account No.

RECTYPE String 1 See: Record Type

CONTACT String 30 Contact Name/Profile

TITLE String 35 Contact Title/Referral’s Account Number

CONTSUPREF String 35 Reference

Page 428 of 463

DEAR String 20 Dear (Salutation)

PHONE String 20 Phone

EXT String 6 Phone Extension

FAX String 20 FAX number

LINKACCT String 20 Linked Account

NOTES 1 Notes

ADDRESS1 String 40 Additional Contact Address 1

ADDRESS2 String 40 Additional Contact Address 2

ADDRESS3 String 40 Additional Contact Address 3

CITY String 30 Additional Contact City

STATE String 20 Additional Contact State

ZIP String 10 Additional Contact Zip

COUNTRY String 20 Additional Contact Country

MERGECODES String 20 Merge Codes

STATUS String 4 First character is flag, second char =1 if notes exist

LINKEDDOC Memo 10 Linked Document

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

U_CONTACT String 30 Upper-case shadow of Contact field

U_CONTSUPREF String 35 Upper-case shadow of Reference field

RECID String 15 Record ID

Record Type

The RECTYPE field contains the record type. The following values are possible contents of RECTYPE:

C Additional contact record O Organizational chart

E Automated Process attached event P Profile record/extended profile record

H Extended profile header R Referral record

L Linked document

Page 429 of 463

The RECTYPE value H can be linked to records with the RECTYPE value P. Assigning extended information
settings to a profile (assigned to a tab or extended fields used) creates an H record type to store the settings.
The profile record stores a character string in the PHONE field that matches the H record’s ACCOUNTNO field.

INFOMINE Table
Description: InfoCenter file—stores all data for the InfoCenter

INFOMINE Indexes

Name Index Tags Unique?

INFOMINE RECTYPE+U_TSECTION+U_TOPIC No

INFOSORT SORTKEY No

INFOTRAN RECTYPE+RECID No

INFRECID RECID Yes

INFOMINE Structure

Field Name Type Len Description

ACCOUNTNO String 20 Account No.

CREATEBY String 8 Creation User

RECTYPE String 10 Record Type

SORTKEY String 20 Sort Key

TSECTION String 100 Section

TOPIC String 80 Topic

KEYWORDS String 80 Keywords

OPTIONS String 10 Options

OPTIONS1 String 20 Options1

OPTIONS2 String 20 Options2

LINKEDDOC Memo 1 Linked Document

NOTES Memo 1 Notes

USERREAD String 8 Read Access

USERWRITE String 8 Write Access

Page 430 of 463

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

U_TSECTION String 100 Upper-case shadow of Section field

U_TOPIC String 80 Upper-case shadow of Topic field

RECID String 15 Record ID

LOOKUP Table
Description: Lookup file—contains a record of each defined look-up entry

LOOKUP Indexes

Name Index Tags Unique?

LOOKUP FIELDNAME+U_ENTRY No

LKURECID RECID Yes

LOOKUP Structure

Field Name Type Len Description

FIELDNAME String 11 Field Name

LOOKUPSUPP String 10 Lookup Options

ENTRY String 40 Description

U_ENTRY String 40 Upper-case shadow of Description field

RECID String 15 Record ID

MAILBOX Table
Description: E-mail Center mailbox file—stores all GoldMine e-mail

MAILBOX Indexes

Name Index Tags Unique?

MBOXLINK LINKRECID No

MBOXUSER USERID+FOLDER+FOLDER2+MAILDATE No

Page 431 of 463

MBXRECID RECID Yes

MAILBOX Structure

Field Name Type Len Description

LINKRECID String 15 Linked Record ID

FLAGS String 8 See: Flags

USERID String 8 User Name

FOLDER String See: Folder

FOLDER2 String 20 Subfolder

ACCOUNTNO String 20 Account No.

CREATEON Date 8 Creation Date

MAILSIZE String 8 Mail Size

MAILDATE Date Mail Date

MAILTIME String 8 Mail Time

MAILREF String 100 Reference

RFC822 Memo 1 Entire Mail Message

RECID String 15 Record ID

Flags

The FLAGS field is a String type, but actually stores a number. When the number is converted to binary, the
following rules apply:

Bit On Off

1 Read Not Read

2 In History Not in History

3 Outbound Inbound

4 Attachments No Attachments

Folder

The FOLDER field contains the name of the folder in which mail is stored. GoldMine uses the following
predefined folders:

Page 432 of 463

X-GM-INBOX -Inbox

X-GM-OUTBOX -Outbox

X-GM-TEMPLATES -Templates

OPMGR Table
Description: Opportunity Manager file—stores all data maintained in the Opportunity Manager

OPMGR Indexes

Name Index Tags Unique?

OPMGR RECTYPE+USERID+U_STAGE No

OPID OPID+RECTYPE No

OPACCNO ACCOUNTNO+RECTYPE+OPID No

OPRECID RECID Yes

OPMGR Structure

Field Name Type Len Description

OPID String 15 Opportunity
ID

RECTYPE String 3

ACCOUNTNO String 20 Account No.

USERID String 8 User Name

FLAGS String 10 Flags

COMPANY String 40 Company

CONTACT String 40 Contact

NAME String 50 Name

STATUS String 50 Status

CYCLE String 50 Cycle

STAGE String 30 Stage

SOURCE String 30 Source

Page 433 of 463

F1 String 20

F2 String 20

F3 String 10

STARTDATE Date 8 Start Date

CLOSEDDATE Date 8 Close Date

CLOSEBY Date 8 Close by

FORAMT Float 10 For Amount

FORPROB Integer 4 Probability

CLOSEAMT Float 10 Close Amount

Notes Memo 1 Notes

U_STAGE String 30
Upper-case
shadow of
Stage field

RECID String 15 Record ID

Record Type

The following OpMgr rectypes are valid, where x represents O for opportunity records, or P for project
records:

O Opportunity header record xT Team member

P Project header record xI Issue

xC Contact xF Field

xP Competitor xK Task

PERPHONE Table
Description: Personal Rolodex file—contains a record of each entry in the user’s Rolodex

PERPHONE Indexes

Name Index Tags Unique?

PERPHONE RECTYPE+USERID+U_CONTACT No

PPHRECID RECID Yes

Page 434 of 463

PERPHONE Structure

Field Name Type Len Description

RECTYPE String 1 Record Type

USERID String 8 User Name

STATUS String 2 Status

CONTACT String 30 Contact Name

PHONE1 String 16 Phone Number

U_CONTACT String 30 Upper-case shadow of Contact field

RECID String 15 Record ID

RESITEMS Table
Description: Resources file—stores data regarding equipment, facilities, and other resources that you can

schedule from the Resources’ Master File.

RESITEMS Indexes

Name Index Tags Unique?

RESITEMS NAME No

RSRECID RECID Yes

RESITEMS Structure

Field Name Type Len Description

NAME String 8 Name

CODE String 10 Code

RESDESC String 40 Description

CUSTODIAN String 8 Custodian

NOTES Memo 1 Notes

RECID String 15 Record ID

SPFILES Table
Description: Contact files directory—contains a record for each GoldMine contact set

Page 435 of 463

SPFILES Index

Name Index Tags Unique?

SFLCODE DIRCODE No

SFLRECID RECID Yes

SPFILES U_DIRPATH No

SPFILES Structure

C Type Len Description

DIRNAME String 35 Contact file description

DIRPATH String 100 Contact file path

USERID String 8 Contact file user

DIRCODE String 10 Contact Set Code

DBPASSWORD String 36 Database Password

DRIVER String 25 Database Driver

U_DIRPATH String 100 Upper-case shadow of Contact file path

RECID String 15 Record ID

Appendix: Code Examples

Overview
This appendix contains code examples for the GMXS32.DLL and GMXMLAPI.DLL in the following programming
languages:

○ C++
○ Visual Basic
○ Delphi

GMXS32.DLL Code Examples
This section shows sample codes for C++, Visual Basic, and Delphi.

C++ Examples
The following C++ files have been provided as part of this package:

GM5S32.H: C Header file containing all of the GMXS32.DLL function prototypes.

Function prototypes
//////////////////////////

//

// gm5s32.h

// Purpose : GM5S32.DLL interface
#ifndef __GM5S32_H

#define __GM5S32_H

#ifdef __cplusplus

extern "C" {

#endif
// licensing structure passed to GMW_GetLicenseInfo

typedef struct

{

char szLicensee[60]; // licensee name

char szLicNo[20]; // master serial number

char szSiteName[20]; // undocked site name

long iLicUsers; // licensed users

Page 436 of 463

Page 437 of 463

long iSQLUsers; // licensed SQL users

long iGSSites; // license GoldSync sites

long isDemo; // is demo install

long isServerLic; // is primary license ('D' or 'E')

long isRemoteLic; // is remote license ('U' or 'S')

long isUSALicense; // is USA license (1=US,128/32

// bit, 0=nonUS, 32-bit only)

long iDLLVersion; // the DLL version (400822)
long iReserved1;

long iReserved2;

long szReserved[100];
} GMW_LicInfo;
// DLL initialization functions

int _stdcall GMW_LoadBDE(char *szSysDir, char *szGoldDir, char

*szCommonDir, char *szUser =0, char *szPass =0);

int _stdcall GMW_UnloadBDE();
int _stdcall GMW_SetSQLUserPass(char *szUserName, char *szPassword);
int _stdcall GMW_GetLicenseInfo(GMW_LicInfo *pLic);
long _stdcall GMW_IsUserGroupMember(char *szGroup, char *szUserID);
// DataStream functions
// DBF workarea functions

long _stdcall GMW_DB_Open(char *szTableName);
long _stdcall GMW_DB_Close(long pArea);
long _stdcall GMW_DB_Append(long pArea, char* szRecID);
long _stdcall GMW_DB_Replace(long pArea, char* szField, char *szData, int

iAddTo);
long _stdcall GMW_DB_Delete(long pArea);
long _stdcall GMW_DB_Unlock(long pArea);
long _stdcall GMW_DB_Read(long pArea, char *szField, char *szBuf, int

iBufSize);
long _stdcall GMW_DB_Top (long pArea);
long _stdcall GMW_DB_Bottom(long pArea);
long _stdcall GMW_DB_SetOrder(long pArea, char *szTag);
long _stdcall GMW_DB_Seek(long pArea, char* szParam);
long _stdcall GMW_DB_Skip(long pArea, int nSkip =1);
long _stdcall GMW_DB_Goto(long pArea, char *szRecNo);
long _stdcall GMW_DB_Move(long pArea, char *szCommand, char* szParam);
long _stdcall GMW_DB_Search(long pArea, char *szExpr, char *szRecID);
long _stdcall GMW_DB_Filter(long pArea, char *szFilterExpr);
long _stdcall GMW_DB_Range(long pArea, char *szMin, char* szMax, char*

szTag);
long _stdcall GMW_DB_RecNo(long pArea, char *szRecID);
long _stdcall GMW_DB_IsSQL(long pArea);
// Quick one-field access functions

// (these are slow -- do not use in loops)

long _stdcall GMW_DB_QuickSeek(char *szTableName, char *szIndex, char

*szSeekValue, char *szRecID);
long _stdcall GMW_DB_QuickRead(char *szTableName, char *szRecID, char

*szField, char *szValue, int iLen);
long _stdcall GMW_DB_QuickReplace(char *szTableName, char *szRecID, char

*szField, char *szValue, int iAddTo =0);

Page 438 of 463

// Sync functions

int _stdcall GMW_SyncStamp(char *szStamp, char *szOutBuf);
int _stdcall GMW_UpdateSyncLog(char *szTable, char *szRecID,

char *szField, char *szAction);
int _stdcall GMW_ReadImpTLog(char *szFile, int bDelWhenDone, char

*szStatus);
char* _stdcall GMW_NewRecID(char *pBuff, char *pUser);

// misc functions

long _stdcall GMW_UserAccess(long iOption);
struct GMWnv;

typedef GMWnv *HGMNV;
// GM5S32.DLL business logic functions

long _stdcall GMW_Execute(const char *szFunc, HGMNV hgmnv);
// create, release & copy name value containers

HGMNV __stdcall GMW_NV_Create();
HGMNV __stdcall GMW_NV_CreateCopy(HGMNV hgmnv);
void __stdcall GMW_NV_Delete(HGMNV hgmnv);
void __stdcall GMW_NV_Copy(HGMNV hgmnvDestination , HGMNV hgmnvSource);
// get and set value by name

const char* __stdcall GMW_NV_GetValue(HGMNV hgmnv, const char* name, const

char* defaultValue);

void __stdcall GMW_NV_SetValue(HGMNV hgmnv, const char* name, const char*

value);
// Check if name exists. returns: 0 failed, 1 success

long __stdcall GMW_NV_NameExists(HGMNV hgmnv, const char* name);
// remove name(s)

void __stdcall GMW_NV_EraseName(HGMNV hgmnv, const char* name);
void __stdcall GMW_NV_EraseAll(HGMNV hgmnv);
// iterate over name-value list (1 based)

long __stdcall GMW_NV_Count(HGMNV hgmnv);
const char* __stdcall GMW_NV_GetNameFromIndex(HGMNV hgmnv, long index);
const char* __stdcall GMW_NV_GetValueFromIndex(HGMNV hgmnv, long index);
void __stdcall GMW_NV_SetStr(HGMNV hgmnv, char dlmName, char dlmVal,const

char* pszStr);

#ifdef __cplusplus

/* close extern "C" { */

}

#endif
#endif // __GM5S32_H

Logging In
The following example uses C++ to access the GM5S32.DLL functions The DLL is dynamically loaded and its
function addresses are retrieved using the GetProcAddress API.

// prototypes

typedef int (*fnGMW_LoadBDE) (char *szSysDir, char *szGoldDir, char

*szCommonDir, char *szUser);

typedef int (*fnGMW_UnloadBDE) ();

void GM5S32_DLL_Test()

Page 439 of 463

{

// load the GM5S32.DLL

HMODULE hLib = LoadLibrary("GM5S32.DLL");

if(hLib)

{
// get proc addresses of GM5S32 functions

fnGMW_LoadBDE GMW_LoadBDE = (fnGMW_LoadBDE) GetProcAddress(
(HINSTANCE) hLib,"GMW_LoadBDE");
fnGMW_UnloadBDE GMW_UnloadBDE = (fnGMW_UnloadBDE)
GetProcAddress((HINSTANCE) hLib,"GMW_UnloadBDE");
// initialize the API

GMW_LoadBDE("d:\\gm4", "d:\\gm4", "d:\\gm4\\demo", szUser, szPass);

// do whatever..............

// shut down API

GMW_UnloadBDE();
// unload the DLL

FreeLibrary(hLib);

}

return;

}

Creating a Contact with Business Logic/
Enumerating a Name Value Container/DataStream

The following DataStream example assumes that GM5S32.DLL has already been loaded and the function addresses
have been retrieved. The first example retrieves a relatively small number of records into a fixed-size packet
buffer, while the second example retries a large number of records using 100-record packet buffers.

void DataStreamDLL_Example()

{

long iHandle = 0;

long iOK = 0;

// Example 1:

// Get a small number of records and use a fixed size buffer

//

// return all contact names at GoldMine Inc.

//

char *szSQL1 = "SELECT Contact FROM Contact1 "

"WHERE U_COMPANY LIKE 'GOLDMINE INC.%' "

"ORDER BY U_CONTACT";

// send DataStream SQL Query

if((iHandle = GMW_DS_Query(szSQL1)) > 0)

{

// allocate buffer for 200 contacts at 40 chars per/name

long iBufSize = 200*40 +20;
char *szBuf = new char[iBufSize];

// fetch first 200 records into buffer

iOK = GMW_DS_Fetch(iHandle, szBuf, iBufSize, 200);

Page 440 of 463

// do whatever with the data

ODS(szBuf);

// make sure to delete the buffer

delete [] szBuf; szBuf = NULL;

// close the query

iOK = GMW_DS_Close(iHandle); iHandle = 0;

}

// Example 2:

// Get a large number of records in 100-record buffers

//

// return all serial numbers beginning with "123...."

//

char *szSQL2 = "SELECT ContSupRef, Address1, AccountNo FROM ContSupp "

"WHERE RECTYPE = 'P' AND U_CONTACT = 'SERIAL NUMBER' "

"AND U_ContSupRef Like '123%' "

"ORDER BY U_ContSupRef";

// send DataStream SQL Query

if((iHandle = GMW_DS_Query(szSQL2)) > 0)

{

char *szBuf = NULL;

long iBufSize = -1;

// read while the first character of result is 0

while((szBuf == NULL || szBuf[0] == '0') && iBufSize)

{

// fetch 100 records and get the buffer size needed

// (set the szBuf and iBufSize parameters to 0 to

// fetch the data and retrieve the buffer size needed)

if(iBufSize = GMW_DS_Fetch(iHandle, 0, 0, 100))

{

// delete old buffer and allocate new buffer

delete [] szBuf; szBuf = NULL;

szBuf = new char[iBufSize];

// read the data (nGetRecs is 0 since data is already read)

iOK = GMW_DS_Fetch(iHandle, szBuf, iBufSize, 0);

// do whatever with the data

ODS(szBuf);

}

}

// make sure to delete the buffer

delete [] szBuf; szBuf = NULL;

// close the query

iOK = GMW_DS_Close(iHandle); iHandle = 0;

}

return;

}

Page 441 of 463

Low-Level Work Area
The following example assumes that GM5S32.DLL has already been loaded and the function addresses have been
retrieved. The example opens up the Contact1 and ContSupp tables to find a particular contact’s phone number
and primary e-mail address.

//

void DB_FuncsDLL_Example()

{

long iOK = 0;

int iBufSize = 100;

char szBuf[100], szBuf2[100], szAccNo[20+1];
//

// Example1:

// Find a Jon's phone number and primary e-mail address

//
char *szName = "JON V. FERRARA";

// open contact1 and contsupp

long iC1 = GMW_DB_Open("Contact1");

long iCS = GMW_DB_Open("ContSupp");
// tables opened ok?

if(iC1 && iCS)

{
// set the Contact1 index to ContName

iOK = GMW_DB_SetOrder(iC1, "ContName");
// seek Jon's name

//
if(GMW_DB_Seek(iC1, szName) == 1) // seek exact

{
// read Jon's phone number

iOK = GMW_DB_Read(iC1, "Phone1", szBuf, iBufSize);

ODS(szBuf); // show phone

// read Jon's AccountNo

iOK = GMW_DB_Read(iC1, "AccountNo", szAccNo, 20+1);

//

// set range to all contact's e-mail records

//

wsprintf(szBuf, "%sPE-MAIL ADDRESS", szAccNo);

iOK = GMW_DB_Range(iCS, szBuf, szBuf, "ContSupp");
// loop through all e-mail records
// and find primary one

while(iOK && (iOK = GMW_DB_Skip(iCS, 1)))

// read e-mail address from the ContSupRef field

// and status from Zip

iOK=GMW_DB_Read(iCS,"ContSupRef",szBuf,iBufSize);

iOK=GMW_DB_Read(iCS,"Zip", szBuf2, iBufSize);

// show e-mail address

ODS(szBuf);

Page 442 of 463

// primary e-mail has a '1' in the second
// char of Zip
if(szBuf2[1] == '1')

break; // found primary address!

}

}

// close the tables

iOK = GMW_DB_Close(iC1); iC1 = 0;

iOK = GMW_DB_Close(iCS); iCS = 0;

}
return;

}{

Visual Basic Examples
This section contains function prototypes and examples.

Function prototypes
' Structure for License function

Public Type GMLicInfo

Licensee As String * 60

LicNo As String * 20

SiteName As String * 20

LicUsers As Long

SQLUsers As Long

GSSites As Long

IsDemo As Long

IsServerLic As Long

IsRemoteLic As Long

ISUSALic As Long

iReserved1 As Long

iReserved2 As Long

iReserved3 As Long

sReserved As String * 100
End Type
' LoadAPI Functions

Public Declare Function GMW_LoadBDE Lib "GM5S32.dll" (ByVal sSysDir As

String, ByVal sGoldDir As String, ByVal sCommonDir As String, ByVal sUser

As String, ByVal sPassword As String) As Long
Public Declare Function GMW_UnloadBDE Lib "GM5S32.dll" () As Long
Public Declare Function GMW_SetSQLUserPass Lib "GM5S32.dll" (ByVal

sUserName As String, ByVal sPassword As String) As Long
' Business logic functions

' Name-Value parameter passing to business logic function GMW_Execute(

Public Declare Function GMW_Execute Lib "GM5S32.dll" (ByVal szFunc As

String, ByVal GMPtr As Any) As Long
Public Declare Function GMW_NV_Create Lib "GM5S32.dll" () As Long

Page 443 of 463

Public Declare Function GMW_NV_CreateCopy Lib "GM5S32.dll" (ByVal hgmnv As

Long) As Long
Public Declare Function GMW_NV_Delete Lib "GM5S32.dll" (ByVal hgmnv As

Long) As Long
Public Declare Function GMW_NV_Copy Lib "GM5S32.dll" (ByVal

hgmnvDestination As Long, ByVal hgmnvSource As Long) As Long
Public Declare Function GMW_GetLicenseInfo Lib "GM5S32.dll" (ByRef LicInfo

As Any) As Long
Public Declare Function GMW_NV_GetValue Lib "GM5S32.dll" (ByVal hgmnv As

Long, ByVal name As String, ByVal DefaultValue As String) As Long
Public Declare Function GMW_NV_SetValue Lib "GM5S32.dll" (ByVal hgmnv As

Long, ByVal name As String, ByVal Value As String) As Long
Public Declare Function GMW_NV_NameExists Lib "GM5S32.dll" (ByVal hgmnv As

Long, ByVal name As String) As Long
Public Declare Function GMW_NV_EraseName Lib "GM5S32.dll" (ByVal hgmnv As

Long, ByVal name As String) As Long
Public Declare Function GMW_NV_EraseAll Lib "GM5S32.dll" (ByVal hgmnv As

Long) As Long
Public Declare Function GMW_NV_Count Lib "GM5S32.dll" (ByVal hgmnv As

Long) As Long
Public Declare Function GMW_NV_GetNameFromIndex Lib "GM5S32.dll" (ByVal

hgmnv As Long, ByVal index As Long) As Long
Public Declare Function GMW_NV_GetValueFromIndex Lib "GM5S32.dll" (ByVal

hgmnv As Long, ByVal index As Long) As Long
' Low-Level DB funcs

Public Declare Function GMW_DB_Open Lib "GM5S32.dll" (ByVal sTableName As

String) As Long
Public Declare Function GMW_DB_Close Lib "GM5S32.dll" (ByVal lArea As

Long) As Long
Public Declare Function GMW_DB_Append Lib "GM5S32.dll" (ByVal lArea As

Long, ByVal sRecID As String) As Long
Public Declare Function GMW_DB_Replace Lib "GM5S32.dll" (ByVal lArea As

Long, ByVal sField As String, ByVal sData As String, ByVal iAddTo As Long)

As Long
Public Declare Function GMW_DB_Delete Lib "GM5S32.dll" (ByVal lArea As

Long) As Long
Public Declare Function GMW_DB_UnLock Lib "GM5S32.dll" (ByVal lArea As

Long) As Long
Public Declare Function GMW_DB_Read Lib "GM5S32.dll" (ByVal lArea As Long,

ByVal sField As String, ByVal sbuf As String, ByVal lbufsize As Long) As

Long
Public Declare Function GMW_DB_Top Lib "GM5S32.dll" (ByVal lArea As Long)

As Long
Public Declare Function GMW_DB_Bottom Lib "GM5S32.dll" (ByVal lArea As

Long) As Long
Public Declare Function GMW_DB_SetOrder Lib "GM5S32.dll" (ByVal lArea As

Long, ByVal Stag As String) As Long
Public Declare Function GMW_DB_Seek Lib "GM5S32.dll" (ByVal lArea As Long,

ByVal sParam As String) As Long

Page 444 of 463

Public Declare Function GMW_DB_Skip Lib "GM5S32.dll" (ByVal lArea As Long,

ByVal lSkip As Long) As Long
Public Declare Function GMW_DB_Goto Lib "GM5S32.dll" (ByVal lArea As Long,

ByVal sRecNo As String) As Long
Public Declare Function GMW_DB_Move Lib "GM5S32.dll" (ByVal lArea As Long,

ByVal sCommand As String, ByVal sParam As String) As Long

Public Declare Function GMW_DB_Search Lib "GM5S32.dll" (ByVal lArea As

Long, ByVal sExpr As String, ByVal sRecID As String) As Long
Public Declare Function GMW_DB_Filter Lib "GM5S32.dll" (ByVal lArea As

Long, ByVal sFilterExpr As String) As Long
Public Declare Function GMW_DB_Range Lib "GM5S32.dll" (ByVal lArea As

Long, ByVal sMin As String, ByVal sMax As String, ByVal Stag As String) As

Long
Public Declare Function GMW_DB_RecNo Lib "GM5S32.dll" (ByVal lArea As

Long, ByVal sRecID As String) As Long
Public Declare Function GMW_DB_IsSQL Lib "GM5S32.dll" (ByVal lArea As

Long) As Long
' Sync funcs

Public Declare Function GMW_NewRecID Lib "GM5S32.dll" (ByVal szRecid As

String, ByVal szUser As String) As String
Public Declare Function GMW_UpdateSyncLog Lib "GM5S32.dll" (ByVal sTable

As String, ByVal sRecID As String, ByVal sField As String, byvalsAction As

String) As Long
Public Declare Function GMW_ReadImpTLog Lib "GM5S32.dll" (ByVal sFile As

String, lDelWhenDone As Long, sStatus As String) As Long
Public Declare Function GMW_SyncStamp Lib "GM5S32.dll" (sStamp As String,

sOutBuf As String) As Long
' Datastream funcs

Public Declare Function GMW_DS_Query Lib "GM5S32.dll" (ByVal sSQL As

String, ByVal sFilter As String, ByVal sFDlm As String, ByVal sRDlm As

String) As Long
Public Declare Function GMW_DS_Range Lib "GM5S32.dll" (ByVal sTable As

String, ByVal Stag As String, ByVal sTopLimit As String, ByVal sBotLimit

As String, ByVal sFields As String, ByVal sFilter As String, ByVal sFDlm

As String, ByVal sRDlm As String) As Long
Public Declare Function GMW_DS_Fetch Lib "GM5S32.dll" (ByVal iHandle As

Long, ByVal sbuf As String, ByVal iBufSize As Long, ByVal iGetRecs As

Long) As Long
Public Declare Function GMW_DS_Close Lib "GM5S32.dll" (ByVal iHandle As

Long) As Long
Public Declare Function GMW_IsUserGroupMember Lib "GM5S32.DLL" (ByVal

szGroup As String, ByVal szUserID As String) As Long

' Misc WinAPI funcs used by VB with the GM5S32.DLL

Public Declare Sub CopyMemory Lib "kernel32" Alias "RtlMoveMemory"

(Destination As Any, Source As Any, ByVal Length As Long)

Public Declare Function lstrlen Lib "kernel32" Alias "lstrlenA" (ByVal

lpString As String) As Long

'

'

' NOTE! All GM5S32 Funcs that return a string pointer should be converted

Page 445 of 463

using

' the following function. For example:

'

' sResult = PtrToStr(GMW_NV_GetValue(lGMPtr, "OutPut", ""))

'

Public Function PtrToStr(ByVal lpsz As Long) As String

Dim strOut As String

Dim lngStrLen As Long

lngStrLen = lstrlen(ByVal lpsz)
' If returning larger packets, you may have to

' increase this value

lngStrLen = 64000
If (lngStrLen > 0) Then

strOut = String$(lngStrLen, vbNullChar)

Call CopyMemory(ByVal strOut, ByVal lpsz, lngStrLen)

lngStrLen = lstrlen(strOut)

PtrToStr = Left(strOut, lngStrLen)

Else

PtrToStr = ""

End If

strOut = ""

End Function

Logging In
Dim lResult As Long
lResult = GMW_LoadBDE("c:\gm5\", "c:\gm5\gmbase\", "c:\gm5\demo\",

"MASTER", "ACCESS")
If lResult <> 1 Then

MsgBox "Unable to Load API"

Creating a Contact
The following example assumes that GMXS32.DLL has already been loaded and functions have been declared.

Dim lGMPtr As Long, _

sGMnvm As String, _

sGMvle As String, _

lResult As Long
'//Create NV and pass pointer value to a variable

lGMPtr = GMW_NV_Create()
'//Fill Variables with Nulls

sGMnvm = String$(100, Chr(0))

sGMvle = String$(100, Chr(0))
'//Set Name Values

lResult = GMW_NV_SetValue(lGMPtr, "Company", "GoldMine Inc.")

lResult = GMW_NV_SetValue(lGMPtr, "Contact", "Calvin Luttrell")

lResult = GMW_NV_SetValue(lGMPtr, "Phone1", "(310)555-1212")

lResult = GMW_NV_SetValue(lGMPtr, "Email", "calvin@gm.com")

lResult = GMW_NV_SetValue(lGMPtr, "WebSite", "www.gm.com")

Page 446 of 463

'//Execute Business Logic Function

lResult = GMW_Execute("WriteContact", lGMPtr)

Enumerating a Container
The following example assumes that GMXS32.DLL has already been loaded and functions have been declared.

'//Get count from NV for loop

lCount = GMW_NV_Count(lGMPtr)
For i = 1 To lCount
'//Get name from NV

txttemp1.Text = GMW_NV_GetNameFromIndex(lGMPtr, i)
'//Get value from NV

txttemp2.Text = GMW_NV_GetValueFromIndex(lGMPtr, i)
'//Display in list box

sResult = txttemp1.Text + "=" + txttemp2.Text
List1.AddItem sResult

Next

DataStream
The following example assumes that GM5S32.DLL has already been loaded and functions have been declared.

sFilter = " '" + UCase$(txtMatchValue.Text) + "' $ UPPER(ContSupRef)"

iHandle = GMW_DS_Range("ContSupp", "ContSPFD", "PE-MAIL ADDRESS", "PE-MAIL

ADDRESS~", "ContSupRef;", sFilter, " ", Chr(13) + Chr(10))

If iHandle > 0 Then

Do

'The initial fetch will tell us how much to allocate the

'buffer for a 50 record packet

sBuf = String$(1, 0)

iBufSize = GMW_DS_Fetch(iHandle, sBuf, 0, 50)
'Now, we actually grab some data…

sBuf = String$(iBufSize + 1, 0) 'NOTE: You must initialize

'strings to the

'proper size before using.

lRes = GMW_DS_Fetch(iHandle, sBuf, iBufSize, 0)

'Check if more data is available or not

If Left(sBuf, 1) = "3" Then

bEOF = True

Else

bEOF = False

End If
'Add the results to a multi-line text box for display

txtResults.Text = txtResults.Text + Mid(sBuf, 14, iBufSize)
Loop until bEOF
Else

MsgBox ("Error: Invalid DS Handle!")

End If

Page 447 of 463

Low-Level WorkArea
The following example assumes that GMXS32.DLL has already been loaded and functions have been declared. The
example opens up the CONTACT1 and CONTSUPP tables to find a particular contact’s phone number and primary
e-mail address. The Contact name is stored in a VB Text box.

Dim lC1WA As Long

Dim lC2WA As Long

Dim lCSWA As Long

Dim lRes As Long

Dim sAccNo As String

Dim sBuf1 As String

Dim sBuf2 As String
'Initialization

lblEmail.Caption = ""

lblPrevresult.Caption = ""

lblCompany.Caption = ""

lblPhone.Caption = ""

sAccNo = String$(21, 0)

'Open data files

lC1WA = GMW_DB_Open("Contact1")

lC2WA = GMW_DB_Open("Contact2")

lCSWA = GMW_DB_Open("ContSupp")
'If all files are opened OK...

If (lC1WA And lC2WA And lCSWA) Then
'Set the index order

Res = GMW_DB_SetOrder(lC1WA, "ContName")
'Perform the seek

If GMW_DB_Seek(lC1WA, UCase$(txtContactName.Text)) = 1 Then
'Get the AccountNo for the matching record

lRes = GMW_DB_Read(lC1WA, "AccountNo", sAccNo, 21)

' Get the Phone and Company fields from Contact1
'Pre-allocate string buffer

sBuf1 = String$(100, 0)

sBuf2 = String$(100, 0)
'Get the field data

lRes = GMW_DB_Read(lC1WA, "Company", sBuf2, 100)

lRes = GMW_DB_Read(lC1WA, "Phone1", sBuf1, 100)
'Update the display labels

lblCompany.Caption = Trim(sBuf2)

lblPhone.Caption = Trim(sBuf1)

' Get the Previous result field from Contact2
'Set the index order

lRes = GMW_DB_SetOrder(lC2WA, "Contact2")
'Perform the seek

If GMW_DB_Seek(lC2WA, sAccNo) = 1 Then

Page 448 of 463

'Pre-allocate string buffer

sBuf1 = String$(100, 0)
'Get the field data

lRes = GMW_DB_Read(lC2WA, "PREVRESULT", sBuf1, 100)
'Display the field data

lblPrevresult.Caption = sBuf1
End If
' Get the e-mail address from ContSupp
'Pre-allocate string buffer

sBuf1 = String$(100, 0)
'Initialize the range limits

sBuf1 = Left(sAccNo + Space$(20), 20) + "PE-MAIL ADDRESS"
'Set the range and go top

lRes = GMW_DB_Range(lCSWA, sBuf1, sBuf1, "ContSupp")

lRes = GMW_DB_Top(lCSWA)
'Loop until a primary e-mail is found

Do While (lRes = 1)
'Pre-allocate string buffers

sBuf1 = String$(100, 0)

sBuf2 = String$(100, 0)
'Get the field data

lRes = GMW_DB_Read(lCSWA, "ContSupRef", sBuf1, 100)

lRes = GMW_DB_Read(lCSWA, "Zip", sBuf2, 100)
'Check if primary e-mail address

If Mid$(sBuf2, 2, 1) = "1" Then
'Update the label

lblEmail.Caption = Trim(sBuf1)
Exit Do 'all done
End If
'Skip to next record

lRes = GMW_DB_Skip(lCSWA, 1)
Loop
Else
'Notify user of problem

MsgBox ("Could not locate the specified contact.")
End If
Else
'All tables could not be opened.

MsgBox ("Could not open the data files.")
'Exit program

Unload Me
End If

Delphi Examples
This section includes function prototypes and examples.

Page 449 of 463

Function prototypes
Type

TGMW_LicInfo = record

Licensee: array [0..59] of char;

LicNo: array [0..19] of char;

SiteName: array [0..19] of char;

LicUsers,

SQLUsers,

GSSites,

IsDemo,

IsServerLic,

IsRemoteLic,

IsUSALic,

DLLVersion,

Reserved1,

Reserved2:longint;

Reserved: array [0..99] of char;

end;

Type

hgmnv = pointer;
// GM5S32.DLL initialization functions

function GMW_LoadBDE(sSysDir, sGoldDir, sCommonDir, sUser, sPassword:

Pchar): integer; stdcall; external 'GM5S32.DLL';
function GMW_UnloadBDE: integer; stdcall; external 'GM5S32.DLL';
function GMW_SetSQLUserPass(sUserName, sPassword: PChar):integer; stdcall;

external 'GM5S32.DLL';
function GMW_GetLicenseInfo(pGMW_LicInfo: pointer):integer; stdcall;

external 'GM5S32.DLL';
// GM5S32.DLL Sync functions

function GMW_UpdateSyncLog(sTable, sRecID, sField, cAction:

PChar):integer; stdcall; external 'GM5S32.DLL';
function GMW_ReadImpTLog(sFile: PChar; bDelWhenDone: integer; sStatus:

PChar): integer; stdcall; external 'GM5S32.DLL';
procedure GMW_NewRecID(sRecID, sUser: PChar); stdcall; external

'GM5S32.DLL';
procedure GMW_SyncStamp(sStamp, sOutBuf: PChar); stdcall; external

'GM5S32.DLL';
// GM5S32.DLL DataStream functions

function GMW_DS_Range(sTable, sTag, sTopLimit, sBotLimit, sFields,

sFilter, sFDlm, sRDlm: PChar): longint; stdcall; external 'GM5S32.DLL';
function GMW_DS_Query(sSQL, sFilter, sFDlm, sRDlm: PChar): longint;

stdcall; external 'GM5S32.DLL';
function GMW_DS_Fetch(iHandle: longint; sBuf: Pchar; iBufSize, iGetRecs:

integer): longint; stdcall; external 'GM5S32.DLL';
function GMW_DS_Close(iHandle: longint):longint; stdcall; external

'GM5S32.DLL';

Page 450 of 463

// GM5S32.DLL DBF workarea functions

function GMW_DB_Open(sTable: Pchar): longint; stdcall; external

'GM5S32.DLL';
function GMW_DB_Close(lArea: Longint): longint; stdcall; external

'GM5S32.DLL';
function GMW_DB_Append(lArea: Longint; sRecID: PChar): longint; stdcall;

external 'GM5S32.DLL';
function GMW_DB_Replace(lArea: Longint; sField, sData: PChar; iAddTo:

integer): longint; stdcall; external 'GM5S32.DLL';
function GMW_DB_Delete(lArea: Longint): longint; stdcall; external

'GM5S32.DLL';
function GMW_DB_Unlock(lArea: Longint): longint; stdcall; external

'GM5S32.DLL';
function GMW_DB_Read(lArea: Longint; sField, sBuf: PChar; iBufSize:

integer): longint; stdcall; external 'GM5S32.DLL';
function GMW_DB_Top(lArea: Longint): longint; stdcall; external

'GM5S32.DLL';
function GMW_DB_Bottom(lArea: Longint): longint; stdcall; external

'GM5S32.DLL';
function GMW_DB_SetOrder(lArea: Longint; sTag: Pchar): longint; stdcall;

external 'GM5S32.DLL';
function GMW_DB_Seek(lArea: Longint; sParam: PChar): longint; stdcall;

external'GM5S32.DLL';
function GMW_DB_Skip(lArea: Longint; iSkip: integer): longint; stdcall;

external 'GM5S32.DLL';
function GMW_DB_Goto(lArea: Longint; sRecNo: PChar): longint; stdcall;

external 'GM5S32.DLL';
function GMW_DB_Move(lArea: Longint; sCommand, sParam: PChar): longint;

stdcall; external 'GM5S32.DLL';
function GMW_DB_Search(lArea: Longint; sExpr, sRecID: PChar): longint;

stdcall; external 'GM5S32.DLL';
function GMW_DB_Filter(lArea: Longint; sFilterExpr: Pchar): longint;

stdcall; external 'GM5S32.DLL';
function GMW_DB_Range(lArea: Longint; sMin, sMax, sTag: PChar): longint;

stdcall; external 'GM5S32.DLL';
function GMW_DB_RecNo(lArea: Longint; sRecID: PChar): longint; stdcall;

external 'GM5S32.DLL';
function GMW_DB_IsSQL(lArea: Longint): longint; stdcall; external

'GM5S32.DLL';
// GM5S32.DLL Quick one-field access functions

function GMW_DB_QuickSeek(sTableName, sIndex, sSeekValue, sRecID: PChar):

longint; stdcall; external 'GM5S32.DLL';
function GMW_DB_QuickRead(sTableName, sRecID, sField, sValue: Pchar; iLen:

integer): longint; stdcall; external 'GM5S32.DLL';
function GMW_DB_QuickReplace(sTableName, sRecID, sField, sValue: Pchar;

iAddTo: integer): longint; stdcall; external 'GM5S32.DLL';
// GM5S32.DLL Misc functions

function GMW_IsUserGroupMember(szGroup, szUserID: PChar): longint;

stdcall; external 'GM5S32.DLL';

Page 451 of 463

function GMW_UserAccess(Option: longint): longint; stdcall; external

'GM5S32.DLL';
function GMW_CalAccess(RecType, UserID, Number1: PChar): longint; stdcall;

external 'GM5S32.DLL';
function GMW_HistAccess(RecType, UserID: PChar): longint; stdcall;

external 'GM5S32.DLL';
// GM5S32.DLL business logic functions

function GMW_Execute(Func: Pchar; PGMNV: hgmnv): longint; stdcall;

external 'GM5S32.DLL';
// create, release & copy name value containers

function GMW_NV_Create: pointer; stdcall; external 'GM5S32.DLL';
function GMW_NV_CreateCopy(PGMNV: hgmnv): pointer; stdcall; external

'GM5S32.DLL';
procedure GMW_NV_Delete(PGMNV: hgmnv); stdcall; external 'GM5S32.DLL';
procedure GMW_NV_Copy(Destination, Source: hgmnv); stdcall; external

'GM5S32.DLL';
// get and set value by name

function GMW_NV_GetValue(PGMNV: hgmnv; Name, DefaultValue: PChar): PChar;

stdcall; external 'GM5S32.DLL';
procedure GMW_NV_SetValue(PGMNV: hgmnv; Name, Value: PChar); stdcall;

external 'GM5S32.DLL';
// Check if name exists. returns: 0 failed, 1 success

function GMW_NV_NameExists(PGMNV: hgmnv; Name: PChar): longint;

stdcall;external 'GM5S32.DLL';
// remove name(s)

procedure GMW_NV_EraseName(PGMNV: hgmnv; Name: PChar); stdcall; external

'GM5S32.DLL';
procedure GMW_NV_EraseAll(PGMNV: hgmnv); stdcall; external 'GM5S32.DLL';
// iterate over name-value list (1 based)

function GMW_NV_Count(PGMNV: hgmnv): longint; stdcall; external

'GM5S32.DLL';
function GMW_NV_GetNameFromIndex(PGMNV: hgmnv; Index: longint): PChar;

stdcall; external 'GM5S32.DLL';
function GMW_NV_GetValueFromIndex(PGMNV: hgmnv; Index: longint): PChar;

stdcall; external 'GM5S32.DLL';
// Set a series of values in one shot

procedure GMW_NV_SetStr(PGMNV: hgmnv; dlmName, dlmVal: Char; StringVal:

PChar); stdcall; external 'GM5S32.DLL';
Logging In
The following example assumes that GMXS32.DLL has already been loaded and

function addresses have been retrieved
// Login to GM5
iRet := GMW_LoadBDE('C:\GM5', 'C:\GM5\GMBASE', 'C:\GM5\DEMO', 'NELSON' ,

'');
if iRet < 1 then

ShowMessage('LoadAPI Failed. Err: '+IntToStr(iRet));

Page 452 of 463

Creating a Contact
The following example assumes that GMXS32.DLL has already been loaded and function addresses have been
retrieved.

// Create a new NV container

pGMNV := GMW_NV_Create;
// Test if NV is valid

If pGMNV <> nil then

begin

// Load the NVs to create the contact record

GMW_NV_SetValue(pGMNV, 'Company', 'GoldMine Inc.');

GMW_NV_SetValue(pGMNV, 'Contact', 'Nelson Fernandez');

GMW_NV_SetValue(pGMNV, 'Phone1', '(310)555-1212');

GMW_NV_SetValue(pGMNV, 'Email', 'nelson@gm.com');

GMW_NV_SetValue(pGMNV, 'WebSite', 'www.gm.com');
// Exec the WriteContact function

if GMW_Execute('WriteContact', pGMNV) > 0 then

begin

ShowMessage('Contact record was created. AccountNO=' +

GMW_NV_GetValue(pGMNV, 'AccountNo', ''));
//Remove the pGMNV

GMW_NV_Delete(pGMNV);

end

else

// Display error

ShowMessage('WriteContact Failed.');;

end
else

// Display Error

ShowMessage('Could not create NV container.');

Enumerating a Container
The following example assumes that GMXS32.DLL has already been loaded and function addresses have been
retrieved.

// Determine the number of returned values

lCount := GMW_NV_Count(pGMNV);
// If > 0 then iterate through the list

If lCount > 0 then

For i := 1 to lCount do // Add to the results memo control

mResults.Text := mResults.Text +

GMW_NV_GetNameFromIndex(pGMNV,i)+'='+

GMW_NV_GetValueFromIndex(pGMNV, i)+#13+#10;

Page 453 of 463

DataStream
The following example assumes that GMXS32.DLL has already been loaded and function addresses have been
retrieved.

iHandle:=GMW_DS_RANGE('Contsupp', 'Contspfd', 'PE-MAIL ADDRESS',

'PE-MAIL ADDRESS~', 'ContSupRef;', PChar('''' + UpperCase

(cebMatchValue.Text)+''' $ Upper(ContSupRef)'), '', #13+#10);
If iHandle > 0 then

Begin

bDone :=FALSE

Repeat
//Get Buffer Size

iBufSize:=GMW_DS_Fetch(iHandle,NIL, 0, FETCH_SIZE);
//Allocate Buffer Memory

pcBuffer:=AllocMem(iBufSize);
//Fetch Data

lres:=GMW_DS_Fetch(iHandle, pcBuffer, iBufSize, 0);

if lres>0 then //Fetch Successfully?

begin

//Get results

sResults:=sResults + Copy(StrPas(pcBuffer),12,iBufSize-12);

FreeMem(pcBuffer, iBufSize); //Free buffer memory
if Copy(sHeader,1,1)<>'3' then //End of File in GM?

bDone:=TRUE

else

bDone:=FALSE;
end;
until bDone

lres:=GMW_DS_Close(iHandle);

end;

Low-Level Work Area
The following example assumes that GMXS32.DLL has already been loaded and function addresses have been
retrieved. The example opens up the CONTACT1 and CONTSUPP tables to find a particular contact’s phone
number and primary e-mail address.

Var

lRes, lC1WA, lC2WA, lCSWA: longint;

aAccNo: array[0..20] of char;

aValue1: array[0..100] of char;

aValue2: array[0..100] of char;

begin

// Open files

lC1WA := GMW_DB_Open('Contact1');

lC2WA := GMW_DB_Open('Contact2');

lCSWA := GMW_DB_Open('Contsupp');
// Make sure all files were opened OK

if (lC1WA>0) and (lC2WA>0) and (lCSWA>0) then

Page 454 of 463

begin

// Set the index order

lRes := GMW_DB_SetOrder(lC1WA, 'ContName');
// Perform the seek

If GMW_DB_Seek(lC1WA, PChar(UpperCase(cebSearchValue.Text)))=1 then

begin
// Read the AccountNo

GMW_DB_Read(lC1WA, 'AccountNo', aAccNo, 21);
// Get the field data

lRes := GMW_DB_Read(lC1WA, 'Company', aValue1, 100);
//Display the results

clCompany.Caption := StrPas(aValue1);
//Init the range limit string

StrPCopy(aValue1, Copy(StrPas(aAccNo),1,20)+'PE-MAIL ADDRESS');
// Set the range and go to Top

lRes := GMW_DB_Range(lCSWA, aValue1, aValue1, 'Contsupp');

lRes := GMW_DB_Top(lCSWA);
// Loop through records..

While lRes = 1 do

begin
//Read the field data...

lRes := GMW_DB_Read(lCSWA, 'ContSupRef', aValue1, 100);

lRes := GMW_DB_Read(lCSWA, 'ZIP', aValue2, 100);
if aValue2[1] = '1' then

begin

clEmail.Caption := aValue1;

Exit;

end;
lRes := GMW_DB_Skip(lCSWA, 1);
end;
end

else

// Notify user of problem

ShowMessage('Could not locate the specified contact!');

end

else

// Notify user of problem

ShowMEssage('Could not open all data files');
GMW_UnloadBDE;

end;

Resources

Additional Documentation
In addition to this guide, the following resources are available to provide you with information about GoldMine:

■ Online Help - Accessed by clicking the Help menu option in GoldMine, online help provides topic overviews
and step-by-step instructions to walk you through basic tasks, in addition to a comprehensive table of
contents, index, and a search function.

NOTE: Guides are available in PDF format at: https://www.ivanti.com/support/product-documentation.
Expand the GoldMine drop-down.

■ Training Courses - Information regarding training courses for GoldMine family of products can be found at:
https://www.goldmine.com/.

Contact Us

Support Site
For Support, visit: https://www.goldmine.com/goldmine-support/

Contact Information
Ivanti Software, Inc.
698 West 10000 South
South Jordan, UT 84095 USA
TEL: 1.800.443.5457

Offices are also located in Latin America, Asia Pacific, Europe, South Africa, and the Middle East. For
international contact information, go to the GoldMine Web site, click the Contact link at the top of the page,
then select your region.

Page 455 of 463

https://www.ivanti.com/support/product-documentation
https://www.goldmine.com/
https://www.goldmine.com/goldmine-support/

Index

A
Activities, creating or updating 280
AddContactGrpMembers 293
AddContactGrpMembers function 292
AddFolder function 320
Alert

attaching an alert to the specified contact
record 296

returning alerts attached to a contact record 295
returning all defined alerts 297

API, logging in multiple users 103
Append function 42, 190
AttachTrack function 289
Automated Process

attachingtoacontactrecord 289
retrieving the default contact automated

process 302

B
BDE session

closing 101-102
loading 98-99

Boolean operator 385
BR4 36
Business Logic Methods

accessing 112
comparing methodology to that of

GM5S32.DLL 96
using to simplify procedures 270
working with 270

C
C++ examples for GM5S32.DLL 442
CAL.DBF 418

SQL 417
Xbase 399

CalComplete function 60, 207
Calendar

completing an activity 61
deleting Calendar items 302

CallerID function 61, 209
Close function 43, 191

code examples
for GM5S32.DLL 454

conditionals 385
CONGRPS Structureharformat 405
CONHIST Indexesharformat 425
contact group

adding contacts to 292
creating 291

Contact Groups, retrieving names of 299
contact information

accessing, using Open, Move, or Read 54, 201
accessing, using RecordObj 54, 201

contact record
creating or updating an additional 275, 285, 287-

288
linking contact records to an accounting

application 38
Contact Record

adding a record 131, 164
attaching an alert to the specified contact

record 296
attaching an automated process 289
creating or updating 270
creating or updating a referral 279
deleting the current record 131, 165
evaluating an Xbase expression on a contact

record 300
reading a Contact1 or Contact2 record 294
retrieving the default contact automated

process 302
returning alerts attached to a contact record 295
updating notes of a primary contact record 273

CONTACT1 Relationsharformat 402
CONTACT1.DBF 422

SQL 419
Xbase 401

CONTACT2 Indexharformat 404
CONTACT2 Structureharformat 404
CONTACT2.DBF

SQL 423
Xbase 404

ContactLogin function 332

Page 456 of 463

Index

ContactLogin Required NV Pairsharformat 333
CONTGRPS Structure (member records)harformat 406,

425
CONTGRPS.DBF

SQL 424
Xbase 405

CONTHIST.DBF
SQL 425
Xbase 406

CONTSUPP Indexesharformat 427
CONTSUPP.DBF 428

SQL 427
Xbase 408

COUNTER function 63, 210
CreateContactGroup function 291
CreateRemoteLicense function 308
Curtaining

checking for record curtaining 308
retrieving visible fields 307

D
data

accessing low-level data using work areas 127, 161
merging data into a document 38
retrieving data with DataStream 123, 155

data file
accessing 41, 190
closing 129, 163
opening 48, 129, 163, 194
querying for a field value 132, 166

database
file location 398
sessions, handling 270
updating information 38

database structures
CAL.DBF 418
CONTACT1.DBF 422
CONTSUPP.DBF 428
GoldMine 5.5 416
GoldMine Sales and Marketing 435

DataStream
advantages of using 123, 155
Close subcommand 65, 213
Fetch subcommand 65, 213
functions 123, 156
performance advantages 66, 215
record selection 123, 156
retrieving data with 123, 155
returning GoldMine record data 64, 212

date and time stamps
converting to TLog timestamps 84

DDE Parametersharformat 39

DDE See Dynamic Data Exchange 37
DDEINITIATE function 40
DDERequestor 36
decrypting encoded text 302
DecryptString function 302
DecryptString Required NV Pairsharformat 302
Delete function 43, 191
DeleteFolder function 320
DeleteHistory Required NV Pairsharformat 303
DeleteMail function 316
DeleteMail Required NV Pairsharformat 316
DeleteMessages functionE-mail

deleting online e-mail messages 326
DeleteMessages Required NV Pairsharformat 326,

334-335, 337
DeleteSchedule function 302
DeleteScheduley Required NV Pairsharformat 302
Delphi examples 448
Delphi examples for GM5S32.DLL 454
Detail Record

creating or updating 277
dialog box

displaying a message dialog box 75, 222
document link, creating or updating 74, 221
Dynamic Data Exchange 94

APPEND function 43
application service name 39
CalComplete 61
CallerID 63, 209
Counter function 63
DDE item string 39
definition 37
establishing a conversation 41
Expr function 68
Filter 45
FormAddFields function 69
FormNewFormNo 71
FormQueryCreate 72
GoldMine license macros 94, 243
GoldMines DDE server 41
identifying incoming telephone numbers 38
inserting incoming e-mail 38
InsHistory 74
LinkDoc 75
linking e-mail to external systems 38
macros 84, 233
merge form macros 93, 243
merging a document with 38
Move 48
MsgBox 77
MsgBox function 76, 223
NewForm 79

Page 457 of 463

Index

NewGroup 80
RecNo 51
Replace function 52
Search 54
SendPage 83
service topic 39
StatusMsg 84
transferring data to accounting application 38
updating database 38
using to query for data 38
working with DDE functions 41

E
E-mail

accessing e-mail templates 321
account information, retrieving 322
adding an PlaceNameE-mail PlaceTypeCenter

folder 320
deleting an PlaceNameE-Mail PlaceTypeCenter

folder 320
filing a message in History 316
managing internet e-mail preferences 327
name/value functions 310
obtaining a list of PlaceNameE-Mail

PlaceTypeCenter folders 320
queuing a message for delivery 315
retrieving a manual list of recipients 327
retrieving e-mail account information 322
returning a list of unique From addresses 321
saving a manual list of recipients 327
updating an e-mail address 272

empty child container, creating 118
empty record

adding 42, 190
encrypting text 301
EncryptString function 301
EncryptString Required NV Pairsharformat 301
exported records

counting the number of 72, 219
Expr function 67, 216
external application

linking with GoldMine fields 54, 200

F
field

returning a FormNo value to register unattached
fields 71

field name
returning for an expression, macro, or field 71

field value
changing 52, 133, 167

querying a data file for 132, 166
reading 141, 177
replacing 142, 177

FieldAccessRights function 307
FieldAccessRights Required NV Pairsharformat 307
FileMail function 316
FileMail Required NV Pairsharformat 317
filter creation 134, 168
Filter function 43, 192
FolderList function 320
form

adding merge fields 69
closing a profile 70

FormAddFields function 68, 216
FormAddFields function See Dynamic Data

Exchange 69
FormClearFields function 69, 217
FormCloseForm function 70, 217
FormCreateFile function 70, 217
FormGetFieldName function 71, 218
FormNewFormNo function 71, 219
FormQueryCreate function 72, 219
FromList function 321

G
GetAccountsList function 322
GetActiveOppty function 60, 207
GetAllAlerts function 297
GetContactAlerts function 295
GetEmailPrefs function 327
GetGroupName function 299
GetGroupUsersList function 298
GetLoginCredentialsfunction 59, 205-206
GetManualRcptList function 327
GetNewContactAP function 302
GetUserAccess function 305
GetUserMemberships function 298
GetUsersList function 297
GM5S32.DLL 127, 161

database access and sync log updates 95
loading and logging in 96
synchronization functions 143, 180

GM5S32.DLL code examples 454
C++ 442
Delphi 454
Visual Basic 448

GM5S32.DLL Low-Level Access
Functionsharformat 129, 162

GM5TP.DLL 105
GMW_DB_Append function 131, 164
GMW_DB_Bottom function 140, 175

Page 458 of 463

Index

GMW_DB_Close function 129, 163
GMW_DB_Close Return Valuesharformat 130
GMW_DB_Delete function 131, 165
GMW_DB_Filter function 134, 168
GMW_DB_Filter Return Valuesharformat 134, 169
GMW_DB_Goto function 138, 173
GMW_DB_IsSQL function 130, 164
GMW_DB_Move Commands and Function

Equivalentsharformat 137, 172
GMW_DB_Move function 137, 172
GMW_DB_Open function 129, 163
GMW_DB_QuickRead function 141, 177
GMW_DB_QuickReplace function 142, 177
GMW_DB_QuickSeek function 140, 176
GMW_DB_Range function 135, 169
GMW_DB_Read function 132, 166
GMW_DB_RecNo function 132, 166
GMW_DB_Replace function 133, 167
GMW_DB_Search function 135, 170
GMW_DB_Seek function 136, 170
GMW_DB_SetOrder function 136, 171
GMW_DB_Skip function 139, 174
GMW_DB_Skip Return Valuesharformat 140, 174
GMW_DB_Top function 139, 174
GMW_DB_Unlock 133, 168
GMW_DS_Close 124, 127, 156, 161
GMW_DS_Fetch 124, 156
GMW_DS_Query 123, 156
GMW_DS_Range 123, 156
GMW_Execute function 112
GMW_GetLicenseInfo function 121-122
GMW_LoadBDE function 98-99, 149, 151-152
GMW_MUBeginSession function 104
GMW_MULogin function 103
GMW_MULogout function 104, 153
GMW_NewRecID function 145, 182
GMW_NV_AppendEmptyNvValue function 118, 331
GMW_NV_AppendNvValue function 331
GMW_NV_AppendValue function 117-118
GMW_NV_Copy function 106
GMW_NV_Count function 110
GMW_NV_Create function 105
GMW_NV_CreateCopy function 106
GMW_NV_Delete function 107
GMW_NV_EraseAll function 109
GMW_NV_EraseName function 109
GMw_NV_EraseName function 116
GMW_NV_GetMultiValue function 116
GMW_NV_GetMultiValueCount function 114
GMW_NV_GetNameFromIndex function 110
GMW_NV_GetNVValue function 115
GMW_NV_GetValue function 107

GMW_NV_GetValueFromIndex function 111
GMW_NV_GetValueType function 113
GMW_NV_IsRoot function 113
GMW_NV_NameExists function 108
GMW_NV_SetNvValue function 117
GMW_NV_SetStr function 111
GMW_NV_SetValue function 108
GMW_ReadImpTLog 229
GMW_ReadImpTLog function 144, 181, 229
GMW_ReadImpTLogharformat 145, 181
GMW_SetSQLUserPass function 97
GMW_SyncStamp function 146, 182
GMW_UnloadBDE function 101-102
GMW_UpdateSyncLog function 143, 180, 228
GMW_UserAccess function 119, 230
GoldMine 5.5 database structures 416
GoldMine KnowledgeBase 35
GoldMine license macros see Dynamic Data

Exchange 94, 243
GoldMine Sales and Marketing database

structures 435
group

adding a group member 80
creating an empty group 79

H
History

filing a message in History 316
history record

creating 72, 220
creating or updating 284

I
IIS extensions, and multi-threaded applications 105
import file

importing a prepare TLog import file 144, 181, 229
index

setting the current index tag 136, 171
INFOMINE.DBF

SQL 429
Xbase 410

InsHistory function 72, 220
InsHistory Valid Values (2nd parameter)charformat 72,

220
integrating with GoldMine

methods 32
integration tools

DDERequestor 36
interfacing with GoldMine 398, 417
internet

e-mail preferences 327
IsContactCurtained function 308

Page 459 of 463

Index

IsSQL function 45, 192

K
KnowledgeBase 35

L
license

generating a remote license file 308
removing a remote license 309
returning GoldMines Licensing Information 121-

122
LinkDoc function 74, 221
linked document

creating or updating 278
logical evaluators 385
logicals 388
login

creating a new GoldMine login 304
login sessions, switching between 104
LOOKUP Indexesharformat 411
LOOKUP.DBF

Xbase 411

M
macro

identifying by file name 81, 225
identifying by number 81, 225

macros 81, 225
creating 81, 225
DDE macros for Merge Forms 91, 241
DDE macros for the GoldMine License 93, 243

mail message
deleting a message 316
deleting online e-mail messages 326
filing a message in History 316
preparing an Name/Value container to forward a

mail message 319
preparing the NV container for a new mail

message 317
queuing a message for delivery 315
reading 310
retrieving a list of messages waiting online 323
retrieving online messages 325
saving a mail message into GoldMine 315
updating 315

MAILBOX Indexesharformat 430
MAILBOX.DBF

SQL 430
Xbase 411

merge fields added to a form 69
merge form

adding 77, 224

DDE macros See Dynamic Data Exchange 93, 243
merging data into a document 38
message dialog box display 77
message,displaying in GoldMines status bar 83, 227
Move function 45, 193
mrecord

moving to the previous or following record 139
MS Word for Windows, Linking GoldMine to 39
MsgBox function 75, 222
multi-threaded applications

special considerations 105
multi-value NV pairs 114

appending string values 118
deleting values from 116
retrieving values 116

N
Name/Value container

assigning a container to a parent 117
copying values between containers 106
creating 105
creating an empty child container within the

parent 118
creating with copied values 106
deleting a container 107
determining container position in NV hierarchy 113
preparing an NV container to forward a mail

message 319
preparing the container for a new mail

message 317
reading values from a container 107
retrieving containers from an NV pair 115
storing NV pairs in a container 108

Name/Value Functions 105
E-mail 310

Name/Value pair
determining the type of an NV pair 113
finding an NV name 110
finding an NV value 111
getting the number of values in a multi-value

pair 114
removing all NV pairs from a container 109
removing one NV pair 109
retrieving values in a multi-value pair 116
searching for an NV pair 108
setting NV pairs 111
totaling NV pairs in a container 110
working with multi-value NV pairs 112

NewForm function 77, 224
NewGroup function 79
NewMember function 80

Page 460 of 463

Index

NonCurtainedFields function 307
Notes, updating notes of a primary contact record 273

O
OnlineList function 323
Open function 48, 194
operators 385
OPMGR Indexesharformat 432
OPMGR.DBF

SQL 432
Xbase 413

P
pager message

creating and sending 82, 227
PERPHONE Indexesharformat 433
PERPHONE.DBF

SQL 433
Xbase 414

placeCityWriteContactOutput StateNVharformat 271
PlayMacro function 81, 225
PrepareFwdMail Required NV Pairsharformat 319
PrepareNewMail function 317

Q
QueueMail function 315
QuickRead 141, 177
QuickReplace 142, 177
QuickSeek 140, 176

R
Range function 49, 195
Read function 50, 196
ReadContact function 294
ReadMail function 310
ReadRecord function 293
ReadRecord Required NV Pairsharformat 293
RecNo function 51, 197
record

checking the current record number or record
ID 132, 166

creating a subset of records 134, 168
deleting the current record 43, 191
getting a new record 182
moving to a specified record 45, 138, 173, 193
moving to the first match 136, 170
moving to the first record 139, 174
moving to the last record 140, 175
moving to the previous or following record 174
positioning the pointer to a specified record 137,

172
reading a 293
unlocking 54

unlocking a record 133, 168
RecordObj

subfunctions 55, 201
RecordObj function 54, 200
referral, creating or updating 279
remote license

generating a remote license file 308
removing 309

RemoveRemoteLicense function 309
Replace function 51, 198
RESITEMS.DBF

SQL 434
Xbase 415

RetrieveMessages function 325

S
SaveMail function 315
SaveManualRcptList function 327
search

limiting the search scope 135, 169
performing a sequential search 135, 170

SEARCH function 52, 199
Security

handling GoldMine Security 304
reading security and rights for a DLL user 119, 230
retrieving field-level access rights 307
retrieving security access 305
validating a Web user name and password 332

seek
moving to the first record match 136, 170
seeking a record 140, 176

SendPage function 82, 227
service item 84, 233
service name 39
service topics 39
SetContactAlert function 296
SetEmailPrefs and CityplaceGetEmailPrefs StateNV

Pairsharformat 328
SetEmailPrefs function 327
SetSessionHandling function 270
SPFILES.DBF

SQL 434
Xbase 416

SQL
determining whether a table is SQL or Xbase 130,

164
executing a query 290
setting the database login name and password 97
table, checking for 45, 192

SQL database structures 435
SQLStream function 290

Page 461 of 463

Index

status bar
message display 84

StatusMsg function 83
Summary tab 90, 239
support and resources

GoldMine KnowledgeBase 35
sync log

updating sync logs with GM5S32.DLL 143, 180
updating the Sync Log file 143, 180

sync stamp
converting to time format 146, 182

synchronization functions 143, 180
SyncStamp function 84, 227
System Agent 226

T
table

checking for an Xbase or SQL table type 45, 192
moving to the last record 140, 175

TemplateList function 321
templates, accessing e-mail templates 321
third-party developers 398, 417
timestamps

converting TLog 84, 227
TLog import file

importing a prepared TLog import file 144, 181,
229

TLog Import Structureharformat 145, 182, 229
TLog timestamps

converting to date and time stamps 84

U
UNLOCK function 200
UpdateEmailAddress function 272
UpdateMail function 315
UpdateWebSite function 273
user

creating a new GoldMine login 304
generating a remote license file 308
logging in multiple users through the API 103
reading security and rights for a DLL User 119, 230
removing a remote license 309
retrieving field-level access rights 307
retrieving security access 305
returning a user list 297
returning group memberships for a specified

user 298
validating a Web user name and password 332

user group
returning a user group member list 298
returning group memberships for a specified

User 298

saving a user group 299

V
VBA 40-41
visible fields, retrieving 307
Visual Basic examples for GM5S32.DLL 448
Visual Basic for Applications 40

W
Web

validating a Web user name and password 332
Web import instruction file, processing 215
Web site record,updating 273
Work Area

accessing low-level data using work areas 127, 161
in DDE functionsharformat 40

WriteContact function 270
WriteContact Special NV Pairsharformat 271
WriteContactNotes function 273
WriteDetail function 277
WriteGMUser function 304
WriteGroupUsersList function 299
WriteHistory function 284
WriteLinkedDoc function 278
WriteLinkedDoc Optional NV Pairsharformat 278
WriteOtherContact function 275, 285, 287-288
WriteOtherContact Special NV Pairsharformat 276
WriteReferral function 279
WriteSchedule function 280

X
Xbase

conditionals, operators, and logical evaluators 385
creating an Xbase file with registered fields 70, 217
date functions 388, 392
determining whether a table is SQL or Xbase 130,

164
evaluating an Xbase expression on a contact

record 300
expression, reading without opening a file 67, 216
function/parameter types 384
functions 388
miscellaneous functions 388, 396
numeric functions 388, 394
string functions 388-389
table, checking for 45, 192

Xbase database structures 416
XbaseContactExpr function 300
XbaseContractExpr Return NV Pairsharformat 300

Page 462 of 463

	Contents
	Introduction to Integrating with GoldMine
	Introduction
	Methods of Integrating with GoldMine
	Integrating via Dynamic Data Exchange
	Integrating via GMXS32.DLL
	Integrating via the GoldMine XML API (GMXMLAPI.DLL)
	Interacting with GoldMine via the GoldMine COM Server
	Integrating via GoldMine Plug-ins
	Integrating via a Database Engine
	Comparing Integration Methods
	Resources and Support
	Technology Partner Program
	Open Developer Community
	Technology Partner Program
	Integration Tools

	Working with Dynamic Data Exchange (DDE)
	Overview
	Using DDE in GoldMine
	Merging Data into a Document
	Updating Database Information
	Querying for Data
	Identifying Telephone Numbers Automatically
	Linking Contact Records to an Accounting Application
	Inserting Incoming E-mail
	Linking GoldMine to MS Word for Windows
	Entering Application, Topic, and Item Names
	DDE Parameters, Functions, Expressions, Macros
	Establishing a DDE Conversation
	To Initiate a DDE Conversation
	To Request Data

	Working with DDE Functions
	Accessing Data Files
	Adding an Empty Record
	Parameters
	Return Value
	Example

	Closing an Opened File
	Parameters
	Return Value
	Example

	Deleting the Current Record
	Parameters
	Example

	Creating a Subset of Records
	Parameters
	Example

	Checking for an Xbase or SQL Table
	Parameters
	Return Values

	Moving to a Specified Record
	Parameters
	Return Value
	Example

	Opening a Data File
	Parameters
	Return Value
	Example

	Limiting GoldMine Search Range
	Parameters
	Example

	Reading a Field Value
	Parameters
	Return Value

	Checking the Current Record Number or Record ID
	Parameters
	Return Value
	Example

	Changing a Field Value
	Parameters
	Return Value
	Example

	Performing a Sequential Search
	Parameters
	Return Value
	Search Return Values
	Example

	Unlocking a Record
	Parameters
	Return Value
	Example

	Accessing Contact Records
	Linking GoldMine Fields with an External Application
	Parameters
	Valid RecordObj Functions
	Return Value
	Example

	Accessing Specialized DDE Functions
	Retrieving Login Credentials for Use with the GMXS32.DLL
	Example

	Retrieving the RecID of the Current Opportunity
	Return Value
	Example

	Completing a Calendar Activity
	Parameters
	Return Value
	Example

	Displaying the Contact Record of an Incoming Caller
	Parameters
	CallerID Parameters
	Return Values
	CallerID Return Values
	Example

	Running a Counter
	Parameters
	Return Value
	Example

	Returning GoldMine Record Data
	Record Selection
	Parameters
	Return Value
	Parameters
	Example 1
	Example 2
	Return Packet
	Performance
	Example 3
	Example 5

	Processing a Web Import Instruction File
	Reading an Xbase Expression Without Opening a File
	Parameters
	Return Value
	Example

	Adding Merge Fields to a Form
	Parameters
	Example

	Deleting Fields from a Form
	Parameters
	Return Value
	Example

	Closing a Form Profile
	Parameters
	Example

	Creating an Xbase File with Registered Fields
	Parameters
	Examples of WhichRec Parameter
	Return Value
	Example

	Returning a Field Name for an Expression
	Parameters

	Returning a Value for Unattached Fields
	Example

	Counting the Number of Exported Records
	Parameters
	Return Value
	Example

	Creating a History Record
	Parameters
	InsHistory Valid Values (2nd parameter)
	Return Value
	Example

	Creating or Updating a Document Link
	Parameters
	Return Value
	Example

	Displaying a Message Dialog Box
	Parameters
	Return Value
	Example

	Adding a Merge Form
	Parameters
	Return Value
	Example

	Creating a Group
	Parameters
	Return Value
	Example

	Adding a Group Member
	Parameters
	Example

	Creating a Macro
	Parameters
	Identifying a Macro by Number
	Identifying a Macro by File Name
	Return Value
	Example
	To Play a Macro from the Command Line

	Creating and Sending a Pager Message
	Return Value
	SendPage Return Values
	Example

	Displaying a Message in the GoldMine Status Bar
	Parameters
	Example

	Converting TLog Timestamps
	Parameter
	Return Values
	Example 1
	Example 2

	DDE Macros
	DDE Macros for Merge Forms
	&PARAM2 Parameters
	&PARAM4 Parameters
	&PARAM5 Parameters

	DDE Macros for the GoldMine License

	Using GMXS32.DLL for Database Access and Sync Log Updates
	Overview
	Passing Multiple Parameters to a Function
	Comparing Low Level/DDE Methodology to Business Logic Methodology
	Method 1: Updating a Contact Record using the low level functions or DDE
	Method 2: Updating a Contact Record using the Business Logic

	Loading GMXS32.DLL and Logging In
	For GoldMine Version 6.7 or Lower
	Setting the SQL Database Login Name and PasswordGoldMine 6.7 or lower only)
	Syntax
	Parameters
	Return Values
	Example

	Loading an API Session (GoldMine 7.0 or higher)
	Parameters
	Return Values
	Notes
	Example

	Loading a BDE Session (GoldMine 6.7 or lower)
	Syntax
	Parameters
	Return Values
	Notes
	Example

	Logging in a User
	Syntax
	Parameters
	Return Values
	Example

	Closing an API Session (GoldMine 7.0 or higher)
	Syntax
	Return Values
	Notes
	Example

	Closing a BDE Session (GoldMine 6.7 or lower)
	Syntax
	Return Values
	Notes
	Example

	Logging in Multiple Users through the API
	Logging In
	Syntax
	Parameters
	Return Values

	Logging Out
	Syntax
	Parameters
	Returns

	Switching Between Login Sessions
	Syntax
	Parameters
	Returns

	Special Consideration for Multi-Threaded Applications
	Syntax

	Working with Business Logic Functions using the Name/Value Pair Method
	Notes
	Creating an NV Container
	Syntax
	Example
	Return Value

	Creating an NV Container with Copied Values
	Syntax
	Example
	Return Value
	Syntax
	Parameters
	Example
	Return Value

	Deleting an NV Container
	Syntax
	Example
	Return Value
	Syntax
	Parameters
	Example
	Return Values

	Storing NV Pairs in a Container
	Syntax
	Parameters
	Example
	Return Value

	Searching for an NV Pair
	Syntax
	Parameters
	Example
	Return Values

	Removing one NV Pair
	Syntax
	Parameters
	Example
	Return Value

	Removing all NV Pairs from a Container
	Syntax
	Parameter
	Example
	Return Value

	Totaling NV Pairs in a Container
	Syntax
	Parameter
	Example
	Return Value

	Finding an NV Name
	Syntax
	Parameters
	Example
	Return Value

	Finding an NV Value
	Syntax
	Parameters
	Example
	Return Value
	Syntax
	Parameters
	Example
	Return Value

	Executing Business Logic Methods
	Syntax
	Parameters
	Example
	Return Values

	Working with Multi-Value Name/Value Pairs
	Determining the Type of a Name/Value Pair
	Syntax
	Parameters
	Return Values

	Determining the Position of an NV Container in an NV Hierarchy
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example

	Getting the Number of Values in a Multi-Value Pair
	Syntax
	Parameters
	Example

	Retrieving Containers from an NV Pair
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example

	Retrieving the Values in a Multi-Value Pair
	Syntax
	Parameters
	Example

	Deleting Values from a Multi-Value Pair
	Assigning a Container to a Parent
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example

	Appending String Values to a Multi-Value Pair
	Syntax
	Parameters
	Example

	Low-level Data Access & Manipulation
	Reading Security and Rights for a DLL User
	Syntax
	Parameters
	iOption values
	Return Values
	Syntax
	Parameters
	Return Values
	Syntax
	Parameters
	Return Values

	Returning GoldMine Licensing Information
	Syntax
	Parameters
	Return Values
	Notes
	GMW_GetLicenseInfo Structure
	Example

	Returning Calendar Data
	Syntax

	Retrieving Data with DataStream
	Advantages of Using DataStream
	DataStream Record Selection
	GMW_DS_Range
	Syntax
	Parameters
	Return Values
	GMW_DS_Range Field Selection

	GMW_DS_Query
	Syntax
	Parameters
	Return Values

	GMW_DS_Fetch
	Syntax
	GMW_DS_Fetch Return Packet

	GMW_DS_Close
	Syntax

	Accessing Low-Level Data Using Work Areas
	GMXS32.DLL Low-Level Access Functions
	Opening a Data File
	Syntax
	Parameter
	Return Values
	GMW_DB_Open Return Values

	Closing a Data File
	Syntax
	Parameters
	Return Values
	GMW_DB_Close Return Values
	Checking for an SQL Table
	Syntax
	Parameter
	Return Values
	GMW_DB_IsSQL Return Values

	Adding a Record
	Syntax
	Parameters
	Return Value

	Deleting the Current Record
	Syntax
	Parameter
	Return Values
	GMW_DB_Delete Return Values

	Querying for a Field Value
	Syntax
	Parameters

	Checking the Current Record Number or Record ID
	Syntax
	Parameters
	Return Value
	Changing a Field Value
	Syntax
	Parameters
	Return Values

	Unlocking a Record
	Syntax
	Parameter
	Return Values
	GMW_DB_Unlock Return Values

	Creating a Subset of Records
	Syntax
	Parameters
	Return Values
	Limiting Search Scope
	Syntax
	Parameters
	Return Values
	GMW_DB_Range Return Values

	Performing a Sequential Search
	Syntax
	Parameters
	Return Values

	Moving to the First Record Match
	Syntax
	Parameters
	Return Values
	GMW_DB_Seek Return Values

	Setting the Current Index Tag
	Syntax
	Parameters
	Return Values
	GMW_DB_SetOrder Return Values

	Positioning the Record Pointer
	Syntax
	Parameters
	GMW_DB_Move Commands and Function Equivalents
	Return Values
	GMW_DB_Move Return Values

	Moving to a Specified Record
	Syntax
	Parameters
	Return Values
	GMW_DB_Goto Return Values

	Moving to the First Record
	Syntax
	Parameter
	Return Values
	GMW_DB_TopReturn Values

	Moving to the Previous or Following Record
	Syntax
	Parameters
	Return Values
	GMW_DB_Skip Return Values

	Moving to the Last Record
	Syntax
	Parameter
	Return Values
	GMW_DB_Bottom Return Values

	Seeking a Record
	Syntax
	Parameters
	Return Values

	Reading a Field Value
	Syntax
	Parameters
	Return Values

	Replacing a Field Value
	Syntax
	Parameters
	Return Values

	Updating Sync Logs with GMXS32.DLL
	Updating the Sync Log File
	Syntax
	Parameters
	Return Values
	GMW_UpdateSyncLog Return Values
	Example

	Importing a Prepared TLog Import File
	Syntax
	Parameters
	Return Values
	Notes
	TLog Import Structure
	Example

	Getting a New Record ID
	Syntax
	Parameters
	Return Value
	Notes
	Example

	Converting the Sync Stamp
	Syntax
	Parameters
	Return Values
	GMW_SyncStamp Return Values
	Notes
	Example

	Working with the XML API
	Overview
	Executing Your XML Document
	Example

	Creating Your XML Document
	Loading the API (GoldMine 7.0 or higher)
	Parameters
	LoadAPI Return Values

	Loading BDE (GoldMine 6.7)
	Parameters
	LoadBDE Return Values

	Logging in Subsequent Users
	Parameters
	Login Return Values

	Logging Out
	Syntax
	Parameters
	Return

	Unloading the API (GoldMine 7.0 or higher)
	Unloading BDE (GoldMine 6.7)
	Accessing Data with Business Logic Functions
	Accessing Nested Nodes of Data
	Business Logic Function Return Values
	Input XML:
	Returned XML:

	Accessing Low-level Data Manipulation Functionality
	Retrieving Data with DataStream
	Advantages of Using DataStream
	DataStream Record Selection
	DS_Range
	Syntax
	Parameters
	Return Values
	GMW_DS_Range Return Values
	DS_Range Field Selection

	DS_Query
	Syntax
	Parameters
	Return Values

	DS_Fetch
	Syntax
	Parameters
	Optional Parameters
	The XML Return packet
	Return
	DS_Fetch Return Packet

	DS_Close
	Syntax

	Accessing Low-Level Data Using Work Areas
	GMXS32.DLL Low-Level Access Functions
	GMXS32.DLL Low-Level Access Functions
	Opening a Data File
	Syntax
	Parameter
	Return Values
	DB_Open Code Attribute Values

	Closing a Data File
	Syntax
	Parameters
	Return Values

	Checking for an SQL Table
	Syntax
	Parameter
	Return Value
	DB_IsSQL Code Attribute Values

	Adding a Record
	Syntax
	Parameters
	Return Value

	Deleting the Current Record
	Syntax
	Parameter
	Return Value
	DB_Delete Code Attribute Values

	Reading a Field Value
	Syntax
	Parameters
	Return Value
	DB_Range Code Attribute Values

	Checking the Current Record Number or Record ID
	Syntax
	Parameters
	Return Value

	Changing a Field Value
	Syntax
	Parameters
	Return Value

	Unlocking a Record
	Syntax
	Parameter
	Return Value

	Creating a Subset of Records
	Syntax
	Note
	Parameters
	Return Value
	DB_Filter Code Attribute Values

	Limiting Search Scope
	Syntax
	Parameters
	Return Value
	DB_Range Code Attribute Values

	Performing a Sequential Search
	Syntax
	Parameters
	Return Value
	DB_Search Code Attribute Values

	Moving to the First Record Match
	Syntax
	Parameters
	Return Value
	DB_Seek Return Values

	Setting the Current Index Tag
	Syntax
	Parameters
	Return Value
	DB_SetOrder Code Attribute Values

	Positioning the Record Pointer
	Syntax
	Parameters
	DB_Move Commands and Function Equivalents
	Return Value
	DB_Move Code Attribute Values

	Moving to a Specified Record
	Syntax
	Parameters
	Return Value
	DB_Goto Code Attribute Values

	Moving to the First Record
	Syntax
	Parameter
	Return Value
	DB_Top Code Attribute Values

	Moving to the Previous or Following Record
	Syntax
	Parameters
	Return Value
	DB_Skip Code Attribute Values

	Moving to the Last Record
	Syntax
	Parameter
	Return Value
	DB_Bottom Code Attribute Values

	Seeking a Record
	Syntax
	Parameters
	Return Value
	DB_QuickSeek Code Attribute Values

	Reading a Field Value
	Syntax
	Parameters
	Return Value
	 DB_QuickRead Code Attribute Values

	Replacing a Field Value
	Syntax
	Parameters
	Return Value
	DB_QuickReplace Code Attribute Values

	Returning Calendar Data
	Syntax
	Return Value

	Updating Sync Logs
	Updating the Sync Log File
	Syntax
	Parameters
	Return Value
	UpdateSyncLog Code Attribute Values

	Importing a Prepared TLog Import File
	Syntax
	Parameters
	Return Value
	ReadImpTLog Code Attribute Values
	Notes
	TLog Import Structure

	Getting a New Record ID
	Syntax
	Parameters
	Return Value
	Notes

	Converting the Sync Stamp
	Syntax
	Parameters
	Return Value
	SyncStamp Code Attribute Values
	Notes

	Using MSXML to Handle GoldMine API XML
	Getting Started
	Defining the Root Element
	Setting Attributes
	Referencing an Attribute

	Creating Child Elements
	Executing the XML Document
	Reading the Results
	Reading the Code Attribute
	Reading the Returned Data

	Accessing the Current GoldMine Instance with COM
	Overview
	Getting Started
	Executing Commands
	Logging In to GoldMine

	GoldMine.UI Class
	Accessing Data Files
	Adding an Empty Record
	Parameters
	Return Value
	Returned XML

	Closing an Opened File
	Parameters
	Return Value
	Returned XML

	Deleting the Current Record
	Parameters
	Returned XML

	Creating a Subset of Records
	Parameters

	Checking for an Xbase or SQL Table
	Parameters
	Return Value
	Returned XML

	Moving to a Specified Record
	Parameters
	Return Value
	Move Return Values
	Returned XML

	Opening a Data File
	Parameters
	Open Valid Parameters
	Return Value
	Returned XML

	Limiting GoldMine Search Range
	Parameters
	Returned XML
	Parameters
	Returned XML

	Reading a Field Value
	Parameters
	Return Value
	Returned XML

	Checking the Current Record Number or Record ID
	Parameters
	Return Value
	Returned XML

	Changing a Field Value
	Parameters
	Return Value

	Performing a Sequential Search
	Parameters
	Return Value
	Returned XML
	Parameters
	Return Value
	Returned XML

	Accessing Contact Records
	Differences in Accessing Contact Information
	Parameters
	Valid RecordObj Functions
	Return Value
	Returned XML

	Accessing Specialized GoldMine.UI Functions
	Retrieving a List of Active Plug-Ins (GoldMine 7.0 or higher)
	Returned XML

	Running a Plug-In (GoldMine 7.0 or higher)
	Returned XML

	Retrieving Login Credentials for Use with the GMXS32.DLL
	Returned XML

	Retrieving the RecID of the Current Opportunity
	Return Value
	Returned XML

	Completing a Calendar Activity
	Parameters
	Return Value
	Returned XML

	Displaying Edit Windows for Calendar and History Items
	General Messages
	Return Value

	Displaying the Contact Record of an Incoming Caller
	Parameters
	Return Value
	CallerID Return Values
	Returned XML

	Running a Counter
	Parameters
	Return Value
	Example

	Returning GoldMine Record Data
	Record Selection
	Datastream Range Parameters
	Datastream Query Parameters
	Datastream Fetch Parameters
	Datastream Close Parameters
	The XML Return Packet
	Returns
	Return Packet
	Performance

	Processing a Web Import Instruction File
	Reading an Xbase Expression Without Opening a File
	Parameters
	Return Value
	Returns:

	Adding Merge Fields to a Form
	Parameters

	Deleting Fields from a Form
	Parameters
	Return Value

	Closing a Form Profile
	Parameters

	Creating an Xbase File with Registered Fields
	Parameters
	WhichRec Values
	Return Value

	Returning a Field Name for an Expression
	Parameters

	Returning a Value for Unattached Fields
	Return Value

	Counting the Number of Exported Records
	Parameters
	FormQueryCreate Parameters
	Return Value

	FormPrintedDoc
	Parameters

	Creating a History Record
	Parameters
	Return Value
	Returned XML

	Creating or Updating a Document Link
	Parameters
	Sync Valid Values
	Return Value
	Returned XML

	Displaying a Message Dialog Box
	Parameters
	MsgBox Style Values
	Return Value
	Returned XML

	Adding a Merge Form
	Parameters
	Document Types
	Flag Values
	Return Value

	Playing a Toolbar Macro
	Parameters
	Identifying a Macro by Number
	Identifying a Macro by File Name
	Return Value
	PlayMacro Return Values
	Optional switches include:

	Creating and Sending a Pager Message
	Return Value

	Displaying a Message in the GoldMine Status Bar
	Parameters
	Returned XML

	Converting TLog Timestamps
	Parameter
	Return Value
	Returned XML

	Updating the Sync Log File
	Parameters
	Return Value
	UpdateSyncLog Code Attribute Values

	Importing a Prepared TLog Import File
	Syntax
	Parameters
	Return Value
	ReadImpTLog Code Attribute Values
	Notes
	TLog Import Structure

	Forcing Logout
	Syntax
	Parameters

	Reading Security and Rights
	Syntax
	Permissions Returned by UserAccess
	Returned XML
	Retrieving Calendar Permissions
	Syntax
	Parameters
	Return Value
	Retrieving History Access
	Syntax
	Parameters
	Return Value

	Macros
	Executing Macros
	Returned XML

	Available Data-Related Macros
	Macros for Merge Forms
	&PARAM2 Parameters
	&PARAM3 Parameters
	&PARAM4 Parameters
	&PARAM5 Parameters

	Macros for the GoldMine License

	Controlling the GoldMine User Interface
	Getting Window Information
	GetAvailableWindowsList
	Syntax
	Returned XML
	GetActiveWindowsList
	Syntax
	Returned XML

	Registering for Events
	RegisterVetoWindowLaunch
	Syntax
	Parameters
	Returned XML
	RegisterWindowUpDown
	Syntax
	Parameters
	REturned XML

	RegisterCommandExec
	Syntax
	Parameters
	Returned XML
	RegisterTabDetailsEvent
	Syntax
	Parameters

	AdditionalContactClick
	AdditionalContactClick
	Returned XML
	Parameters
	DetailsClick
	Returned XML
	Parameters
	PendingClick
	Returned XML
	Parameters
	HistoryClick
	Returned XML

	Parameters
	LinkedDocClick
	Returned XML
	Parameters

	Handling GoldMine.UI Events
	NotifyControlCommand
	Parameters
	VetoWindow
	Parameters
	Example
	WindowUpDown
	Parameters
	GMEvent
	Returns

	Manipulating Controls Programatically
	PressButton
	Syntax
	Parameters
	SetControlText
	Syntax
	Parameters
	SetCheckBox
	Syntax
	Parameters
	SelectRadio
	Syntax
	Parameters
	SetListBox/SetComboBox
	Syntax
	Parameters
	SelectTab
	Syntax
	Parameters
	EnableCtrl
	Syntax
	Parameters

	Executing a Menu Command
	Syntax
	Returned XML

	Opening a Mail Record
	Syntax
	Parameters
	Returned XML

	Setting a Selected Record in a GoldMine Grid (GoldMine 8.0 or higher)
	Parameters
	Returned XML

	Returning Selected Records in a GoldMine Grid (8.0.1 or higher)
	Syntax (Example)
	Parameters
	Returned XML

	GoldMine.RecObj Class
	RecordObjectHasChanged
	Parameters
	RecordFieldHasUpdated
	Parameters
	RecordTabHasChanged
	Parameters

	GoldMine.GMSystemEvents Class
	GoldMineshutDown

	Business Logic Methods
	Overview
	Business Logic Functions and Name/Value Pairs
	Controlling Database Session Handling
	Creating or Updating a Contact Record
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Special Name/Value Pairs
	Output Name/Value Pairs
	WriteCONTACT Error Codes

	Updating an E-mail Address
	Required Name/Value Pairs
	Optional Name/Value Pairs

	Updating a Web Site Record
	Name/Value Pairs

	Updating Notes of a Primary Contact Record
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Output Name/Value Pairs

	Creating or Updating a Note in a Table
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Output Name/Value Pairs
	WriteNote Error Codes

	Creating or Updating an Additional Contact Record
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Special Name/Value Pairs
	Error Codes
	Output Name/Value Pairs

	Creating or Updating a Detail Record
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Special Name/Value Pairs
	Output Name/Value Pairs
	Error Codes

	Creating or Updating a Linked Document
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Special Name/Value Pairs
	Output Name/Value Pairs
	Error Codes

	Creating or Updating a Referral
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Special Name/Value Pairs
	Output Name/Value Pairs

	Creating or Updating Activities
	Required Name/Value Pairs
	GoldMine 6.0 NV Pairs
	Optional WriteSchedule NV Pairs
	Output Name/Value Pairs
	Error Codes

	Creating or Updating a History Record
	Required Name/Value Pairs
	WriteHistory Optional Name/Value Pairs
	WRITE HISTORY Special Name/Value Pairs
	Output Name/Value Pairs

	Creating or Updating a Case Record (GoldMine 8.0 or higher)
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Error Codes
	Output Name/Value Pairs

	Creating or Updating a Case Attachment (GoldMine 8.0 or higher)
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Error Codes
	Output Name/Value Pairs

	Adding a GoldMine User as a Case Team Member (GoldMine 8.0 or higher)
	Required Name/Value Pairs
	Error Codes
	Output Name/Value Pairs

	Attaching an Automated Process
	ATTACHTRACK Required Name/Value Pairs
	Output Name/Value Pairs

	Executing an SQL Query
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Output Name/Value Pairs

	Creating a Cont act Group
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Output Name/Value Pairs
	Return Codes

	Adding Contacts to a Contact Group
	Required Name/Value Pairs
	Members NV Pair Child Container Name/Value Pairs
	Output Name/Value Pairs (parent container)
	Return Codes

	Using AddContactGrpMembers
	Reading a Record
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Special NVs
	Output Name/Value Pairs
	Return Codes

	Reading a Contact1 or Contact2 Record
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Special NVs
	Output Name/Value Pairs
	Return Codes

	Returning Alerts Attached to a Contact Record
	Required Name/Value Pairs
	Output Name/Value Pairs
	Return Codes

	Attaching an Alert
	Required Name/Value Pairs
	Output Name/Value Pairs

	Returning All Alerts
	Required Name/Value Pairs
	Output Name/Value Pairs
	Required Name/Value Pairs
	Output Name/Value Pairs

	Returning a User Group Member List
	Required Name/Value Pairs
	Output Name/Value Pairs

	Returning Group Memberships for a Specified User
	Required Name/Value Pair
	Output Name/Value Pairs

	Saving a User Group
	Required Name/Value Pairs
	Output Name/Value Pair

	Retrieving the Names of User Groups
	Required Name/Value Pairs
	Return Name/Value Pairs
	Example

	Evaluating an Xbase Expression on a Contact Record
	Name/Value Pairs
	Return Values

	Encrypting Text
	Required Name/Value Pairs
	Decrypting Encoded Text
	Required Name/Value Pairs
	Returned Name/Value Pairs

	Retrieving the Default Contact Automated Process
	Deleting Calendar Items
	Deleting History Items
	Required Name/Value Pairs
	Return Values

	Handling GoldMine Security
	Creating a New GoldMine Login
	Name/Value Pairs
	Return Values

	Reading a GoldMine Login
	Output Name/Value Pairs
	Return Values

	Retrieving Security Access
	Retrieving Field-Level Access Rights
	Required Name/Value Pairs
	Example NV Container Returned from FieldAccessRights

	Retrieving Visible Fields
	Checking for Record Curtaining
	Required Name/Value Pairs
	Output Name/Value Pair
	Name/Value Pairs
	Return Name/Value Pairs

	Removing a Remote License
	Name/Value Pairs
	Return Name/Value Pairs

	E-mail Name/Value Functions
	Reading a Mail Message
	Required Name/Value Pairs
	Optional Name/Value Pairs
	READMAIL Output Name/Value Pairs

	Queuing a Message for Delivery
	QueueMail Optional NV Pairs
	Return Name/Value Pairs
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Optional Name/Value Pairs
	Return Codes

	Deleting a Message
	Required Name/Value Pairs

	Filing a Message in History
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Return Codes

	Preparing the NV Container for a New Mail Message
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Return Name/Value Pairs

	Preparing the NV Container to Reply to a Mail Message
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Return Name/Value Pairs

	Preparing an NV Container to Forward a Mail Message
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Return Name/Value Pairs

	Adding an E-mail Center Folder
	Name/Value Pairs

	Deleting an E-Mail Center Folder
	Name/Value Pairs

	Obtaining a List of E-Mail Center Folders
	Return Name/Value Pairs
	Return Name/Value Pairs

	Accessing E-mail Templates
	Optional Name/Value Pairs
	Return Name/Value Pairs

	Retrieving E-mail Account Information
	Return Name/Value Pairs

	Retrieving a List of Messages Waiting Online
	Required Name/Value Pairs
	Return Name/Value Pairs
	Return Values

	Retrieving Messages
	Required Name/Value Pairs
	Return Name/Value Pairs
	Return Values

	Deleting Online E-mail Messages
	Required Name/Value Pairs

	Return Name/Value Pairs
	Return Values

	Saving a Manual List of Recipients
	Retrieving a Manual List of Recipients
	Managing Internet E-mail Preferences
	Optional input (SetEmailPrefs) and Output (GetEmailPrefs) Name/Value Pairs
	Profiles child containers have the following NV Pairs.
	Required Name/Value Pairs
	Special Name/Value Pairs
	Output Name/Value Pairs
	Notes

	Manipulating User-Defined Fields and Views
	Reading All Field Views
	Output Name/Value Pairs
	VIEW Name/Value Pairs
	Field Name/Value Pairs
	GetContactViews Return Values

	Deleting a Contact View
	DeleteContactViews Return Values

	Creating or Modifying a Contact View
	input Name/Value Pairs
	Field Name/Value Pairs
	WriteContactView output NV pairs
	WriteContactView Return Values

	Reading Custom Fields
	ReadCustomFields input NV pairs
	Field NV Pair Container
	ReadCustomfields Return Values

	Modifying the Structure of Custom Fields
	EditCustomField Input NV pairs
	EditCustomField Return Values

	Reading Calendar Preferences
	READCALENDARPREFS Input NV pairs
	READCALENDARPREFS OUTPUT NV pairs
	READCALENDARPREFS RETURN VALUES

	Modifying Calendar Preferences
	WRITECALENDARPREFS Input NV pairs
	WRITECALENDARPREFS OUTPUT NV pairs
	WRITECALENDARPREFS RETURN VALUES

	Reading Personal Preferences
	READPERSONALPREFS Input NV pairs
	READPERSONALPREFS OUTPUT NV pairs
	READPERSONALPREFS RETURN CODES

	Updating Personal Preferences
	WRITEPERSONALPREFS Input NV pairs
	WRITEPERSONALPREFS OUTPUT NV pairs
	WRITEPERSONALPREFS RETURN CODES

	Reading Record Preferences
	READRECORDPREFS Input NV pairs
	READRECORDPREFS OUTPUT NV pairs
	READRECORDPREFS RETURN CODES

	Updating Record Preferences
	WRITERECORDPREFS Input NV pairs
	WRITERECORDPREFS RETURN CODES

	Reading Schedule Preferences
	READSCHEDULEPREFS Input NV pairs
	READSCHEDULEPREFS OUTPUT NV pairs
	READSCHEDULEPREFS RETURN CODES

	Updating Schedule Preferences
	WRITESCHEDULEPREFS Input NV pairs
	WRITESCHEDULEPREFS RETURN CODES

	Reading Alarm Preferences
	READALARMPREFS Input NV pairs
	READALARMPREFS OUTPUT NV pairs
	READALARMPREFS RETURN CODES

	Updating Alarm Preferences
	WRITEALARMPREFS Input NV pairs
	WRITEALARMPREFS RETURN CODES

	Reading Lookup Preferences
	READLOOKUPPREFS Input NV pairs
	READLOOKUPPREFS OUTPUT NV pairs
	READLOOKUPPREFS RETURN CODES

	Updating Alarm Preferences
	WRITELOOKUPPREFS Input NV pairs
	WRITELOOKUPPREFS Return Codes

	Reading Pager Preferences
	READPAGERPREFS Input NV pairs
	READPAGERPREFS OUTPUT NV pairs
	READPAGERPREFS Return Codes

	Updating Pager Preferences
	WRITEPAGERPREFS Input NV pairs
	WRITEPAGERPREFS Return Codes

	Reading Miscellaneous Preferences
	READMISCPREFS Input NV pairs
	READMISCPREFS OUTPUT NV pairs
	READMISCPREFS Return Codes

	Updating Miscellaneous Preferences
	WRITEMISCPREFS Input NV pairs
	WRITEMISCPREFS Return Codes

	Reading the Database Engine Type (7.0 or higher)
	GETDBENGINETYPE Return Codes

	Reading a List of GoldMine User Groups
	GETGMUSERGROUPS OUTput NV pairs
	GETGMUSERGROUPS Return Codes

	Creating or Updating GoldMine User Groups
	WRITEGMUSERGROUP Input NV pairs
	WRITEGMUSERGROUP Return Codes

	Adding a GoldMine User to a Group
	ADDGMGROUPUSER Input NV pairs
	ADDGMGROUPUSER Return Codes

	Removing a GoldMine User from a Group
	REMOVEGMGROUPUSER Input NV pairs
	REMOVEGMGROUPUSER Return Codes

	Creating or Updating an Opportunity or Project
	WRITEOPPROJ Input NV pairs
	WRITEOPPROJ Return Codes

	Working with GoldMine Plug-ins
	Overview
	Using ActiveX Plug-in Support
	Using HTML Plug-in Support
	Plug-In Description File
	HTML Plug-in Description File
	ActiveX Plug-in Description File

	Security and Plug-in Directories
	Security
	Adding a Local Plug-in Directory

	Sample Plug-ins
	gmail.gme
	External.gme
	gmplus.asp

	Using Xbase Expressions
	Overview
	Function/Parameter Types
	Conditionals, Operators, and Logical Evaluators
	Conditionals
	Operators
	Logical Evaluators

	Xbase Functions
	String Functions
	Date Functions
	Numeric Functions
	Miscellaneous Functions

	Xbase Database Structures
	Overview
	CAL.DBF
	CAL Indexes
	CAL Structure
	Rectype

	CONTACT1.DBF
	CONTACT1 Indexes
	CONTACT1 Relations
	CONTACT1 Structure
	Account Number
	Internal Status

	CONTACT2.DBF
	CONTACT2 Index
	 CONTACT2 Structure

	CONTGRPS.DBF
	CONTGRPS Indexes
	CONTGRPS Structure (header records)
	Header Info
	CONTGRPS Structure (member records)

	CONTHIST.DBF
	CONTHIST Indexes
	CONTHIST Structure
	Record Type

	CONTSUPP.DBF
	CONTSUPP Indexes
	CONTSUP Structure
	Record Type

	INFOMINE.DBF
	INFOMINE Indexes
	INFOMINE Structure

	LOOKUP.DBF
	LOOKUP Indexes
	LOOKUP Structure

	MAILBOX.DBF
	MAILBOX Indexes
	MAILBOX Structure
	Flags
	Folder

	OPMGR.DBF
	OPMGR Structure
	Record Type

	PERPHONE.DBF
	PERPHONE Indexes
	PERPHONE Structure

	RESITEMS.DBF
	RESITEMS Indexes
	RESITEMS Structure

	SPFILES.DBF
	SPFILES Index
	SPFILES Structure

	SQL Database Structures
	Overview
	CAL Table
	CAL Indexes
	CAL Structure
	Record Type

	CONTACT1 Table
	CONTACT1 Indexes
	 CONTACT1 Relations
	CONTACT1 Structure
	Account Number
	Internal Status

	CONTACT2 Table
	CONTACT2 Index
	CONTACT2 Structure

	CONTGRPS Table
	CONTGRPS Indexes
	CONTGRPS Structure (header records)
	Header Info
	CONTGRPS Structure (member records)

	CONTHIST Table
	CONTHIST Indexes
	CONTHIST Structure
	Record Type

	CONTSUPP Table
	CONTSUPP Indexes
	CONTSUPP Structure
	Record Type

	INFOMINE Table
	INFOMINE Indexes
	INFOMINE Structure

	LOOKUP Table
	LOOKUP Indexes
	LOOKUP Structure

	MAILBOX Table
	MAILBOX Indexes
	MAILBOX Structure
	Flags
	Folder

	OPMGR Table
	OPMGR Indexes
	OPMGR Structure
	Record Type

	PERPHONE Table
	PERPHONE Indexes
	PERPHONE Structure

	RESITEMS Table
	RESITEMS Indexes
	RESITEMS Structure

	SPFILES Table
	SPFILES Index
	SPFILES Structure

	Appendix: Code Examples
	Overview
	GMXS32.DLL Code Examples
	C++ Examples
	Function prototypes
	Logging In
	Creating a Contact with Business Logic/Enumerating a Name Value Container/DataStream
	Low-Level Work Area

	Visual Basic Examples
	Function prototypes
	Logging In
	Creating a Contact
	Enumerating a Container
	DataStream
	Low-Level WorkArea

	Delphi Examples
	Function prototypes
	Creating a Contact
	Enumerating a Container
	DataStream
	Low-Level Work Area

	Resources
	Additional Documentation
	Contact Us
	Support Site
	Contact Information

	Index

