GoIdMine@

GoldMine API Guide

Release 2026.1

GoldMine™®

Copyright Notice

This document is provided strictly as a guide. No guarantees can be provided or expected. This document contains
the confidential information and/or proprietary property of lvanti, Inc. and its affiliates (referred to collectively as
“Ivanti”), and may not be disclosed or copied without prior written consent of Ivanti.

Ivanti retains the right to make changes to this document or related product specifications and descriptions, at any
time, without notice. Ivanti makes no warranty for the use of this document and assumes no responsibility for any
errors that can appear in the document nor does it make a commitment to update the information contained
herein. For the most current product information, please visit www.ivanti.com.

Copyright © 2026, Ivanti. All rights reserved.

Ivanti and its logos are registered trademarks or trademarks of Ivanti, Inc. and its affiliates in the United States
and/or other countries. Other brands and names may be claimed as the property of others.

Protected by patents, see http://www.ivanti.com/patents

Updated: Feb, 2026

GoldMine API Guide Page 2 of 463

http://www.ivanti.com/patents

GoldMine™®

Contents

GO NS . 3
Introduction to Integrating with GoldMine 32
INErOUCEION .. 32
Methods of Integrating with GoldMine 32
Integrating via Dynamic Data EXchange 33
Integrating via GIMIXS3 2. DL ... 33
Integrating via the GoldMine XML APl (GMXMLAPLDLL) 33
Interacting with GoldMine via the GoldMine COM Server 33
Integrating via GoldMine Plug-ins 33
Integrating via a Database Engine 34
Comparing Integration Methods 34
ReSOUIrCEs and SUPPOI L. . 35
Technology Partner Program 35
Open Developer CoOMMUNILY ... 35
Technology Partner Program 36
INtegration TOOIS ... 36
Working with Dynamic Data Exchange (DDE) 37
OV IV W 37
Using DDE in GoldMINe ... 37
Merging Data into @ DOCUM Nt ... 37
Updating Database Information 38
QUErYINg fOr Data .. 38
Identifying Telephone Numbers Automatically 38
Linking Contact Records to an Accounting Application 38
Inserting Incoming E-mail 38
Linking GoldMine to MS Word for Windows 39
Entering Application, Topic, and Iltem Names 39
DDE Parameters, Functions, Expressions, Macros 39
Establishing a DDE Conversation 40

To Initiate @ DDE CoNVersation 40

TO REQUEST Data .. 41
Working with DDE FUNCHIONS 41
Accessing Data Files 41
Adding an EmMPty RECOI o 42

P A S 42
RetUIN ValUe .. o 42
EXAMIDIE 42
Closing an Opened File ... 43

P A S 43
RetUIN ValUe .. o 43

EX A 43
Deleting the Current ReCord 43

P A S 43

EX A 43
Creating a Subset of Records 43

P A S 44

EX ML 44
Checking for an Xbase or SQL Table 45

P amMI O S 45

GoldMine API Guide Page 3 of 463

GoldMine™®

RETUIN ValUBS 45
Moving to a Specified ReCord 45
P A A O S 45
RETUIN ValUE 47
Bl 47
Opening a Data File 48
P A A O S 49
RETUIN ValUE 49
Bl 49
Limiting GoldMine Search Range 49
P A A O S 50
Bl 50
Reading a Field Value 50
P A A O S 50
RETUIN ValUE 50
Checking the Current Record Number or Record ID 50
P A A O S 51
RETUIN ValUE 51
EX ML 51
Changing a Field Value 51
P A A O S 51
RETUIN ValUE 52
EX ML 52
Performing a Sequential Search 52
P A A O S 52
RETUIN ValUE 53
Search RetUIN ValUBS . 53
EX ML 53
Unlocking @ ReCord ... 54
P A A O S 54
RETUIN ValUE 54
EX ML 54
AcCCesSING CoNtaCt RECOIUS 54
Linking GoldMine Fields with an External Application ... 54
P A A O S 55
Valid RecordOb FUNCHIONS .. 55
RETUIN ValUE 58
EX ML 58
Accessing Specialized DDE FUNCHIONS 59
Retrieving Login Credentials for Use with the GMXS32.DLL 59
EX ML 59
Retrieving the ReclID of the Current Opportunity 60
RETUIN ValUE 60
EX ML 60
Completing a Calendar ACtiVity 60
P A A O S 60
RETUIN ValUE 61
EX ML 61
Displaying the Contact Record of an Incoming Caller 61
P A aMI O O S 62
Caller D Parame e S o 62
RETUIN ValUBS 62
CallerID RetUIN ValUBS ..o 62

GoldMine API Guide Page 4 of 463

GoldMine™®

Bl 63
RUNNING @ COUNT T L. e 63
P Al A S 63
RetUIN ValUe 63
Bl 63
Returning GoldMine Record Data 63
ReCOrd SeleCtion ... 64
P Al A S 64
RetUIrN ValUe 64
P Al A S 65
EXAMIPIE L 65
EXAMIPIE 2 65
RetUIN PaCKet . 65
P OrMaNCE 66
EXAMIPIE B 66
EXAMIPIE B 67
Processing a Web Import Instruction File 67
Reading an Xbase Expression Without Openinga File 67
P Al A S 67
RetUIN ValUe 67
EX ML 67
Adding Merge Fields to a FOrm ... 68
P Al A S 68
EX ML 68
Deleting Fields from @ FOrm .. 69
P Al A S 69
RetUIrN ValUe 70
EX ML 70
Closing a Form Profile 70
P Al A S 70
EX ML 70
Creating an Xbase File with Registered Fields 70
P Al A S 70
Examples of WhichReC Parameter 71
RetUIrN ValUe 71
EX ML 71
Returning a Field Name for an EXpression 71
P Al A S 71
Returning a Value for Unattached Fields 71
EX ML 71
Counting the Number of Exported Records ... 71
P Al A S 72
RetUIN ValUe 72
EX ML 72
Creating a History Record 72
P Al A S 72
InsHistory Valid Values (2nd parameter) 72
RetUIN ValUe 73
EX ML 73
Creating or Updating a Document Link 74
P Al A S 74
RetUIN ValUe 74
EX ML 75

GoldMine API Guide Page 5 of 463

GoldMine™®

Displaying @ Message Dialog BOX ... 75

P Al A S 75
RetUIN ValUe 76
Bl 76
Adding a Merge FOrmM 77

P Al A S 77
RetUIN ValUe 78
Bl 78
Creating @ GrOUD .o 79

P Al A S 79
RetUIrN ValUe 79
Bl 79
Adding a Group Mem T 80
ParaM S 80
Bl 80
Creating @ MIaCrO 80

P Al A S 81
Identifying @ Macro by NUM e . 81
Identifying @a Macro by File Name ... 81
RetUIN ValUe 81

EX ML 81

To Play a Macro from the Command Line 82
Creating and Sending @ Pager MeSSage 82
RetUIN ValUe 83
SendPage Return Values 83

EX ML 83
Displaying a Message in the GoldMine Status Bar 83

P Al A S 83

EX ML 84
Converting TLOg TimMeStamIPS e 84
ParaM O 84
RetUIN ValUeS 84
EXAMIPIE L 84
EXAMIPIE 2 84
DDE MIaCrOS ... e 84
DDE Macros for Merge FOImMIS o 91
&PARAMZ Parameterso 92
&PARAMA Parameters o 92
&PARAMSS Parameters 93
DDE Macros for the GoldMine LiCeNSe 93
Using GMXS32.DLL for Database Access and Sync Log Updates 95
OV BTV W . 95
Passing Multiple Parameters to a Function 95
Comparing Low Level/DDE Methodology to Business Logic Methodology ... 96
Method 1: Updating a Contact Record using the low level functions or DDE 96
Method 2: Updating a Contact Record using the Business Logic .. 96
Loading GMXS3 2. DLL and Logging IN ..o o 96
For GoldMine Version 6.7 OF LOWeT ... 97
Setting the SQL Database Login Name and PasswordGoldMine 6.7 or loweronly) 97
SV X 97

P Al A S 97
RetUIN ValUeS 97

EX ML 97

GoldMine API Guide Page 6 of 463

GoldMine™®

Loading an API Session (GoldMine 7.0 or higher) 98
P A A O S 98
RETUIN ValUBS 98
N O S 99
Bl 99

Loading a BDE Session (GoldMine 6.7 or IOWer) 99
SN N X 99
P A A O S 99
RETUIN ValUBS 100
N O S 100
E XMl 100

LOgING IN @ USBr 100
SN N X 101
P A A O S 101
RETUIN ValUBS 101
E XMl 101

Closing an APl Session (GoldMine 7.0 or higher) 101
SN N X 101
RETUIN ValUBS 102
N O S 102
E XMl 102

Closing a BDE Session (GoldMine 6.7 OF JOWET) ... i 102
SN N X 102
RETUIN ValUBS 102
N O S 102
E XMl 102

Logging in Multiple Users through the APl .. 103

Lo BING TN 103
S N X 103
P A A O S 103
RETUIN ValUBS 103

LOBEING QUL 104
S N X 104
P A A O S 104
RO U 104

SWitching BetwWeen Login SeSSiONS ..o 104
S N X 104
P A A O S 104
RO U 104

Special Consideration for Multi-Threaded Applications 105
S N X 105

Working with Business Logic Functions using the Name/Value Pair Method ... 105
N O S 105

Creating an NV CoNtainer 105
S N X 106
Bl 106
RETUIN ValUE o 106

Creating an NV Container with Copied Values 106
S N X 106
Bl 106
RETUIN ValUE 106
SN N X 106
ParaM B O S 106

GoldMine API Guide Page 7 of 463

GoldMine™®

E XMl 107
RETUIN ValUE 107
Deleting an NV CoNtainer o 107
SN N X 107
E XMl 107
RETUIN ValUE 107
SN N X 107
P A A O S 107
E XMl 108
RETUIN ValUBS 108
Storing NV Pairs in @ Container .. 108
SN N X 108
P A A O S 108
E XMl 108
RETUIN ValUE 108
Searching for an NV Pair . 108
SN N X 108
ParaM B O S 108
E XMl 109
RETUIN ValUBS 109
ReMOVINg One NV Pair 109
SN N X 109
ParaM B O S 109
E XMl 109
RETUIN ValUE 109
Removing all NV Pairs from a Container 109
S N X 109
P A A O 110
E XMl 110
RETUIN ValUE o 110
Totaling NV Pairs in @ Container ... 110
S N X 110
P A A O 110
E XMl 110
RETUIN ValUE o 110
FINding an NV NamMIE oo 110
S N X 110
P A A O S 110
E XMl 111
RETUIN ValUE o 111
FINding an NV ValUe .o 111
S N X 111
P A A O S 111
Bl 111
RETUIN ValUE o 111
S N X 111
P A A O S 111
EX Ml 112
RETUIN ValUE 112
Executing Business Logic Methods 112
SN N X 112
ParaM B O S 112
E XMl 112

GoldMine API Guide Page 8 of 463

GoldMine™®

RETUIN ValUBS 112
Working with Multi-Value Name/Value Pairs ... 112
Determining the Type of a Name/Value Pair 113
SN N X 113

P Al aM O O S 113
RETUIN ValUBS 113
Determining the Position of an NV Container inan NV Hierarchy 113
SN N X 113

P A A O S 114

E XMl 114

SN N X 114

P A A O S 114

E XMl 114

SN N X 114

P A A O S 114

E XMl 114
Getting the Number of Values in a Multi-Value Pair 114
SN N X 115
ParaM B O S 115

E XMl 115
Retrieving Containers from an NV Pair ... 115
SN N X 115
ParaM B O S 115

E XMl 115

SN N X 115

P A A O S 116
Bl 116
Retrieving the Values in @ MUlti-Value Pair 116
S N X 116

P A A O S 116

E XMl 116
Deleting Values from a Multi-Value Pair 116
Assigning a Container t0 a Parent . 117
S N X 117

P A A O S 117

E XMl 117

S N X 117

P A A O S 117

E XMl 117

S N X 118

P A A O S 118
Bl 118

S N X 118

P A A O S 118
Bl 118
Appending String Values to a Multi-Value Pair 118
S N X 119

P A A O S 119
Bl 119
Low-level Data Access & Manipulation 119
Reading Security and Rights for a DLL User 119
SN N X 119
ParaM B O S 119

GoldMine API Guide Page 9 of 463

GoldMine™®

TOPLION ValUBS . 120
RETUIN ValUBS 120

SN N X 120

P Al aM O O S 121
RETUIN ValUBS 121

SN N X 121

P A A O S 121
RETUIN ValUBS 121
Returning GoldMine Licensing Information 121
SN N X 121

P A A O S 121
RETUIN ValUBS 121

N O S 122
GMW _GetLicenselnfo StructUre 122

E XMl 122
Returning Calendar Data 122
SN N X 123
Retrieving Data With DataStream ... 123
Advantages of Using DataStream 123
DataStream Record SeleCtion 123
G DS RN . 124
SN N X 124
ParaM B O S 124
RETUIN ValUBS 124
GMW _DS_Range Field Selection 125

G DS QUYL 125

S N X 125

P A A O S 125
RETUIN ValUBS 125
GIMW DS FetCN Lo 126

S N X 126
GMW _DS_Fetch Return Packet 126
GIMW DS Gl .o 127

S N X 127
Accessing Low-Level Data Using Work Areas 127
GMXS32.DLL Low-Level Access FUNCHIONS 128
OPENING @ Data File o 129
S N X 129

P A A O 129
RETUIN ValUBS 129
GMW _DB_0pen RetUrn ValUes 129
Closing @ Data File ... oo 129
S N X 130

P A A O S 130
RETUIN ValUBS 130
GMW _DB_Close RetUrn Values 130
Checking for an SQL Table ... 130

S N X 130

P A A O 130
RETUIN ValUBS 130
GMW _DB_IsSQL Return ValUues 130
AdAiNg @ RECOIA o 131
SN N X 131

GoldMine API Guide Page 10 of 463

GoldMine™®

P Al aM O O S 131
RETUIN ValUE 131
Deleting the CUrrent ReCOId ... 131
SN N X 131

P A A O 131
RETUIN ValUBS 132
GMW _DB_Delete RetUrn ValUes 132
Querying for a Field Value ... o 132
SN N X 132

P A A O S 132
Checking the Current Record Number or Record ID ... 132
SN N X 132

P A A O S 133
RETUIN ValUE 133
Changing a Field Value ... 133
SN N X 133
ParaM B O S 133
RETUIN ValUBS 133
UNloCKiNg @ RECOId ..o 133
SN N X 134

P A A O 134
RETUIN ValUBS 134
GMW_DB_Unlock Return Values 134
Creating a SUbset Of RECOIAS 134
SN N X 134

P A A O S 134
RETUIN ValUBS 134
LiMitiNg SEArCh SCOPE ..o 135
S N X 135

P A A O S 135
RETUIN ValUBS 135
GMW _DB_Range RetUrn ValUes 135
Performing a Sequential Search 135
S N X 135

P A A O S 135
RETUIN ValUBS 136
Moving to the First Record Match ... 136
S N X 136

P A A O S 136
RETUIN ValUBS 136
GMW _DB_Seek RetUrn ValUes 136
Setting the CUrrent INAeX Tago 136
S N X 137

P A A O S 137
RETUIN ValUBS 137
GMW_DB_SetOrder Return Values 137
Positioning the Record POINter . .. 137
S N X 137

P A aM O O S 137
GMW_DB_Move Commands and Function Equivalents ... 137
RETUIN ValUBS 138
GMW _DB_MoVe RetUIrN ValUes 138
Moving to a Specified ReCOrd 138

GoldMine API Guide Page 11 of 463

GoldMine™®

SN N X 138

P Al aM O O S 138
RETUIN ValUBS 138
GMW _DB_Goto RetUrn ValUues 138
MoVing to the First RECOId 139
SN N X 139

P A A O 139
RETUIN ValUBS 139
GMW _ DB _TopRetUIN ValUes ... 139
Moving to the Previous or Following Record 139
SN N X 139

P A A O S 139
RETUIN ValUBS 140
GMW _DB_Skip Return Values 140
MoVing to the Last ReCOrd 140
SN N X 140

P A A O 140
RETUIN ValUBS 140
GMW_DB_Bottom Return Values 140
SEKINg @ RECOIA . 140
SN N X 141
ParaM B O S 141
RETUIN ValUBS 141
Reading a Field Value ... 141
SN N X 141

P A A O S 141
RETUIN ValUBS 142
Replacing a Field Value ... o 142
S N X 142

P A A O S 142
RETUIN ValUBS 142
Updating Sync Logs With GIMXS3 2. DL ... o 143
Updating the Sync Log File ... 143
S N X 143

P A A O S 143
RETUIN ValUBS 144
GMW _UpdateSynclog Return Values 144

E XMl 144
Importing a Prepared TLog IMport File .. . 144
S N X 144

P A A O S 144
RETUIN ValUBS 145

N O S 145
TLOg IMPOrt SErUCTUN e 145
Bl 145
Getting a NeW ReCOrd 1D ... 145
S N X 145

P A A O S 146
RETUIN ValUE 146

N O S 146
Bl 146
Converting the SYNC STamMID L. o 146
SN N X 146

GoldMine API Guide Page 12 of 463

GoldMine™®

P Al aM O O S 146
RETUIN ValUBS 146
GMW _SyncStamp Return Values 146

N O S 147

E XMl 147
Working wWith the XIMIL APl 148
OV IV W 148
Executing Your XML DOCUM Nt . 148
E XMl 148
Creating Your XML DOCUM BNt . 148
Loading the API (GoldMine 7.0 or higher) 149
P A A O S 149
LoadAPI RetUIN ValUBS o 150
Loading BDE (GOIAMING B.7) ..o 150
P A A O S 151
LoadBDE RetUrn ValUes ... oo 151
LoggINg iN SUDSEQUENt USBIS .. o 152
ParaM B O S 152
LOgiN RetUIN ValUBS . 153
LOBEING QUL 153
SN N X 153
ParaM B O S 153

RO U 153
Unloading the API (GoldMine 7.0 or higher) .. o 153
Unloading BDE (GOIdIMING 6.7) ... o 153
Accessing Data with Business Logic FUNCHIONS 154
Accessing Nested Nodes Of Data 154
Business Logic Function Return Values 154

I PUE XML 154
RETUINEd XML 155
Accessing Low-level Data Manipulation Functionality ... 155
Retrieving Data With DataStream ... 155
Advantages of Using DataStream . . 155
DataStream Record SeleCtion 156
DS RAN G . 156

S N X 156

P A A O S 156
RETUIN ValUBS 157
GMW_DS _Range RetUrn ValUes 157
DS_Range Field Selection .. .o 157

DS QUYL 157

S N X 157

P A A O S 157
RETUIN ValUBS 158

DS RO o 158

S N X 158

P A A O S 158
OPtIoNAl Param et e s 158

The XML RetUIN PaCKet .o 158

RO U 159

DS _Fetch RetUIN PaCKet .. o 160

DS QIO 161
SN N X 161

GoldMine API Guide Page 13 of 463

GoldMine™®

Accessing Low-Level Data Using Work Areas 161
GMXS32.DLL Low-Level Access FUNCHIONS 161
GMXS32.DLL Low-Level Access FUNCHIONS 162

OpEeNINg @ Data File .o 163
SN N X 163
P A A O 163
RETUIN ValUBS 163
DB_Open Code Attribute Values 163
Closing @ Data File ... o 163
SN N X 163
P A A O S 163
RETUIN ValUBS 164
Checking for an SQL Table ... 164
SN N X 164
P A A O 164
RETUIN ValUE 164
DB_IsSQL Code Attribute Values 164
AdAiNg @ RECOIA 164
SN N X 164
ParaM B O S 165
RETUIN ValUE 165
Deleting the CUrrent ReCOId ... 165
SN N X 165
P A A O 165
RETUIN ValUE 165
DB_Delete Code Attribute Values 165
Reading a Field Value ... 166
S N X 166
P A A O S 166
RETUIN ValUE o 166
DB_Range Code Attribute Values 166
Checking the Current Record Number or Record ID 166
S N X 166
P A A O S 166
RETUIN ValUE o 167
Changing a Field ValUe 167
S N X 167
P A A O S 167
RETUIN ValUE o 167
UNloCKiNg @ RECOId .. o 168
S N X 168
P A A O 168
RETUIN ValUE o 168
Creating a Subset Of RECOIASo 168
S N X 168
N O 168
P A A O S 168
RETUIN ValUE o 169
DB_Filter Code Attribute Values 169
LiMitiNg SEAICh SCOPE ..o 169
SN N X 169
ParaM B O S 169
RETUIN ValUE 169

GoldMine API Guide Page 14 of 463

GoldMine™®

DB_Range Code Attribute Values 170
Performing a Sequential Search 170
SN N X 170
P Al A S 170
RetUIrN ValUe 170
DB_Search Code Attribute Values 170
Moving to the First Record Match ... 170
SN N X 171
P Al A S 171
RetUIrN ValUe 171
DB _Seek RetUIN ValUes .. o 171
Setting the CUrTent INAeX Tag ..o o 171
SN N X 171
P Al A S 171
RetUIrN ValUe 172
DB_SetOrder Code Attribute Values 172
Positioning the Record POINter 172
SN N X 172
ParaM S 172
DB_Move Commands and Function Equivalents 172
RetUIrN ValUe 173
DB_Move Code Attribute Values 173
Moving to a Specified ReCOrd 173
SN N X 173
ParaM S 173
RetUIrN ValUe 173
DB_Goto Code Attribute Values 174
MoVing to the First RECOIdo 174
S N X 174
P Al A Ol . 174
RetUIrN ValUe 174
DB_Top Code Attribute Values 174
Moving to the Previous or Following Record 174
S N X 175
P Al A S 175
RetUIrN ValUe 175
DB_Skip Code Attribute Values 175
MoVing to the Last ReCOrd 175
S N X 175
P Al A Ol . 175
RetUIrN ValUe 175
DB_Bottom Code Attribute Values 176
SEEKINg @ RECOIA . 176
S N X 176
P Al A S 176
RetUIrN ValUe 176
DB_QuickSeek Code Attribute Values 176
Reading a Field Value ... o 177
S N X 177
P Al A S 177
RetUIrN ValUe 177
DB_QuickRead Code Attribute Values 177
Replacing a Field Value ... o 177

GoldMine API Guide Page 15 of 463

GoldMine™®

SN N X 178

P Al aM O O S 178
RETUIN ValUE 178
DB_QuickReplace Code Attribute Values 178
Returning Calendar Data 178
SN N X 179
RETUIN ValUE 179
UPating SYNC LOZS ..o 180
Updating the Sync Log File ... 180
SN N X 180

P A A O S 180
RETUIN ValUE 180
UpdateSyncLog Code Attribute Values 181
Importing a Prepared TLog IMport File .. . 181
SN N X 181

P A A O S 181
RETUIN ValUE 181
ReadlmpTLog Code Attribute Values 181

N O S 182
TLOg IMPOrt SErUCTUN e 182
Getting a NEeW ReCOrd ID 182
SN N X 182
ParaM B O S 182
RETUIN ValUE 182

N O S 182
Converting the SYNC STamMID L. o 182

S N X 182

P A A O S 183
RETUIN ValUE o 183
SyncStamp Code Attribute Values 183

N O S 183
Using MSXML to Handle GoldMine AP XML ... o 183
Getting SHar e d 183
Defining the ROOt Element . 183
SettiNg A UL S 184
Referencing an AttrioUte L. 184
Creating Child Elements .. o 184
Executing the XIMIL DOoCUM Nt .. 185
Reading the ReSUILS ... 186
Reading the Code AttribULe ... 186
Reading the Returned Data 186
Accessing the Current GoldMine Instance with COM 188
OV IV W 188
GettiNg SHar e d o 188
EXECULING COMMaNGS . 189
Logging IN t0 GOIAMING .. o 189
GOIAMINE. UL ClaSS . 190
ACCESSING Data Files .o 190
Adding an EMPty ReCOrd ... o 190

P A aM O O S 190
RETUIN ValUE 190
RETUINEd XML 190
Closing an Opened File 191

GoldMine API Guide Page 16 of 463

GoldMine™®

P Al aM O O S 191
RETUIN ValUE 191
RETUINEd XML 191
Deleting the CUrrent ReCOId ... 191
P Al aM O O S 191
RETUINEd XML 191
Creating a SUbset Of RECOIASo 191
P A A O S 192
Checking for an Xbase or SQL Table 192
P A A O S 192
RETUIN ValUE 192
RETUINEd XML 192
Moving to a Specified ReCOrd 192
P A A O S 193
RETUIN ValUE 194
MOVE RETUIN ValUBS . o 194
RETUINEd XML 194
OpENINg @ Data File .o 194
ParaM B O S 195
Open Valid Param et ers . oo 195
RETUIN ValUE 195
RETUINEd XML 195
Limiting GoldMine Search RaNge 195
ParaM B O S 196
RETUINEd XML 196

P A A O S 196
RETUINEd XML o 196
Reading a Field Value ... 196
P A A O S 196
RETUIN ValUE o 197
RETUINEd XML o 197
Checking the Current Record Number or Record ID 197
P A A O S 197
RETUIN ValUE o 197
RETUINEd XML o 197
Changing a Field ValUe 198
P A A O S 198
RETUIN ValUE o 198
Performing a Sequential Search 199
P A A O S 199
RETUIN ValUE o 199
RETUINEA XML 199

P A A O S 200
RETUIN ValUE o 200
RETUINEA XML 200
ACCESSING CONTAaCt RECOIAS .. . 200
Differences in Accessing Contact Information 201

P A A O S 201
Valid RecordObj FUNCHIONS 201
RETUIN ValUE 205
RETUINEd XML 205
Accessing Specialized GoldMine. Ul FUNCLIONS 205
Retrieving a List of Active Plug-Ins (GoldMine 7.0 or higher) ... 205

GoldMine API Guide Page 17 of 463

GoldMine™®

RETUINEd XML 205
Running a Plug-In (GoldMine 7.0 or higher) 206
RETUINEd XML 206
Retrieving Login Credentials for Use with the GMXS32.DLL 206
RETUINEd XML 206
Retrieving the ReclID of the Current Opportunity 207
RETUIN ValUE 207
RETUINEd XML 207
Completing a Calendar ActiVity 207
P A A O S 207
RETUIN ValUE 208
RETUINEd XML 208
Displaying Edit Windows for Calendar and History ltems ... 208
GENEIAl M S S A OS ... o 208
RETUIN ValUE 208
Displaying the Contact Record of an Incoming Caller 209
ParaM B O S 209
RETUIN ValUE 210
CallerID RetUIN ValUBS . 210
RETUINEd XML 210
RUNNING @ COUNE O 210
ParaM B O S 210
RETUIN ValUE 210
E XMl 211
Returning GoldMine Record Data 211
RECOId Sl Ot ON o 212
Datastream Range Parameters . 212
Datastream QUEIY Parameters . 212
Datastream Fetch Parameters ... 213
Datastream Close Parameters .. . 213
The XML RetUIrN Packet .. o 213
RO U 213
RETUIN PaCKet . 214
P O AN CE 215
Processing a Web Import Instruction File 215
Reading an Xbase Expression Without Opening a File 216
P A A O S 216
RETUIN ValUE o 216
RO U S, 216
Adding Merge Fields to a FOrm .. 216
P A A O S 216
Deleting Fields from a FOrm .o 217
P A A O S 217
RETUIN ValUE o 217
Closing @ FOrm Profile .. 217
P A A O S 217
Creating an Xbase File with Registered Fields 217
P A A O S 217
Wi REC ValUBS 218
RETUIN ValUE 218
Returning a Field Name for an EXpression 218
ParaM B O S 218
Returning a Value for Unattached Fields 218

GoldMine API Guide Page 18 of 463

GoldMine™®

RETUIN ValUE 219
Counting the Number of Exported Records 219
P Al aM O O S 219
FOrmQuUEryCreate Parameters o 219
RETUIN ValUE 219
FOrmM P IN e DO . o 219
P A A O S 219
Creating a History ReCOrd ... o 220
P A A O S 220
RETUIN ValUE 221
RETUINEd XML 221
Creating or Updating a Document Link 221
P A A O S 221
SYNC Valid ValUBS 222
RETUIN ValUE 222
RETUINEd XML 222
Displaying @ Message Dialog BOX ... 222
ParaM B O S 222
MISEBOX StYIE ValUBS . 222
RETUIN ValUE 223
RETUINEd XML 223
Adding @ Mg FOIM L 224
ParaM B O S 224
DOCUM BN Ty RS o 224
Flag ValUesS o 225
RETUIN ValUE 225
Playing @ Toolbar Macro .. . 225
P A A O S 225
Identifying @ Macro by NUMbEr 225
Identifying @a Macro by File Name ... 225
RETUIN ValUE o 226
PlayMacro RetUrn ValUes 226
Optional sSWItChes INCIUAe: ... 226
Creating and Sending @ Pager MeSSage oo 226
RETUIN ValUE o 227
Displaying a Message in the GoldMine Status Bar ... 227
P A A O S 227
RETUINEA XML 227
Converting TLog TimMeS amIPs . 227
P A A O 228
RETUIN ValUE o 228
RETUINEA XML 228
Updating the Sync Log File ... 228
P A A O S 228
RETUIN ValUE o 228
UpdateSyncLog Code Attribute Values 228
Importing a Prepared TLog IMport File .. . 229
S N X 229
P A aM O O S 229
RETUIN ValUE 229
ReadlmpTLog Code Attribute Values 229
N O S 229
TLOg IMPOrt SErUCTUN e 229

GoldMine API Guide Page 19 of 463

GoldMine™®

FOrCiNg LOBOUt L 230
SN N X 230

P Al aM O O S 230
Reading Security and Rights 230
SN N X 230
Permissions Returned by USEIACCESS e 230
RETUINEd XML 231
Retrieving Calendar PermissioNs 232

SN N X 232

P A A O S 232
RETUIN ValUE 232
Retrieving History ACCESS .. . 232

SN N X 232

P A A O S 232
RETUIN ValUE 232
VIaC O 233
EXECULING IMIaCrOS 233
RETUINEd XML 233
Available Data-Related Macros 233

MaCros fOr MBI FOIMS 241

QP AR AM 2 Param e O S 241
QP AR AM D Param e O S 242
QP AR AMA Param e O S 242
QP AR AM S Param e Ol 243
Macros for the GoldMINe LiCENSe 243
Controlling the GoldMine User Interface 244
Getting Window Information 244
GetAvailableWindowWsList 244

S N X 244
RETUINEd XML o 245
GetACtIVEWINAOWS LISt 245

S N X 245
RETUINEd XML o 245
REEISTEIING fOr EVENES . 246
RegisterVetoWindoWLaunCh . 247

S N X 247

P A A O S 247
RETUINEA XML 247
RegiSterWINdOWU P D OWN 247

S N X 247

P A A O S 248
REEUINEA XML 248
RegIStErCOMMaANAEXEC . 248

S N X 248

P A A O S 248
RETUINEA XML 248
RegisterTabDetails EVeNt .. 249

S N X 249

P A aM O O S 249
AdditionalContactClick 250
AdditionalContactClick 250
RETUINEd XML 250
ParaM B O S 250

GoldMine API Guide Page 20 of 463

GoldMine™®

DetailS Gk . 250
RETUINEd XML 250
P Al aM O O S 251
PeNdiNgCliCK .o 251
RETUINEd XML 251
P A A O S 251
HiStOry GOk 251
RETUINEd XML 251

P A A O S 251
LiNKedDOCCICK . 252
RETUINEd XML 252
P A A O S 252
Handling GoldMine. Ul EVENES .. . 252
NoOtifyControlCOmMMaNd .. 252
P A A O S 252
VB O W N OW 253
ParaM B O S 253
Bl 253
WiNAOWU R D OWN 254
ParaM B O S 254
GV BV N 254
RO U 255
Manipulating Controls Programatically 256
PresSS BUT N 256
SN N X 257
P A A O S 257
St ON O T X o 257
S N X 258
P A A O S 258
SO N ECK B OX ... 258
S N X 258
P A A O S 259
S e RO L. 259
S N X 259
P A A O S 260
SetListBoX/SetCOmMbDOBOX . o o 260
S N X 260
P A A O S 260
S B O T A 261
S N X 261
P A A O S 261
BN e] 261
S N X 262
P A A O S 262
Executing a Menu Command ... 262
S N X 262
RETUINEd XML 265
Opening a Mail ReCOrd 265
S N X 265
P A aM O O S 265
RETUINEd XML 266
Setting a Selected Record in a GoldMine Grid (GoldMine 8.0 or higher) ... 266
ParaM B O S 266

GoldMine API Guide Page 21 of 463

GoldMine™®

RETUINEd XML 267
Returning Selected Records in a GoldMine Grid (8.0.1 or higher) 267
SYNEAX (EXAMIPI) o 267

P Al aM O O S 267
RETUINEd XML 267
GOldMINE. RECOD] Class ... o 268
RecordObjectHasChanged 268

P A A O S 268
RecordFieldHasUpdated 268

P A A O S 268
RecordTabHasChanged 268

P A A O S 268
GoldMINE.GMSYSTEMEVENTS Class ... o 268
GoldMINES UL D OWN 268
Business Logic Methods 270
OV IV W 270
Business Logic Functions and Name/Value Pairs 270
Controlling Database Session Handling 270
Creating or Updating a Contact ReCord 270
Required Name/Value Pairs ... 271
Optional Name/Value Pairs ... 271
Special Name/Value Pairs ... oo 271
OULPUL NaME/ValUE Pairs ..o 271
WrteCONTACT Error COUS ..o 271
Updating an E-mail Address ... o 272
Required Name/Value Pairs ... 272
Optional Name/Value Pairs ... 272
Updating a Web Site ReCOrd 273
NAME/VAlUE Pairs ... 273
Updating Notes of a Primary Contact Record 273
Required Name/Value Pairs ... 273
Optional Name/Value Pairs 273
OULPUL NaME/ValUE Pairs ..o 273
Creating or Updating a Note ina Table 273
Required Name/Value Pairs ... 274
Optional Name/Value Pairs ... 274
OULPUL NaME/ValUE Pairs ..o 274
WHtENOtE Error OO o 274
Creating or Updating an Additional Contact Record 275
Required Name/Value Pairs ... 275
Optional Name/Value Pairs ... 275
Special Name/Value Pairs ... o 276

ErrOr COUES 276
OULPUL NaME/ValUE Pairs ..o 276
Creating or Updating a Detail ReCOrd 277
Required Name/Value Pairs ... 277
Optional Name/Value Pairs ... 277
Special Name/Value Pairs ... o 277
OULPUL NaME/ValUE Pairs ..o 277

ErrOr COUBS 277
Creating or Updating a Linked DoCUMENt 278
Required Name/Value Pairs ... 278
Optional Name/Value Pairs ... 278

GoldMine API Guide Page 22 of 463

GoldMine™®

Special Name/Value Pairs ... oo 278
OULPUL NaME/ValUE Pairs ..o 278
ErrOr COUBS 278
Creating or Updating a Referral 279
Required Name/Value Pairs ... 279
Optional Name/Value Pairs ... 279
Special Name/Value Pairs ... oo 279
OULPUL NaME/ValUE Pairs ..o 279
Creating or Updating ACtiVities 280
Required Name/Value Pairs ... 280
GOldMINE 6.0 NV Pairs o 282
Optional WriteSchedule NV Pairs ... 282
OULPUL NaME/ValUE Pairs ..o 284
ErrOr COUES 284
Creating or Updating a History ReCord 284
Required Name/Value Pairs ... 284
WriteHistory Optional Name/Value Pairs 284
WRITE HISTORY Special Name/Value Pairs ... 285
OULPUL NaME/ValUE Pairs ..o 285
Creating or Updating a Case Record (GoldMine 8.0 or higher) 285
Required Name/Value Pairs ... 285
Optional Name/Value Pairs ... 286
ErrOr COUES 287
OULPUL NaME/ValUE Pairs ..o 287
Creating or Updating a Case Attachment (GoldMine 8.0 or higher) 287
Required Name/Value Pairs ... 287
Optional Name/Value Pairs ... 287
ErrOr COUES 288
OULPUL NaME/ValUE Pairs ..o 288
Adding a GoldMine User as a Case Team Member (GoldMine 8.0 or higher) 288
Required Name/Value Pairs ... 288
ErrOr COUES 289
OULPUL NaME/ValUE Pairs ..o 289
Attaching an AutomMated PrOCESS 289
ATTACHTRACK Required Name/Value Pairs ... 289
OULPUL NaME/ValUE Pairs ..o 290
EXeCUting an SQL QUEIY .. 290
Required Name/Value Pairs ... 290
Optional Name/Value Pairs ... 290
OULPUL NaME/ValUE Pairs ..o 290
Creating @ Cont act GrOUD ... 291
Required Name/Value Pairs ... 291
Optional Name/Value Pairs ... 291
OULPUL NaME/ValUE Pairs ..o 291
RETUIN COUS . 291
Adding Contacts t0 @ CoNtact GroUD ... 292
Required Name/Value Pairs ... 292
Members NV Pair Child Container Name/Value Pairs ... 292
Output Name/Value Pairs (parent CONtainer) 292
RETUIN COUS . 292
Using AddContactGrpMemMD e S o 293
ReadiNg @ RECOIT .. o 293
Required Name/Value Pairs ... 293

GoldMine API Guide Page 23 of 463

GoldMine™®

Optional Name/Value Pairs ... 294
SPECIAl NV S 294
OULPUL NaME/ValUE Pairs ..o 294
RETUIN COUS . 294
Reading a Contactl or Contact2 ReCOrd 294
Required Name/Value Pairs ... 294
Optional Name/Value Pairs ... 295
SPECIAl NV S 295
OULPUL NaME/ValUE Pairs ..o 295
RETUIN COUS . 295
Returning Alerts Attached to a Contact Record 295
Required Name/Value Pairs ... 295
OULPUL NaME/ValUE Pairs ..o 296
RETUIN COUS . 296

At aChing an AlErt L 296
Required Name/Value Pairs ... 296
OULPUL NaME/ValUE Pairs ..o 297
RETUINING Al Al S 297
Required Name/Value Pairs ... 297
OULPUL NaME/ValUE Pairs ..o 297
Required Name/Value Pairs ... 298
OULPUL NaME/ValUE Pairs ..o 298
Returning a User Group Member List 298
Required Name/Value Pairs ... 298
OULPUL NaME/ValUE Pairs ..o 298
Returning Group Memberships for a Specified User 298
Required Name/Value Pairo 298
OULPUL NaME/ValUE Pairs ..o 299
SaVING @ USBr GrOUD o 299
Required Name/Value Pairs ... 299
OULPUL NaME/ValUE Pair . 299
Retrieving the Names of User GroUDS o 299
Required Name/Value Pairs ... 299
Return Name/Value Pairs . .. o 299

E XMl 300
Evaluating an Xbase Expression on a Contact Record ... 300
NAME/VAlUE Pairs ... 300
RETUIN ValUBS 301

BN CrY P ING TOXt 301
Required Name/Value Pairs ... 301
Decrypting ENCoded TeXt .. . o 302
Required Name/Value Pairs ... 302
Returned Name/Value Pairs ... o 302
Retrieving the Default Contact Automated Process 302
Deleting Calendar HemMS . o 302
Deleting History IHemMS o 303
Required Name/Value Pairs ... 303
RETUIN ValUBS 303
Handling GoldMine SeCUINItY .. . 304
Creating @ New GoldMine LOGin 304
NAME/VAlUE Pairs .. 304
RETUIN ValUBS 304
Reading a GoldMiNe LOin 304

GoldMine API Guide Page 24 of 463

GoldMine™®

OULPUL NaME/ValUE Pairs ..o 304
RETUIN ValUBS 305
REtMIEVING SECUNITY ACCESS . 305
Retrieving Field-Level ACCess Rights .. . 307
Required Name/Value Pairs ... 307
Example NV Container Returned from FieldAccessRights 307
Retrieving Visible Flelds ... 307
Checking for Record CUrtaining 308
Required Name/Value Pairs ... 308
OULPUL NaME/ValUE Pailr . 308
NAME/VAlUE Pairs .. 308
Return Name/Value Pairs . .. o 309
REMOVING @ REMOTE LiCENSE .. . 309
NAME/VAlUE Pairs .. 309
Return Name/Value Pairs . .. o 309
E-mail Name/Value FUNCHIONS . 310
Reading @ Mail M eSSage ... oo 310
Required Name/Value Pairs ... 310
Optional Name/Value Pairs ... 310
READMAIL Output Name/Value Pairs ... 310
Queuing a Message for DeliVErY 313
QueueMail Optional NV Pairs ... o 313
Return Name/Value Pairs . . o 314
Required Name/Value Pairs ... 315
Optional Name/Value Pairs ... 315
Optional Name/Value Pairs ... 315
RETUIN COUS . 316
DElEtiNg @ MBS S ..o 316
Required Name/Value Pairs ... 316
Filing @ Message iN HiStOry .. o 316
Required Name/Value Pairs ... 317
Optional Name/Value Pairs 317
RETUIN COUS . 317
Preparing the NV Container for a New Mail MESSage 317
Required Name/Value Pairs ... 317
Optional Name/Value Pairs ... 318
Return Name/Value Pairs . .. o 318
Preparing the NV Container to Reply to a Mail MeSSage 318
Required Name/Value Pairs ... 318
Optional Name/Value Pairs ... 318
Return Name/Value Pairs . .. o 319
Preparing an NV Container to Forward a Mail MeSSage ... 319
Required Name/Value Pairs ... 319
Optional Name/Value Pairs ... 319
Return Name/Value Pairs . .. o 320
Adding an E-mail Center FOlder .. o 320
NAME/VAlUE Pairs .. 320
Deleting an E-Mail Center FOlder ... o 320
NAME/VAlUE Pairs ... 320
Obtaining a List of E-Mail Center Folders 320
Return Name/Value Pairs . .. o 320
Return Name/Value Pairs . . o 321
Accessing E-mail Templates ... o 321

GoldMine API Guide Page 25 of 463

GoldMine™®

Optional Name/Value Pairs ... 321
Return Name/Value Pairs . .. 321
Retrieving E-mail Account Information ... 322
Return Name/Value Pairs . .. 322
Retrieving a List of Messages Waiting Online 323
Required Name/Value Pairs ... 323
Return Name/Value Pairs . .. 324
RETUIN ValUBS 325
RETMIEVING M OSSO . 325
Required Name/Value Pairs ... 325
Return Name/Value Pairs . .. o 325
RETUIN ValUBS 326
Deleting Onlineg E-mail MSSageS o 326
Required Name/Value Pairs ... 326
Return Name/Value Pairs .. . 326
RETUIN ValUBS 327
Saving a Manual List Of ReCipieNnts 327
Retrieving @ Manual List of ReCipients 327
Managing Internet E-mail Preferences 327
Optional input (SetEmailPrefs) and Output (GetEmailPrefs) Name/Value Pairs 328
Profiles child containers have the following NV Pairs. 331
Required Name/Value Pairs ... 333
Special Name/Value Pairs ... oo 333
OULPUL NaME/ValUE Pairs ..o 333
N O S 333
Manipulating User-Defined Fields and VieWs 333
Reading All Fleld ViEWS 334
OULPUL NaME/ValUE Pairs ..o 334
VIEW Name/ValUe Pairso 334
Field Name/Value Pairs ..o 335
GetContactViews RetUrn Values 336
Deleting @ CoNtact ViEW ..o 336
DeleteContactViews RetUrn Values 336
Creating or Modifying a Contact VieW ... 336
INPUE NAME/V AU Pails .. 337
Field Name/Value Pairs ..o 337
WriteContactView oUtpUt NV Pairs .o 338
WriteContactView RetUrn ValUes 339
Reading CUStOmM Flelas ... o 339
ReadCustomFields inpuUt NV Pairs ... 339
Field NV Pair CoNtainer o 339
ReadCustomfields Return Values 340
Modifying the Structure of Custom Fields 340
EditCustomField INpuUt NV Pairs ... 340
EditCustomField RetUrn ValUes 340
Reading Calendar PreferenCes 341
READCALENDARPREFS INpUt NV Pairs ..o 341
READCALENDARPREFS OUTPUT NV Pairs ..o 341
READCALENDARPREFS RETURN VALUES .o 348
Modifying Calendar PreferenCes 348
WRITECALENDARPREFS INpUL NV Pairs . .o 348
WRITECALENDARPREFS OUTPUT NV Pairs ... 349
WRITECALENDARPREFS RETURN VALUES . 355

GoldMine API Guide Page 26 of 463

GoldMine™®

Reading Personal PreferenCes ... oo o 355
READPERSONALPREFS INpUt NV Pairs ... 355
READPERSONALPREFS OUTPUT NV Pairs ... 355
READPERSONALPREFS RETURN CODES ... 356

Updating Personal PreferenCes 356
WRITEPERSONALPREFS INpUt NV Pairs oo 356
WRITEPERSONALPREFS OUTPUT NV Pairs ..., 356
WRITEPERSONALPREFS RETURN CODES ... 356

Reading Record PreferenCes ... o 357
READRECORDPREFS INpUt NV Pairs .o 357
READRECORDPREFS OUTPUT NV Pairs ... 357
READRECORDPREFS RETURN CODES 358

Updating Record PreferenCes o 358
WRITERECORDPREFS INpUt NV Pairs ..o 358
WRITERECORDPREFS RETURN CODES 359

Reading Schedule PreferenCes 359
READSCHEDULEPREFS INpUt NV Pairs oo 359
READSCHEDULEPREFS OUTPUT NV Pairs ... o 359
READSCHEDULEPREFS RETURN CODES ... o 360

Updating Schedule Preferences 360
WRITESCHEDULEPREFS Input NV Pairs ... o 360
WRITESCHEDULEPREFS RETURN CODES ... 360

Reading Alarm PreferenCes .. 361
READALARMPREFS INpUL NV Pairs .o 361
READALARMPREFS OUTPUT NV Pairs ..o 361
READALARMPREFS RETURN CODES o 361

Updating Alarm PreferenCes ... o 362
WRITEALARMPREFS Input NV Pairs oo, 362
WRITEALARMPREFS RETURN CODES ... 362

Reading LOOKUD PreferenCes ... oo 362
READLOOKUPPREFS INpUt NV Pairs ..o 362
READLOOKUPPREFS OUTPUT NV Pairs ..o 363
READLOOKUPPREFS RETURN CODES ... o 363

Updating Alarm PreferenCes ... o 363
WRITELOOKUPPREFS Input NV Pairs ..o 363
WRITELOOKUPPREFS RetUIrn Codes e 364

Reading Pager PreferenCes .. . o 364
READPAGERPREFS InpuUt NV Pairs ..o 364
READPAGERPREFS OUTPUT NV Pairs ..o 364
READPAGERPREFS RetUrn Codeso 365

Updating Pager PreferenCes 365
WRITEPAGERPREFS INpuUt NV Pairs ..o, 365
WRITEPAGERPREFS RetUIN COoUeS ... 365

Reading Miscellaneous PreferenCes o 366
READMISCPREFS INpUt NV Dairs .o 366
READMISCPREFS OUTPUT NV Pairs oo 366
READMISCPREFS RetUIN COUeS .. 366

Updating Miscellaneous PreferenCes 366
WRITEMISCPREFS InpuUt NV Pairs .o 367
WRITEMISCPREFS RetUrn Codes ... o o 367

Reading the Database Engine Type (7.0 or higher) 367
GETDBENGINETYPE RetUrn CoUes .. . i 367

Reading a List of GoldMine User GroUPS o 368

GoldMine API Guide Page 27 of 463

GoldMine™®

GETGMUSERGROUPS OUTPUL NV Pairs ..o 368
GETGMUSERGROUPS RetUrn COoUeS ... 368
Creating or Updating GoldMine User GrOUPS 368
WRITEGMUSERGROUP INpUt NV Pairs ..o, 368
WRITEGMUSERGROUP Return CoAeS 369
Adding a GoldMINE USErt0 @ GrOUD ... 369
ADDGMGROUPUSER INPpUE NV Pairs .o 369
ADDGMGROUPUSER RetUIrN COOBS ... o 369
Removing a GoldMine User from @ GroUD ... 370
REMOVEGMGROUPUSER INpUt NV Pairs ... 370
REMOVEGMGROUPUSER RetUrn COUS ... o 370
Creating or Updating an Opportunity or Project 370
WRITEOPPROJ INPUL NV Pairs .o 370
WRITEOPPROJ REtUIN COU S . o 371
Working with GoldMine PIUg-iNs 373
OV IV W 373
Using ActiveX PlUg-in SUP DOt L. 373
Using HTIMIL PIUg-in SUPDOIt o 374
PIUG-IN DESCriptiON File 374
HTML Plug-in Description File ... 374
ActiveX Plug-in Description File 376
Security and PlUg-in DireCtOrieS ... 378
B U Y 378
Adding a Local PIUg-in DireCtOry ... 379
SaAMIPIE PlIUG-INS 379
B BN 379
EX B Nal M 380
BMNIPIUS A 380
USiNg Xbase EXPreSSiONS 384
OV IV W 384
FUNCEION Parameter Ty DO oo 384
Conditionals, Operators, and Logical Evaluators 385
CoNditioNalS .o 385
O A O S 387
Logical EValUatOrS o 388
XDaSE FUNCE ONS 388
SErING FUNCHIONS 389
Date FUNCHIONS 392
NUMEIC FUNCEIONS 394
Miscellaneous FUNCHIONS . . 396
Xbase Database StrUuCtUNeS 398
OV IV W 398
CA L DB 399
CA L TN OXOS . 399

CA L StrUCRUNE 399
RO Y DO 400
CON T ACT L DB o 401
CONT ACT L INUOXES .. 401

CONT ACT L RelatiONS . 401

CONT ACT L SErUCTUN e 402
ACCOUNT NUMIO BT 403
INEerNal S atUS 403
CON T ACT 2 DB o 404

GoldMine API Guide Page 28 of 463

GoldMine™®

CON T ACT 2 TN X . 404
CONT ACT 2 SErUCTUN e 404
CONT GRS DB o 405
CONT G RPS INUEXOS ... 405
CONTGRPS Structure (header reCOrdS)o e 405
Header INfO oo 406
CONTGRPS Structure (Member reCOIdS) o 406
CONTHIST DB . 406
CONTHIST INAOXOS .o 406
CONTHIST StrUCTUNe 406
RECOIA Ty PO 407
CON T SUP . DB . 408
CON T SU P P INAOXOS ... 408
CON T SU P SErUCTUN e 408
RECOIA Ty PO 409
INFOMINE. DB 410
INFOMINE INGOXOS .. 410
INFOMINE StruCtUre 410
LOOKU P DB . 411
LOOKU P INGOXES ... 411
LOOKUP StrUCTUNe 411

M AL B O X DB . 411
MAILB O X INGEXOS ... 411

M AL B O X StrUCTUN e 412
Bl S 412
FOld T 412
OPIMIG R DB 413
OPMGR StrUCTUN e 413
RECOIA Ty PO o 414
PERPHONE. DBF . 414
PERPHONE INGOXES ..o 414
PERPHONE StrUCtUIe 415
RESITEM S DB o 415
RESITEM S IO OXES .. 415
RESITEMS StrUCTUNe 415
SPRILES . DB . 416
PR LES IO X o 416
SPFILES StrUCTUNe 416
SQL Database S rUCTUIeS 417
OV IV W 417
CAL Tl 417
CA L TN OXOS . 418

CA L StrUCRUNE 418
RECOIA Ty PO .o 419
CONT ACT L bl 419
CONT ACT L INUOXES .. 419
CONT ACT L RelatiONS . 420
CONT ACT L SErUCTUN e 420
ACCOUNT NUM T e 422
INEerNal S At US 423
CONT ACT 2 bl 423
CON T ACT 2 TN OX . 423
CONT ACT 2 SErUCTUN e 423

GoldMine API Guide Page 29 of 463

GoldMine™®

CONT GRPS Table .o 424
CONT G RPS INUEXOS ... 424
CONTGRPS Structure (header reCOrdS)o e 424
Header INfO oo 425
CONTGRPS Structure (Member reCOIdS) o 425

CONTHIST Table 425
CONTHIST INAOXOS .o 425
CONTHIST StrUCTUNe 426
RECOIA Ty PO 427

CONT SUPP Table .o 427
CON T SU P P INAOXOS ... 427
CON T SU PP StrUCTUNe 427
RECOIA Ty PO 428

INFOMINE Table o 429
INFOMINE INGOXOS .. 429
INFOMINE StruCtUre 429

LOOKU P bl .o 430
LOOKU P INGOXES ... 430
LOOKUP StrUCTUNe 430

M AL BOX Table o 430
MAILB O X INGEXOS ... 430
M AL B O X StrUCTUN e 431
Bl S 431
FOld T 431

OPIMIGR Tabl o 432
OP M G R TN XS .. 432
OPMGR StrUCTUN e 432
RECOIA Ty PO o 433

PERPHONE Table o 433
PERPHONE INGOXES ..o 433
PERPHONE StrUCtUIe 434

RESITEM S Tl o 434
RESITEM S IO OXES .. 434
RESITEMS StrUCTUNe 434

SPRILES Table 434
PR LES IO X o 435
SPFILES StrUCTUNe 435

Appendix: Code EXamPles 436
OV IV W 436
GMIXS3 2. DLL Code EXamMPIES ..o 436

G EXAMIPIOS 436

FUN G ON ROt Oty DS o 436
Lo BING N 438
Creating a Contact with Business Logic/Enumerating a Name Value Container/DataStream 439
LOW-LeVEl WOk ArCa . 441
ViSUAl BasiC EXAMIPIOS . 442
FUN G ON ROt Oty DS o 442
Lo BING N 445
Creating @ CoNtaCt . 445
Enumerating @ Container .. 446
DataS A 446
LOW-LeVEl W OTK AN A . 447
Dl EXAMPIOS 448

GoldMine API Guide Page 30 of 463

GoldMine™®

FUN G ON ROt Oty DS o 449
Creating @ CoNtaCt . . 452
Enumerating @ Container .. 452
DataS e aM 453
LOW-LeVEl WOrK ArCa . 453

RS OUI TS 455
Additional DoCUMENTatION L. . 455
CoNtaCt US 455
SUPIPOIE SO 455
Contact INfOrmMatioN o 455
IO 456

GoldMine API Guide Page 31 of 463

GoldMine™

Introduction to Integrating with GoldMine

Introduction

Integrating with GoldMine is designed as a comprehensive resource for developers to integrate GoldMine with
their applications. For best results, we recommend that you become an experienced GoldMine user before
taking on an integration project. For example, understanding what types of data are better stored as a detail
record instead of a history record will ensure greater success for your project.

In addition to gaining experience with GoldMine, you should be familiar with the development environment you
plan to use. This manual may not provide programming examples for your preferred development environment.
With a good working knowledge of your chosen programming language, you could learn from another
language’s examples.

This manual provides information to:

m Use one of several methods to integrate with GoldMine.
= Work with either Xbase or SQL database structures to integrate with GoldMine up to version 6.7.
= Work with either Firebird or MSSQL database structures to integrate with GoldMine version 7.0.

m Access a variety of support resources to get help from other developers and GoldMine technicians.

IMPORTANT:

As of GoldMine 2018.2, and the introduction of forced password complexity, any integration that passes the
GoldMine password via the GoldMine APl must provide it "as-is." For previous versions (2018.1 and lower), the
password had to be provided in UPPERCASE. This is not the case with GoldMine 2018.2 onward.

For example, with the user password of Access!123: In versions of GoldMine 2018.1 and lower, it was necessary
to enter it as ACCESS!123. With GoldMine 2018.2 onward, it is necessary to pass the password as-is (i.e.,
Access!123).

Methods of Integrating with GoldMine

There are several methods for integrating with GoldMine:

O Dynamic Data Exchange (DDE)
O GMXS32.DLL

O GMXMLAPI.DLL

Page 32 of 463

GoldMine ™

O GoldMine COM Server
O GoldMine Plug-ins (GoldMine 7.0 or higher)
O Database engine

Integrating via Dynamic Data Exchange

This method is supported by many programming environments, such as C++, Delphi, Visual Basic, VBA (Office 97—
Access, Word, and Excel), WordBasic, FoxPro, and many others. DDE commands can be sent to GoldMine to make
GoldMine perform a large variety of functions.

Integrating via GMXS32.DLL

You can also integrate with GoldMine using the GMXS32.DLL (The X represents the main version of GoldMine
being used (i.e., 6 for GoldMine 6.0). Using the DLL method, you can access or maintain your GoldMine data
without running GoldMine.

This DLL has enough functions for data access and synchronization maintenance to allow nearly full control of all
databases and their fields. High-level “business logic” functions streamline and simplify performing common tasks,
such as adding a contact, scheduling an activity, and so forth. GMXS32.DLL is placed into your Windows\System
directory, and is updated automatically when you update GoldMine. This DLL does not require a separate license
to use.

NOTE: This method of integration is highly recommended as it automates the task of adhering to GoldMine
business logic rules, security, and synchronization.

Integrating via the GoldMine XML APl (GMXMLAPI.DLL)

Another integration method, introduced in GoldMine 6.7, is the GoldMine XML API. This DLL allows the
programmer to pass the GoldMine APl an XML document to integrate with GoldMine. This APl is another access
method to the high-level business logic methods and the lower level data functions. The XML APl is a COM object
that can easily be used in various programming languages, including in the development of web applications.
Using the versatile XML standard, integrating with GoldMine has never been easier.

Interacting with GoldMine via the GoldMine COM Server

With the release of GoldMine 6.7, a new method of interacting with a running GoldMine was introduced, the
user-interface APl. GoldMine is now a COM server. This method of interaction with GoldMine replaces the DDE
functionality. DDE is still present in GoldMine for legacy integrations, but the new improved COM server capability
adds a wealth of functionality that enables the programmer to control the GoldMine user-interface like never
before. In addition, accessing GoldMine as a COM server is much easier than DDE in a .Net programming
environment.

Integrating via GoldMine Plug-ins

GoldMine 7.0 contains a new mechanism to support ActiveX controls and HTML based integrations as if they were
a part of GoldMine. These structures allow for rapid integration, ease of use, and security.

Page 33 of 463

GoldMine ™

Integrating via a Database Engine

The most difficult method of integration involves writing to GoldMine databases via a database engine. Using this
method also involves some work with DLL or DDE to keep GoldMine synchronization information intact. We do
not recommend using this method because there is a higher likelihood of incorrect implementation, which could

damage GoldMine data.

TIP: For best results, do not integrate via a database engine.

Comparing Integration Methods

The following table summarizes the integration methods and whether they require loading the Borland Database
Engine, if GoldMine needs to be running, and if they require a GoldMine seat. Use this table to help determine the
integration methods that best suits your application needs.

Requires

Requires

Uses
APl Method BDE to be GoldMine to S Best used for
seat?
loaded? be running?
GMXS32.DLL Yes No No Perhans hi'ghest speed, broad range of
functionality
Minimal coding, slow speed, less
functionality, only way in older
DDE N Y N
° es © GoldMine’s of interfacing with GoldMine
user interface
GoldMine COM Server 'Used for interacting wi?h GoldMine user
) interface and also provides lower level
(GoldMine.Ul, . .
. . No Yes No functions. DDE replacement with much
GoldMine.RecObj, & .
) enhanced user interface control.
GoldMine.SysEvents . . .
Requires GoldMine to be running.
Broader range of functionality with
GoldMine COM Server business logic ‘and lower level functions.
)) No Yes No Does not require BDE to be loaded.
(GoldMine.GoldMineData)))
Alleviates SharedMemLocation errors
commonly found with the GMXS32.DLL.
Provides same functionality as the
GMXMLAPI.DLL Yes No Yes GMXS32.DLL, but provides easier XML
interface

Page 34 of 463

GoldMine ™

Requires Requires Uses
APl Method BDE to be GoldMine to Best used for
. seat?
loaded? be running?

Provides a platform for developing
GoldMine applications. Supports
GoldMine Plug-ins No Yes No integrations developed using ActiveX
Controls or HTML. Very powerful when
used in conjunction with GoldMine APIs.

NOT RECOMMENDED!!
Does not respect GoldMine security,
does not automatically log
synchronization information, does not
No No No have functionality to generate
AccountNo’s or Recid’s, does not return
encrypted GoldMine data in a readable
format, requires intimate knowledge of
GoldMine data rules.

Direct Access through data
engine (ex. ADO)

NOTE: As of GoldMine Version 7.0, the Borland Database Engine is no longer used. References to BDE in
the following table apply to integrations developed in GoldMine Version 6.7 or lower.

NOTE: As of GoldMine 2018.2, and the introduction of forced password complexity, GoldMine passwords
must now be passed in proper case or "as-is" in the code when integrating with GoldMine. Any references
that the user’s password must be in UPPERCASE or case insensitive only apply to integrations developed in
GoldMine versions 2018.1 or lower.

Resources and Support

In addition to this manual, GoldMine provides a variety of free resources to support developers, including:

O API/Programming topics on the GoldMine Forum
O Open Developer Community

Technology Partner Program
For specific questions and additional information, go to the GoldMine Community Forum at:

https://www.goldmine.com/community/

Experienced developers can offer advice or programming help. The newsgroup also contains advanced or hard-to-
find information. This newsgroup is a self-serve resource and is not monitored or contributed to by GoldMine.

Open Developer Community

This online self-service resource provides technical documents, code samples, development tools, the most up-to-
date documentation, and a searchable knowledgebase containing integration information.

Page 35 of 463

https://www.goldmine.com/community/

GoldMine ™

Technology Partner Program

The Certified Technology Partner Program is intended for developers who wish to create and market products
that integrate with our GoldMine and Ivanti products. These partners seek a close development, marketing, and
sales relationship with GoldMine Inc.

Members of the Certified Technology Partner Program pay an annual fee and receive additional benefits over the
Open Developer Community, including:

O Certification of your integrated solution (additional fees may apply for multiple certifications)
O Use of GoldMine and Ivanti Technology Partner logos to promote your product

O Listing on the Ivanti.com website

O Right to participate in beta programs

O Not-for-resale (NFR) licenses of GoldMine and Ivanti products

O Discounted product training

O Free and fee-based marketing programs

Integration Tools
The following tools can help when integrating with GoldMine:

m DDERequestor: A Windows-based freeware that allows you to send DDE commands to GoldMine in real-time.
This utility can help to diagnose problems you may have when using DDE to integrate with GoldMine.

m XMLSPY: A development environment for modeling, editing, debugging, and transforming all XML technologies,
then automatically generating runtime code in multiple programming languages.

NOTE: Technical support for these programs is not available from GoldMine.

Page 36 of 463

GoldMine™

Working with Dynamic Data Exchange
(DDE)

Overview

Dynamic Data Exchange (DDE) is the term for the Windows functionality that allows GoldMine to exchange
commands and information with other applications. Using DDE, one application, referred to as the client
application, can request information from or send commands to another application—referred to as the server
application. The server application then processes the request from the client application. In response to a
client’s request, the server performs a task such as updating or returning data housed by the server application

GoldMine is designed to act as both a DDE client as well as a DDE server. DDE topics included in this chapter
describe using GoldMine as a DDE server. These topics are provided for programmers who wish to interface
their programs with GoldMine. If you are not familiar with working with DDE, this technical section may be of
limited value to you.

Using DDE in GoldMine

GoldMine can perform a variety of tasks using DDE commands, including:

O Merging data into a document

O Updating database information

O Querying for data

O Ildentifying telephone numbers automatically

O Linking contact records to an accounting application
O Inserting incoming e-mail

Merging Data into a Document

GoldMine uses DDE to communicate with your word processor. When you perform a merge, GoldMine uses
DDE to send contact information to the word processor of the selected document template. The word processor
receives this information from GoldMine, places the information from the contact record in appropriate places
in the document, and then prints the document.

Page 37 of 463

GoldMine ™

GoldMine acts as a DDE client and a DDE server during the document merging process. First, GoldMine must send
a DDE request to the word processor to request that the word processor open a particular document template.
Once the document is open, the word processor will recognize that the document contains DDE linkage fields and
will ask GoldMine for data to place in these fields. GoldMine, now acting as a DDE server, will return this
information to the word processor, and the word processor will update its display with the information. Finally,
the document can be printed.

This type of merging can also be performed with other Windows applications, such as spreadsheets (for example,
Microsoft Excel) or database programs (for example, Microsoft Access).

Updating Database Information

DDE can also be used to update GoldMine databases from another application. For example, a magnetic card
reader application that supports DDE can be interfaced with GoldMine in such a way that new contact records are
automatically entered into the contact database. Therefore, whenever a trade show attendee’s badge is swiped
through the reader, GoldMine is automatically updated.

Querying for Data

The DDE macros and other functions can query the GoldMine tables and return the contents to the caller. The
[DataStream] command is a high-performance feature that can return large blocks of data very quickly. Retrieving
data from large databases may take longer, causing your DDE request to time-out.

Identifying Telephone Numbers Automatically

GoldMine DDE functionality can be used with CallerID or ANI equipment to automatically identify incoming
telephone calls. GoldMine can display the contact record that matches the telephone number of the incoming call,
saving the user time in looking up the caller.

Linking Contact Records to an Accounting Application

DDE applications can be created to automatically transfer prospect information to an accounting application when
the prospect decides to purchase, saving data entry time and reducing errors.

Inserting Incoming E-mail

DDE can be used to insert incoming e-mail into GoldMine, allowing GoldMine users to remain linked with their
external e-mail systems.

Page 38 of 463

GoldMine ™

Linking GoldMine to MS Word for Windows

The GoldMine DDE interface works with any Windows application that supports DDE; however, every application
uses a unique format for executing DDE calls and for responding to DDE requests. Explaining all of the various
methods to use DDE is beyond the scope of this manual. Instead, this document explores the use of DDE between
GoldMine and another popular Windows application, Word 97 for Windows. The examples presented should
provide a framework for creating DDE links to other applications.

NOTE: For details on installing the GoldMine DDE link to Word for Windows, see related material at:
http://www.goldmine.com.

Entering Application, Topic, and Item Names

To establish a DDE conversation with an application that supports DDE, you must know the application’s service
name. The GoldMine service name is GoldMine.

GoldMine supports two service topics:

O SYSTEM: Queries a DDE server on supported data formats—for more information, see your Microsoft DDE
documentation.

O DATA: Accesses all GoldMine DDE functions.

Specific GoldMine DDE functions are accessed by passing a DDE item string to GoldMine. The item can be a macro,
a command, or an expression.

DDE Parameters, Functions, Expressions, Macros

Service Topic Item
GOLDMINE SYSTEM <item>
GOLDMINE DATA &<macro>
GOLDMINE DATA <expression>
GOLDMINE DATA [<function>]

GoldMine DDE functions can process a variety of tasks, including database query and manipulation. Commands
are always passed surrounded by brackets. DDE functions are listed in Working with DDE Functions.

GoldMine can evaluate Xbase expressions by passing the expression as a DDE function call. For example, the
expression CONTACT1->CONTACT will return the contact name of the current contact record displayed in the
currently active contact record.

When a DDE item begins with an ampersand (&), GoldMine assumes that this item is a macro, and performs a
lookup into an internal macro expansion table. If a match is found, GoldMine evaluates the macro and returns the
result.

TIP: For a list of GoldMine DDE macros and their functions, see DDE Macros.

Page 39 of 463

http://www.goldmine.com/goldmine-incredible-support/

GoldMine ™

Establishing a DDE Conversation

The following example illustrates using Visual Basic for Applications (VBA) to establish a DDE conversation.

ch = DDEInitiate("GOLDMINE", "DATA")

The DDEINITIATE function is used to establish the DDE link. The first parameter is the GoldMine service name; the
second parameter is the service topic on which this DDE conversation is based. If the call is successful, the
function returns a nonzero channel number to be used for all subsequent DDE requests to that channel. This
channel number should not be confused with the work area pointer that GoldMine uses for many DDE functions.

If the DDEINITIATE function returns 0, the conversation could not be established.

Note that the examples within this chapter are written in Visual Basic for Applications, and the DDEInitiate and
DDERequest functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest
method in a textbox. The following example illustrates how the DDE conversation is initiated and requests are
made in Visual Basic 6.0. The code can be written into a form that never gets displayed (only loaded) and be
included in any of your VB projects.

To Initiate a DDE Conversation

Public Function DDEInitiate() As Integer
on Error GoTo Err_DDE

with txtGMDDE
.LinkmMmode = vbLinkNone

.LinkTopic = "GoldMine|Data"
.LinkMode = vbLinkManual
End with

DDEInitiate = 1
Exit Function
Err_DDE:

If Err = 282 Then
DDEInitiate = 282

Else

Err.Description = "DDE Error:" & Err & " :" & Err.Description
DDEInitiate = 0

End If

End Function

Page 40 of 463

GoldMine ™

To Request Data
Public Function DDERequest(sExpr As String) As String
with txtGMDDE
.LinkItem = sExpr
.LinkRequest

DDERequest = .Text
End with

End Function

With these functions declared in your project, you may then call them where needed in your code.

Working with DDE Functions

GoldMine supports a variety of DDE functions, which are described in this section. Each function description
includes calling format, description of operation, and an example of a VBA subroutine using the function.

GoldMine DDE functions allow access to other files or functions. Three categories of DDE functions provide access
to the following:
O Data files

O Records
O Specialized functions

Depending on the type of application involved, you would typically select one of these three access methods;
however, you can mix all three access methods within the same application. The function categories are described
on the following pages.

Accessing Data Files

GoldMine provides a complete set of DDE functions that allow low-level access to the data files. These functions
allow you to:

O Open particular data files,

O Query the values of the fields in the records in the data files,
O Add records to the files, and

O Replace data in the records.

This suite of functions is usually used for database applications that need varied access to GoldMine data.

Page 41 of 463

GoldMine ™

Adding an Empty Record

Syntax [APPEND(<work area>)]

The Append function is used to add an empty record to a GoldMine data file. Before using Append, you must open
a data file using the Open function. After executing the Append function, the record pointer is positioned at the
new empty record, and the record is locked and ready to accept field replacements.

When a CONTACT1 record is appended, GoldMine automatically propagates the new record with the appropriate
ACCOUNTNO and CREATEBY values. For all other records, you must replace the ACCOUNTNO field with the value
from the CONTACT1 record with which the new record is to be linked. For records that require remote
synchronization initialization, GoldMine will automatically propagate the value of the RECID field when these
records are appended.

Parameters

The Append function accepts one parameter, the work area handle of the file to Append. The work area handle is
returned by the Open file when the file is opened.

Return Value

O Xbase: The Append function returns the record number of the new record, or 0 if the file could not be
locked.

O SQL: The Append function returns the record ID.

Example
The following example demonstrates how to add a contact record in GoldMine via DDE.

Sub Main()

Dim sQ

Dim swWorkArea As String

Dim 1Channel As Long

Dim sRet As String

sQ = chr(34)

'Open a DDE channel

1channel = DDEInitiate("GoldMine", "Data")

sworkArea = DDERequest(1Channel, "[Open(Contactl)]")
If sworkArea <> "0" Then 'Database was opened
'Append a new record to Contactl

sRet = DDERequest(1Channel, "[Append(" + sWorkArea + ")]1")
If sRet <> "0" Then 'Record was Appended

StatusBar = "New Record Added"

'RepTlace Company name with "New Record"

sRet = DDERequest(1cChannel, "[Replace(" + sworkArea + "," + sQ(34) +
"Company" + sQ(34) + "," + sQ + "NewRecord" + sQ + ")1™)

If sRet = "1" Then

StatusBar = "Replaced complete"

Else

StatusBar = "Replaced Failed"

End If

'UnTock and Close the record

Page 42 of 463

GoldMine ™

sRet = DDERequest(1Channel, "[Unlock(" + sworkArea + ")]1")
sRet = DDERequest(1Channel, "[Close(" + sWorkArea + ")]")
Else

StatusBar = "Error Opening Contactl"

End 1If

End 1If

'Terminate the DDE Channel
DDETerminate (1Channel)
End Sub

Closing an Opened File

Syntax [CLOSE(<work area>)]

The Close function is used to release a previously OPENed file when processing is complete. When access is
complete, a file must be CLOSEd to release memory used by GoldMine to maintain database work areas.
Parameters
The Close function accepts one parameter—the work area handle of the file to close. The Open file returns the
work area handle when the file is opened.
Return Value
The Close value returns 1 if the function was able to successfully close the work area, 0 if an invalid work area
handle was passed.
Example

See Adding an Empty Record .

Deleting the Current Record

Syntax [Delete(<work area>)]

The Delete function deletes the current record in the specified work area. The record pointer is not advanced to
the next record.

Parameters

The Delete function takes one parameter—the work area value obtained from the Open function.

Example

DDERequest(1Channel, "[Delete(" + sworkArea + ")]1")

Creating a Subset of Records

Syntax [FILTER(<work area>,<expression>)]

The Filter function limits access to data in a GoldMine database by creating a subset of records based on
expression criteria.

Page 43 of 463

GoldMine ™

Parameters
The Filter function takes two parameters. Enclose each parameter in quotation marks (“).

The first parameter is the work area handle of the file that you want to read. The Open function provides this
value when the data file is opened.

The second parameter is a valid Xbase expression.

TIP: To remove the filter from the database, use a Filter function with an empty string, such as
[FILTER(<work area>,"")].

Example

This example will scan the current contact’s history for all activities completed by a specific user. It works by first
setting the Range of history to a specific contact via the AccountNo. Once the range is set, the Filter is applied to
“see” only records for a specific user within that range.

sub Main(Q

Dim T1channel As Long
Dim sRet As String

Dim sworkArea As String
Dim sQ As String

Dim sAccNo As String
Dim sUser As String

Dim bEOF As Boolean

Dim Counter As Integer

'Initialize some variables
Counter = 0
sQ = chr(34)

'Get user 1input

sUser = InputBox("Enter a GoldMine username below.")
'Uppercase and pad the username

sUser = UCase(Left$(suser + " ", 8))

'Start DDE Conversation with GoldMine

1channel = DDEInitiate("GoldMine", "Data'")

'Get the current AccountNo

sAccNo = DDERequest(1Channel, "Contactl->AccountNo")
'Open the ContHist file

sworkArea = DDERequest(1Channel, "[0pen(CONTHIST)]")
'If workArea is valid then do our thing

If sworkArea <> "0" Then

'set the hi/lo range to the AccountNo

sRet = DDERequest(1Channel, "[Range(" + sQ + sWorkArea + sQ + "," + sQ +
SAccNo + sQ + "," 4+ sQ + sSAccNo + sQ + ", 33)1")

'Set the filter to only return matches where user is a match

sRet = DDERequest(1cChannel, "[Filter(" + sQ + sworkArea + sQ + "," + sQ +
"USERID='" + sUser + "'" + sQ + ")]1")

'Go to the Top record
sRet = DDERequest(1Channel, "[Move(" + sQ + sWorkArea + sQ + ", TOP)]'")
'Determine if we have at least one match

Page 44 of 463

GoldMine ™

If sRet <> "1" Then 'no matches

bEOF = True

Else 'We have at least one match

Do

'Increment the counter

Counter = Counter + 1

'Go to the next record

sRet = DDERequest(1Channel, "[Move(" + sQ + sWorkArea + sQ + ", SKIP)]")
'Determine if we have run out of matching records

If sRet <> "1" Then bEOF = True

Loop Until bEOF = True 'Loop until no more matching records

End 1If

'Close WorkArea

sRet = DDERequest(1Channel, "[Close(" + sQ + sworkArea + sQ + ")]1")
'Display results

MsgBox (Str$(Counter) + " history records for this contact have a User =
'"" 4+ sUser + "'™)

End If

'Close DDE channel

DDETerminate (1Channel)

End Sub

Checking for an Xbase or SQL Table

Syntax [IsSQL (<work area>)]

The 1sSQL function returns the table type (Xbase or SQL) that is open in a work area. Using this DDE command, you
can determine the most appropriate method to retrieve information when working with DataStream—see
Returning GoldMine Record Data . For example, when your routine starts, you can open Contactl and Cal, issue an
IsSQL command to determine the GoldDir and CommonDir database types, and then close both work areas. You
can then send the appropriate DataStream calls.

Parameters

The 1sSQL function takes work area as the only parameter.

Return Values

IsSQL returns 1 for an SQL database table, or 0 for an Xbase file.

Moving to a Specified Record

Syntax [MOVE(<work area>,<subfunction>,<scope>)]

The Move function will position the record pointer to a particular record in a data file. Before using Move, you
must open a data file using the Open function.

Parameters

The Move function requires either two or three parameters.

Page 45 of 463

GoldMine ™

The first parameter is the work area handle of the file whose record pointer you want to position. The Open
function provides this value when the data file is opened.

The second parameter is the name of the Move subfunction that you want to perform.

Depending on the subfunction, a third parameter can be required. The following table lists the Move subfunctions
and the requirements for the third parameter:

Valid Move Subfunctions

Subfunction Description 3rd Parameter

TOP Move to first logical record Not required

BOTTOM Move to last logical record Not required

SKIP Skip records Optional, records to skip

GOTO Go to a specific record Record number (Xbase), Record ID (SQL)

SEEK Seek a specific record by key Search key value

SETORDER Select an index Index name

Top Positions the record pointer at the first logical record according to the current index order. For
example, if the data file open in the selected work area is CONTACT1.DBF, and the index order
is set to Company, a call to TOP will result in the record pointer being positioned at a record
with a company name, such as AAA Cleaners.

Bottom Positions the record pointer at the last logical record according to the current index order. For
example, if the data file open in the selected work area is CONTACT1.DBF, and the index order
is set to Company, a call to BOTTOM will result in the record pointer being positioned at a
record with a company name, such as Z-best Bakery.

Moves the record pointer record by record. If SKIP is called without the third parameter, it will
move the record pointer to the next logical record according to the current index order. If SKIP

Skip is called with a string numeric as the third parameter, the record pointer will be moved
forward by the indicated number if the value is positive, or backward if the value is negative.
Negative numbers must be passed in quotation marks, for example “-1”.

Goto Positions the record pointer at the record number (Xbase) or record ID (SQL) specified by a
string numeric passed as the third parameter.

Seek Attempts to locate a record in the data file with an index key that matches the string passed as
the third parameter. Partial key searches are allowed; GoldMine will position the record
pointer at the record with the key that most closely matches the passed value.

Setorder Selects an active index for ordering and seeking the data file. See SQL Database Structures for

the appropriate values and collating sequence for each data file index.

Page 46 of 463

GoldMine ™

TIP: If an invalid index is selected for the data file, none of the MOVE subfunctions will operate
properly.

Return Value

The Move function can return several values.

Move Return Values

Return Description

0 Error occurred

1 Record pointer successfully moved, or index selected

2 Exact match not found, pointer positioned at closest match
3 Record pointer positioned at end-of-file (EOF)

4 Record pointer positioned at beginning-of-file (BOF)

An error can be returned under any of the following conditions:

O Invalid work area handle is passed to the function.

O Invalid subfunction is passed.

O Out-of-range record number is passed.

O Nonnumeric value is passed as a third parameter when a numeric value is expected.

Example

The following example will open Contactl, perform various Move operations, and display the resulting contact
name between Moves.

Note that the example below is written in Visual Basic for Applications, and the DDElInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main(Q)

Dim T1cChannel As Long
Dim sworkArea As String
Dim sRet As String

Dim iX As Integer

Dim sSeekval As String
Dim sQ As String

sQ = chr(34)
1Channel = DDEInitiate("GoldMine", "Data'")
sworkArea = DDERequest(1Channel, "[Open(Contactl)]")

'Goto Top of Database

sRet = DDERequest(1cChannel, "[Move(" + sworkArea + ",Top)]")

MsgBox ("Top: Contact=" + DDERequest(lChannel, "[Read(" + sworkArea + ",
Contact)]™))

'skip forward 1 record

Page 47 of 463

GoldMine ™

sRet = DDERequest(1Channel, "[Move(" + sworkArea + ", SKIP)]")
MsgBox ("SKIP: Contact=" + DDERequest(1Channel, "[Read(" + sworkArea + ",
Contact)]™))

'Skip X record (x=5)

iX =5

sRet = DDERequest(1cChannel, "[Move(" + sworkArea + ",SKIP," + Str(ixX) +
ll)] ll)

MsgBox ("sSkip 5: Contact=" + DDERequest(lChannel, "[Read(" + swWorkArea +
", Contact)]"))

'Goto Bottom of Database

sRet = DDERequest(1channel, "[Move(" + sworkArea + ", Bottom)]'")

MsgBox ("Bottom: Contact=" + DDERequest(lChannel, "[Read(" + sWorkArea +
", Contact)]"))

'Skip back 1 record (Note: the -1 must be enclosed in quotes)

sRet = DDERequest(1Channel, "[Move(" + sworkArea + ", Skip, " + sQ + "-1"
+sQ + "1

MsgBox ("skip -1: Contact=" + DDERequest(lChannel, "[Read(" + swWorkArea +
", Contact)]™))

'Goto Record 10

sRet = DDERequest(1Channel, "[Move(" + sworkArea + ", Goto, 10)]")

MsgBox ("Goto: Contact=" + DDERequest(1Channel, "[Read(" + sworkArea + ",
Contact)]"))

'seek for a Company

sRet = DDERequest(1Channel, "[Move(" + sworkArea + ",SetOrder, 16)]1")
sSeekval = UCase(InputBox("Enter a Company to search for"))

sRet = DDERequest(1Channel, "[Move(" + sworkArea + ",Top)]")

sRet = DDERequest(1Channel, "[Move(" + sworkArea + ", Seek, " + sQ +
sSeekval + sQ + ")1™)

MsgBox ("Seek: Contact=" + DDERequest(1Channel, "[Read(" + sworkArea + ",
Contact)]™))

ret = DDERequest(1Channel, "[Close(" + sWorkArea + ")]")
DDETerminate (1Channel)
End Sub

Opening a Data File

Syntax

[OPEN(<tablename>)]

The Open function is used to open a GoldMine data file for processing by another application. This function must
be called before calling any GoldMine DDE functions that work with an individual data file. It is not necessary to
use this function when calling the RecordObj function, because this function opens the necessary data files
automatically.

Page 48 of 463

GoldMine ™

Parameters

The Open function takes one parameter—the name of the file to open. The following values are valid for this

parameter:

Open Valid Parameters

File Description

CAL Calendar activities file
CONTACT1 Primary contact information file
CONTACT2 Primary contact information file
CONTGRPS Groups file

CONTHIST History records file

CONTSUPP Supplementary records file
INFOMINE InfoCenter file

LOOKUP Lookup file

MAILBOX E-mail Center mailbox file
OPMGR Opportunity Manager file
PERPHONE Personal Rolodex file
RESOURCE Resources file

SPFILES Contact files directory

Return Value

The Open function returns an integer value representing the handle to the file’s work area. This value is required
for all subsequent access to the file. If the file could not be opened, or an invalid parameter is passed, the function

will
return O.

Example

See Adding an Empty Record .

Limiting GoldMine Search Range

Syntax [RANGE(<work area>,<minimum>,<maximum>,<tag>)]

The Range function activates the index in a table and sets a range of values to limit the scope of data that

GoldMine will search.

Page 49 of 463

GoldMine ™

Parameters
The Range function requires four parameters.

The first parameter is the work area handle of the file that you want to read. The Open function provides this
value when the data file is opened.

The second parameter is the minimum value of the range. Enclose this parameter in quotation marks (“).
The third value is the maximum value of the range. Enclose this parameter in quotation marks (“).

The fourth value is the tag that corresponds to the index file. For details about tags, see SQL Database Structures.

Example

See Creating a Subset of Records

Reading a Field Value

Syntax [READ(<work area>,<field>)]

The Read function is used to query a data file for the value of a field. Before using Read, you must open a data file
using the Open function. In addition, you will probably want to position the record pointer to the record you want
to query by using the Move function.

Parameters

The Read function requires two parameters.

The first parameter is the work area handle of the file that you want to read. The Open function provides this
value when the data file is opened.

The second parameter is the name of the field in the data file whose value you want to query. You will normally
pass only a single field name, such as CONTACT as the second parameter. However, if you pass a field expression,
such as “COMPANY + CONTACT” GoldMine will attempt to evaluate the expression and return the value of the
expression. When an expression is passed as the second parameter, the expression must be surrounded by
quotation marks.

Return Value

The Read function returns a character string containing the value in the specified field, or the value of the
specified expression. If an error occurs, the Read function returns a null string. The error could be caused by an
invalid work area handle, an invalid field being passed, or an expression that GoldMine could not evaluate.

Example

See Moving to a Specified Record

Checking the Current Record Number or Record ID

Syntax [RECNO(<work area>)]

O Xbase: RecNo function is used to determine current record number position.
O SQL: RecNo function is used to determine the record ID.

Page 50 of 463

GoldMine ™

Parameters

The RecNo function accepts one parameter—the work area handle of the file. The work area handle is returned by
the Open file when the file is opened.

Return Value

The RecNo function returns the current record number position, 0 if an invalid work area handle was passed.

Example
The following example will get the current Contactl RecNo and display it in the GoldMine status bar.

Note that the example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()

Dim 1Channel As Long
Dim sworkArea As String
Dim sRet As String

Dim sRecNo As String
Dim sQ As String

sQ = chr(34)

1channel = DDEInitiate("GoldMine", "data')

swWorkArea = DDERequest(1Channel, "[Open(Contactl)]")

sRecNo = DDERequest(1cChannel, "[RecNo(" + sworkArea + ")]1")

sRet = DDERequest(1Channel, "[Close(" + sWorkArea + ")]1")

sRet = DDERequest(1Channel, "[StatusMsg(" + sQ + "RecNo=" + sRecNo + sQ +
"1

MsgBox ("GoldMine's status bar should now display the RecNo ")

End Sub

Changing a Field Value

Syntax [REPLACE(<work area>,<field>,<value>,<append>)]

The Replace function is used to change the value in a particular field in one GoldMine data file. Before using
Replace, you must open a data file using the Open function. In addition, you will probably want to position the
record pointer to the record you want to change either by using the Move function, or by adding a new record
with the Append function.

After executing the Replace function, GoldMine will update the specified field with the new value, and update the
appropriate remote synchronization data structures to indicate that the field was changed.

In a network environment, GoldMine automatically locks the record before performing the replacement. The
record is not automatically unlocked, allowing for fast multiple field replacements. The record is automatically
unlocked when a Close, Move, or Unlock command is issued on the work area.

Parameters

The Replace function requires three parameters and has an optional fourth parameter.

Page 51 of 463

GoldMine ™

The first parameter is the work area handle of the file in which you want to perform the replacement. The Open
function provides this value when the data file is opened.

The second parameter is the name of the field to be replaced. See SQL Database Structures for information on the
name of fields in each GoldMine data files. If you attempt to replace a field that does not exist in the file open in
the specified work area, the Replace function will fail.

The third parameter is the value to replace. This value must be enclosed in quotation marks. The replace value
must be a string value. If the replacement field is a date or numeric field, GoldMine will convert the string data to
the appropriate data type prior to performing the replacement.

The fourth parameter will add data instead of replacing data. Using this parameter, you can insert large amount of
text into a notes field. To append instead of replace incoming data from the third parameter, pass 1 as the fourth
parameter. You can set up a loop to feed notes in 256-byte segments to override the 256-byte limit for inbound
DDE requests.

Return Value

If the file was replaced, the Replace function returns 1. If the field could not be replaced, 0 is returned. The failure
can be caused under any of the following conditions:

O Invalid parameter, such as an invalid work area handle.
O Invalid field name.
O Record already locked by another user.

Example

See Adding an Empty Record .

Performing a Sequential Search

Syntax [SEARCH(<work area>,<expression>,<index>)]

The Search function is used to perform a sequential search on a file. Unlike Move, Search scans the table, one
record at a time, looking for a record that satisfies the search condition. The search condition can be any Xbase
expression that GoldMine understands, but is usually an expression that tests the value of one or more fields in
the file. When a match is found, the record pointer is located at the matching record.

Search starts with the record that immediately follows the current record (the next logical record according to the
selected index order) and continues until a match is found or the end of file is encountered. Because of this,
Search can be called repeatedly to return a list of records that satisfy the search condition.

Parameters

The Search function takes three parameters.

The first parameter is the work area handle of the file you want to search. The Open function provides this value
when the data file is opened.

The second parameter is the search expression, such as "CITY='Los Angeles""
The expression must be surrounded by quotation marks, and any string literal characters with the expression must
be surrounded by single quotes (').

Page 52 of 463

GoldMine ™

The third parameter is the optional index order to use when searching the data file. When this parameter is not
specified, the data file is searched by record number (physical) order. See Xbase Database Structures for the
appropriate values and collating sequence for each data file’s indexes.

NOTE: If an invalid index is selected for the data file, the Search function will not operate properly.

Return Value

The Search function can return several values.

Search Return Values

Return Description

0 Error occurred or match could not be found

Match found; return value indicated current physical record number (Xbase) or

>1 record ID (SQL)

An error can be returned if an invalid work area handle is passed to the function, or if an invalid search condition
is passed.

Example

The following example will prompt the user for a city name, then display the contact name for the first matching
record.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main(Q)

Dim Tchannel As Long

Dim sworkArea As String

Dim sRet As String

Dim sSeekval As String

Dim sQ As String

sQ = chr(34)

1channel = DDEInitiate("GoldMine", "Data'")

sworkArea = DDERequest(1Channel, "[Open(Contactl)]")

'Search for a City
sSeekval = UCase(InputBox("Enter a City to search for"))
sRet = DDERequest(1Channel, "[Move(" + sworkArea + ",Top)]')

sRet = DDERequest(1cChannel, "[Search(" + sworkArea + "," + sQ + "Upper
(CITY)="" + sSeekval + """ + sQ + I

If sRet = "" Then

MsgBox ("Search: No Match')

Else

MsgBox ("Search: Contact=" + DDERequest(1Channel, "[Read(" + sWorkArea +
", Contact)]™))
End 1If

Page 53 of 463

GoldMine ™

ret = DDERequest(1Channel, "[Close(" + sworkArea + ")]1")
DDETerminate (1Channel)
End Sub

Unlocking a Record

Syntax [UNLOCK(<work area>)]

The Unlock function unlocks a record previously locked by a call to either Append or Replace. GoldMine does not
specifically release a lock on a record until you call Unlock, allowing you to perform multiple field replacements
quickly. Before using Unlock, you must open a data file using the Open function.

After calling Unlock, GoldMine will also update the remote synchronization data structures to indicate the date
and time that the record was modified.

Parameters
The Unlock function accepts one parameter—the work area handle of the file to close. The work area handle is
returned by the Open file when the file is opened.

Return Value
The Unlock function returns 1 if the record was unlocked, or 0 if an invalid work area handle was passed to the
function.

Example

See Adding an Empty Record

Accessing Contact Records

For specific applications that need access to the GoldMine contact database at the logical level, the RecordObj
function is the preferred access method. Unlike the low-level DDE functions, the RecordObj function maintains all
of the relationships between the various GoldMine files. This access method is most often used for document
merging functions such as word processor mail merges or placing information into a spreadsheet.

Linking GoldMine Fields with an External Application

Syntax [RECORDOBIJ(<subfunction>,<scope>)]

The RecordObj function is a specialized function designed to link DDE fields in a document application, such as a
word processor or spreadsheet. Using RecordObj, an application can access the contact record in a high-level
fashion, rather than opening the CONTACT1.DBF and CONTACT2.DBEF files using Open.

Calling RecordObj within a DDE program is equivalent to viewing and manipulating the contact record within
GoldMine. The calling program can control the record pointer in the contact record much the same way a
GoldMine user can move the record pointer. In fact, RecordObj can be called in such a way as to create a
minimized contact record in the GoldMine work area display.

The primary differences between using Open, Move, and Read to access contact information and using RecordObj
are described in the following table.

Differences in Accessing Contact Information

Page 54 of 463

GoldMine ™

Using Open, Move, Read

Using RecordObj

Any filter or group that is active on a contact record
in GoldMine is ignored when files are accessed using
Open and Move

RecordObj can work in conjunction with a filter or group.
Any records that do not match the filter expression, or
are not members of the group, are skipped

The only way to maintain the relationship between
the CONTACT1 and CONTACT?2 files, is to manually
reposition CONTACT2 whenever the record pointer
is moved in CONTACT1.DBF.

Automatically maintains the relationship between
CONTACT1 and CONTACT2, and other contact
information such as history.

RecordObj does not contain a method to read specific
fields from the database. It is expected that the
application will use DDE link fields or the Expr function to
query information from the database, and use RecordObj
function calls only to position the record pointer.

When RecordObj is used to move the record pointer, the
contact record screen in GoldMine is updated, and a DDE
Warm Link Advise message is sent to all DDE link fields,
automatically updating these fields with the new contact
information.

Parameters

The RecordObj function requires either one or two parameters.

The first parameter is the name of the RecordObj subfunction that you want to perform.

Depending on the subfunction, a second parameter can be required. The following table lists the RecordObj
subfunctions and the requirements of the second parameter.

Valid RecordObj Functions

Subfunction Description

2nd Parameter

SETOBJECT Create or select contact record Optional object pointer
TOP Move to first logical record Not required

BOTTOM Move to last logical record Not required

SKIP Skip records Optional, recs to skip
SEEK Seek a specific record by key Search key value
SETORDER Select an index Index tag number
GETORDER Return the currently active index name Not required

SETTITLE Set the contact record title Text of title

Page 55 of 463

GoldMine ™

CLOSEWINDOW

Close the contact record None

SETRECORD Change the behavior of SKIP, TOP, and bottom Name of data structure to be queried
REFRESH Repaint the contact record Not required
GETRP Return the point to the current contact record Not required

(Xbase) or the record ID (SQL)

GETFILTEREXPR

Get the activated filter’s expression Not required

GETGROUPNO

Get the GroupNo of the activated group Not required

Setobject

The SetObject call must be called prior to calling any other RecordObj subfunction to
specify the contact record that subsequent RecordObj calls will manipulate.If
SetObject is called without a second parameter, subsequent calls to RecordObj will
manipulate the currently active contact record. The user can change the active
contact record in GoldMine while the DDE conversation is active, but this will not
affect the contact record that is linked to the RecordObj function.If SetObject is called
with a second parameter of 0, GoldMine will create a minimized contact record in the
work area display, and subsequent calls to RecordObj will manipulate that contact
record. If SetObject is called with a second parameter of 1, GoldMine will create a
minimized contact record in the work area display and copy any filter or group active
on the last used contact record into the newly minimized contact record.If RecordObj
is called with a specific pointer number, GoldMine will attempt to establish a link with
that contact record. A client application can obtain this pointer only when using the
GoldMine document merging feature, when GoldMine, acting as a DDE client, passes
this long pointer as the seventh parameter.

Top

Positions the record pointer at the first logical record according to the current index
order. For example, if the contact record index order is set to Company, a call to Top
will result in the record pointer being positioned at a record with a company name
such as “AAA Cleaners.” GoldMine will also update the contact record to display the
new record.

Bottom

Positions the record pointer at the last logical record according to the current index
order. For example, if the contact record index order is set to Company, a call to
Bottom will result in the record pointer being positioned at a record with a company
name such as “Z-best Bakery.” GoldMine will also display the new record.

Page 56 of 463

GoldMine ™

Skip

The Skip subfunction moves the record pointer on a record-by-record basis.If Skip is
called without the second parameter, it will move the record pointer to the next
logical record according to the current index order.If Skip is called with a string
numeric as the second parameter, the record pointer will be moved forward by the
indicated number of records if the value is positive, or backwards if the value is
negative. Negative numbers must be passed in quotation marks, for example “-1.”
GoldMine will also update the display to show the new record.The Skip subfunction is
sensitive to any filter or group that can be active on the contact record in GoldMine.
For example, if the user applies a filter to the contact record in GoldMine, the Skip
subfunction will skip over any records that do not match the filter expression.

Goto

The Goto subfunction positions the record pointer at the record number specified by
a string numeric passed as the second parameter.

Seek

Attempts to locate a record in the data file with an index key that matches the string
passed as the second parameter. Partial key searches are allowed, and GoldMine will
position the record pointer at the record with the key that most closely matches the
passed value. GoldMine will update the display to show the new record.

Setorder

Selects an active index for ordering and SEEKing the contact database. Only the twelve
CONTACT1 indexes can be used for this subfunction. See Xbase Database Structures
for the appropriate values and collating sequence for each data file’s indexes.

Getorder

Returns the active index being used to sort the contact records. See Xbase Database
Structures for the appropriate values and collating sequence for each data file’s
indexes.

Settitle

Changes both the text in the title bar of the contact record’s window and the text
displayed below a minimized contact record. For example, a DDE application that
merges contact records within a document can modify the contact record title to
indicate the number of records that have been merged. Any text that is passed as the
second parameter must be enclosed in quotation marks, and will be used as the new
title’s text.

Closewindow

Closes the contact record when processing is complete. Issuing this call is equivalent
to selecting Close from the contact record’s system menu.

Setrecord

Changes the behavior of the Skip, Top, and Bottom subfunctions to allow ancillary
contact information (such as additional contacts) to be queried using the RecordObj
function. Normally, GoldMine assumes the CONTACT1 data file to be the parent data
file, and when the Skip, Top, or Bottom subfunction is called, the record pointer is
repositioned in this data file. When accessing information in GoldMine tabs, however,
the Skip, Top, and Bottom subfunctions must be able to reposition the record pointer
in the data file that stores these items (CONTSUPP).The SetRecord subfunction
accepts the name of the data structure being queried as the second parameter. Valid
data structure names are listed in the following table.

Setrecord Valid Structure Names

Page 57 of 463

GoldMine ™

Data Structure Name Description
CONTACTS Additional contacts
PROFILE Profile records
REFERRALS Referral records
LINKS Linked documents
PRIMARY Primary contacts

Using SetRecord changes the behavior of the Skip, Top, and Bottom subfunctions.

The first parameter is the name of the RecordObj subfunction that you want to perform. When Top is called,
GoldMine will position the record pointer in the supplementary data file so that the first record containing the
selected information is the current record. For example, if SetRecord is used to select CONTACTS, Top will position
the record pointer on the first additional contact record for the current contact. The record pointer in the primary
information data file (CONTACT1) will not be moved, so the name of the current company will remain the same.
Bottom behaves in a similar manner.

Skip will position the record pointer in the supplementary file on the next record of the selected type. For example, if
SetRecord is used to select CONTACTS, Skip will position the record pointer in the supplementary file on the next
additional contact record for the current contact. The record pointer in the primary information data file
(CONTACT1) will not be moved, unless the record pointer in the supplementary file was already positioned at the
last record of the selected type; then GoldMine will reposition the record pointer in the primary information data
file (CONTACT1) to the next contact record and reset the record pointer in the supplementary file to the first
supplemental record of the selected type. DDE macros are also sensitive to the setting of the SetRecord subfunction
(see DDE Macros.)

Refresh Repaints the contact record

GetRP Obtains a pointer of the currently selected contact record
GetGroupNo Returns the group number (if a group is activated)
GetFilterExpr Returns the filter expression (if a filter is activated)

Return Value

All RecordObj subfunctions return 1 if the function was completed successfully or 0 if an internal error occurred.

Example
The following example will count the number of additional contacts for the current contact.

Note that the example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()
Dim Tchannel As Long

Page 58 of 463

GoldMine ™

Dim sAccountNo As String
Dim sRet As String
Dim SANRT As String
Dim iAddCount As Integer

1Channel = DDEInitiate("GoldMine", "Data'")
sAccountNo = DDERequest(1cChannel, "Contactl->AccountNo")

sRet = DDERequest(1Channel, "[Recordobj(setObject, 1)]1")
sRet = DDERequest(1Channel, "[Recordobj(SetRecord, Contacts)]")
sRet = DDERequest(1Channel, "[Recordobj(Top)]l™)

SANRT = DDERequest(1Channel, "Trim(ContSupp->AccountNo)+Trim(ContSupp-
>RecType)")

iAddCount = 0

while SANRT = sAccountNo + "C"

iAddCount = iAddCount + 1

sRet = DDERequest(1Channel, "[Recordobj(skip)]™)

SANRT = DDERequest(1Channel, "Trim(ContSupp->AccountNo)+Trim(ContSupp-
>RecType)")

wend

sRet = DDERequest(1Channel, "[Recordobj(Closewindow)]™)

MsgBox (Str(iAddCount) + " Additional Contacts")

DDETerminate (1Channel)

End Sub

Accessing Specialized DDE Functions

GoldMine provides a set of specialized functions for performing specific tasks, such as adding document links to
the contact database or sending GoldMine a CallerID message.

Retrieving Login Credentials for Use with the GMXS32.DLL

Syntax [GetLoginCredentials]

GoldMine Version 5.70.20222

The GetlLoginCredentials function is used to retrieve a string containing login credentials to be used for logging
into the GMxs32.pLL through the GMW_LoadAPl, GMW_LoadBDE or GMW_Login functions. Using this option, it is
not necessary to prompt the integration user for login information if GoldMine is running. The login credentials
received are only valid for 30 seconds, so do not store them and attempt to use them at a later time. The string
returned by this command should be used as the password to the appropriate login function, where the username
is “*DDE_LOGIN_CREDENTIALS*".

Example

This example retrieves various parameters from GoldMine and passes them to the GMW_LoadAPI or GMW _
LoadBDE function in the GMXS32.DLL.

The following example is written in Visual Basic 6.0 using the DDEInitiate and DDERequest functions defined in
Establishing a DDE Conversation.

with frmDDE
iResult = .DDEInitiate

Page 59 of 463

GoldMine ™

If iResult Then

frmPaths.txtSysFolder = .DDERequest("&SysDir")
frmPaths.txtGoldDir = .DDERequest("&GoldDir")
frmPaths.txtCommonDir = .DDERequest("&CommonDir")
sLoginCredentials = .DDERequest("[GetLoginCredentials]")

TResult = GMW_LoadBDE(frmPaths.txtSysFolder, frmPaths.txtGoldDir, _
frmPaths.txtCommonDir, “*DDE_LOGIN_CREDENTIALS*", _
sLoginCredentials)

End with

Retrieving the ReclD of the Current Opportunity

Syntax [GetActiveOppty]

GoldMine Version 5.70.20222

The GetActiveOppty function is used to retrieve the ReclD of the currently selected Opportunity in the
Opportunity Manager.

Return Value

The GetActiveOppty function returns the record ID of the currently selected opportunity. If no opportunity is
available, an empty string is returned.

Example

The following example reads the currently selected Opportunity’s record ID and displays the value in a message
box.

The following example is written in Visual Basic 6.0 using the DDEInitiate and DDERequest functions defined in
Establishing a DDE Conversation.

with frmDDE
iResult = .DDEInitiate
If iResult Then
sResult = .DDERequest("[GetActiveOppty]')
MsgBox sResult
End If
End with

Completing a Calendar Activity

Syntax [CalComplete(<RecNo>,<ActvCode>,<ResultCode>, <User>,<Ref>,<Notes>,<RetainDate>)]

The CalComplete function is used to complete an activity from the Calendar.

Parameters
The CalComplete function takes up to seven parameters. All parameters must be passed in quotation marks.
The first parameter is the record number of the calendar activity to be completed.

The second parameter is the Activity Code. This parameter is optional.

Page 60 of 463

GoldMine ™

The third parameter is the Result Code. This parameter is optional.

The fourth parameter is the User. If this parameter is not specified, the User field defaults to the currently logged
user.

The fifth parameter is the history Reference. This parameter is optional.
The sixth parameter is the Notes for the history record. This parameter is optional.

The seventh parameter indicates whether the function should retain its original date, or use the current
date/time. To retain the original date, set this value to 1.

Return Value

The CalComplete function returns the record number (Xbase) or record ID (SQL) of the new history record created.

Example

This example will open the CAL file, read the current RecNo (Xbase), or RecID (SQL), and complete the record to
History.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()

Dim 1Channel As Long
Dim sRet As String

Dim sRecNo As String
Dim sHRecNo As String
Dim sworkArea As String
Dim sQ As String

sQ = chr(34)
1channel = DDEInitiate("GoldMine", "Data'")

swWorkArea = DDERequest(1Channel, "[Open(CAL)]™)

sRecNo = DDERequest(1channel, "[RecNo(" + sQ + sWorkArea + sQ + ")]1")
sHRecNo = DDERequest(1Channel, "[cCalcomplete(" + sQ + sRecNo + sQ + ")1")
MsgBox ("New History Record Number: " + sHRecNo)

DDETerminate (1Channel)

End Sub

Displaying the Contact Record of an Incoming Caller

Syntax [CALLERID(<telephone>,<message>,<display dialog>)]

[CallerIDAll(<phone>, <message>, <displayDlg>, <bUPhone>)]

The CallerID and CallerIDAIl functions are used to inform the GoldMine user that an incoming call has been
identified by Automatic Number Identification (ANI) equipment attached to the telephone system. By using the
caller ID functions, GoldMine can perform a lookup on the contact database, and attempt to locate a contact
record with a telephone number that matches the telephone number extracted by the ANI device.

Page 61 of 463

GoldMine ™

With the caller ID functions, GoldMine can automatically display the contact record of the caller. A dialog box is
displayed, allowing the user to select an action. A CallerID function parameter is used to specify the message in
the dialog box.

The two functions perform the same functionality with the difference of the CallerIDAIl command will search all
phone numbers for the contact record (except FAX), instead of just the Phonel field.

Parameters

The caller ID functions accept three parameters. The CallerIDAIl function accepts a fourth parameter that the
CallerID function does not:

The first parameter is the telephone number of the caller as captured by the ANI device. The calling application is
responsible for formatting the telephone number that appears in the Phonel field in GoldMine. Enclose this
parameter in quotation marks (“).

The second parameter is the optional message to be displayed in the dialog box in GoldMine. Enclose this
parameter in quotation marks (“).

The third parameter specifies whether the dialog box is displayed. This parameter is the sum of the required
options. For example, to display the caller’s contact record in the current window if the record is found, or to
display the contact listing if the caller’s phone number is not found, specify 6 (2+4) as the <display dialog>
parameter. The following table lists valid parameter values.

CallerID Parameters

Value Description

0 Dialog box is displayed (default when third parameter is not passed)

1 Dialog box is not displayed, and contact record is displayed in a new contact record

2 Dialog box is not displayed, and contact record is displayed in the current contact record

4 Contact Listing is displayed when GoldMine cannot find the contact’s telephone number. To

activate this option, add this value to the third parameter value.

8 Restores input focus to the window that had input focus just before CALLERID is called—used by
applications that control the entire interface.

The fourth parameter that is only accepted by the CallerIDAIl function is whether or not to search the UPhone
fields stored in Contact2. Set to 1 to search the UPhone fields, or 0 to omit the UPhone fields.

Return Values

CallerID Return Values

Return Description
0 Error occurred
1 Contact record found

Page 62 of 463

GoldMine ™

2 Contact record not found

Example
The following example demonstrates the CallerID function.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main(Q

Dim 1Channel As Long

Dim sRet As String

Dim sPhone As String

Dim sQ As String
sQ = Cchr(34)

1Cchannel = DDEInitiate("GoldMine", "Data'")

sPhone = InputBox("Enter Phone to Look Up. Format: (###)###-####")
sRet = DDERequest(1channel, "[calleriD(" + sQ + sPhone + sQ + ")]1")
End Sub

Running a Counter

Syntax [COUNTER(<string>,<inc>,<start>,<action>)]

The Counter function returns a sequence of consecutive numbers each time the expression is evaluated.

Parameters

The counter name must be unique, and can be a maximum of 10 characters. Each evaluation of the Counter
function increments the counter by the <inc> value.

The <start> and <action> parameters are optional. When <action> is 1, the start value resets the counter. When
<action> is 2, the counter is deleted. Counter stores the count value between GoldMine sessions, and it is shared
by all GoldMine users.

GoldMine can track an unlimited number of uniquely named counters. The counter values are stored in the
LOOKUP table.

Return Value

The Counter function returns a number incremented by <inc>.

Example

[Counter(“InvoiceNo”,1,1000)]

Returning GoldMine Record Data

Syntax [DATASTREAM(<subcommand>,<parameter>)]

Page 63 of 463

GoldMine ™

DataStream returns the data of ordered records from any GoldMine table using the most efficient method
possible. The caller can specify the fields and expressions to return, as well as the range of records to return. A
filter can optionally be applied to the data set.

The DataStream method allows for many useful applications. One example would be to publish the contents of
GoldMine data on the Internet by merging HTML templates with the data returned by DataStream. Web pages can
be created to display GoldMine data requested by a visitor. Based on the visitor’s selections, a company could
dynamically present a variety of HTML pages, such as:

O Addresses of product dealers in a particular city
O Financial numbers stored in Contact?2
O Seating availability of upcoming conferences

With a fast Internet connection and a strong SQL server, the GoldMine client could simultaneously respond to
dozens of requests.
Record Selection

The DataStream command consists of four subcommands. Each subcommand takes different parameters. The
subcommands are shown below, in the order in which they must be called:

[DataStream("range", sTable, sTag, sTopLimit, sBotLimit, sFields, sFilter, sFDIm, sRDIm)]
[DataStream("query", sSQL, sFilter, sFDIm, sRDIm)]

[DataStream("fetch", nRecords, iHandle)]

[DataStream("close", iHandle)]

The “range” or “query” subcommands must be called first to request the data. The “range” and “query”
subcommands return an integer handle, iHandle, which must be passed to the “fetch” and “close” subcommands.
You must use either “range” or “query”—not both.

[DataStream("range", sTable, sTag, sTopLimit, sBotLimit, sFields, sFilter, sFDIm, sRDIm)]

Parameters

The sTable, sTag, sTopLimit, and sBotLimit parameters determine the range of records to scan, similar to the DDE
SETRANGE command. The sFields parameter specifies the requested fields and expression to return.

The sField parameter passed to the “range” subcommand should consist of the field names and Xbase expressions
to evaluate against each record in the data set. Each field must be terminated with the semicolon (;) character.
Xbase expressions must be prefixed with the ampersand (&) character and terminated with a semicolon.

The other “range” parameters are optional.

Return Value
The “range” subcommand returns a range of records based on an index.
[DataStream("query", sSQL, sFilter, sFDIm, sRDIm)]

The “query” subcommand sends the sSQL query for evaluation on the server.

Page 64 of 463

GoldMine ™

Parameters

The SQL query can join multiple tables and return any number of fields. The optional sFilter parameter can specify
a Boolean Xbase filter expression to apply to the data set (even on SQL tables), similar to the DDE SETFILTER
command. The optional sFDIm and sRDIm parameters can override the return packet’s default field and record
delimiters of CR and LF.

[DataSstream("fetch", nRecords, iHandle)]

The “fetch” subcommand returns a single packet string that contains the requested data from all records
processed by the current “fetch” command, as specified by the second nRecords parameter. iHandle must be the
value returned from “range” or “query.” The “fetch” command can be issued multiple times, with positive and
negative values, to scroll down or up the cursor. See “Return Packet” below.

[Datastream("close", iHandle)]

The “close” subcommand must be called when the operation is complete. Unclosed data streams will leak
memory and leave the database connections needlessly open. Passing an iHandle of 0 closes all open DataStream
objects (of all DDE conversations).

Example 1

The following commands request the first 100 cities from the Lookup file, including the city name and record
number (RecID under SQL):

[DataStream("range", "lookup", "lookup", "CITY", "CITYZ", "Entry; &RecNo
O

[DataStream("fetch", 100, iHandle)]

[Datastream("close", iHandle)]

Example 2

The following commands request the first 10 profiles of the current contact record, followed by a request for the
next 50:

[DataStream("range","contsupp",

"Contact;ContSupRef;")]
[Datastream("fetch", 10, iHandle)]
[Datastream("fetch", 50, iHandle)]
[DataStream("close", iHandle)]

contspfd", sAccNo+"P", sAccNo+"P",

Return Packet

The “fetch” command returns a single packet string containing the data from all requested records. The packet
includes a header record, followed by one record for each record evaluated by “fetch.” Within each record in the
packet, the fields are separated by a Field Delimiter, the carriage return character by default (13 or 0x0D). The
records in the packet are separated by the Record Delimiter, the line feed character by default (10 or Ox0A). These
delimiters are convenient when the requested data does not contain notes from blob fields. Otherwise, you must
override the default delimiters by passing other delimiter values to the “range” and “query” commands. The
characters 1 and 2 would probably make good delimiters for packets with notes.

The City Lookup example from above might return a packet of data similar to:

3000-0004

Page 65 of 463

GoldMine ™

Boston|23
London| 393

Los Angeles|633
New York|29

The packet header record consists of two sections. The first byte can be 0, 3

or 4. Zero indicates that more records are available, which could be fetched with another “fetch” command. A
value of 3 indicates the end-of-file (EOF), and 4 indicates the beginning-of-file (BOF). The number following the
dash indicates the total number of data records contained in the packet.

Packets should be designed to be 8K to 32K. DataStream takes about as much time to read three records as it
does to read 30. For best performance, adjust the number to records requested by the “fetch” command to return
packets of 8K to 32K.

Performance

DataStream is the fastest way to read data from GoldMine tables. Used correctly, the GoldMine DataStream will
return the data faster than most development environments would directly. DataStream offers the following
advantages:

1. DataStream issues a single, efficient SQL query or Xbase seek to retrieve the records from the back-end
database to the local client. On SQL databases, requests of a few hundred records could be sent from the
server to the client with a single network transaction, thereby minimizing network traffic.

2. All fields and expressions are parsed initially by the “range” and “query” commands, then quickly evaluated
against each record in the “fetch” command. Other DDE methods (and development environments) require
that each field be parsed and evaluated each time the field’s data is read. This can save a significant amount
of time when reading hundreds or thousands of records.

3. Only three DDE calls are required to read all the data. Using traditional record-by-record querying would
require one DDE call for each field of each record (reading 10 fields from 50 records would require 500 DDE
calls).

4. All the work to gather and format the data is done in fast and efficient C. The caller needs only to parse the
resulting packet string.

The “range” and “query” commands execute equally fast on SQL databases. The “range” command executes much
faster on Xbase tables than the “query” command.

Example 3
The following DataStream command returns all e-mail addresses in the current contact file.

[DataSstream("range", "contsupp","contspfd","PINTERNET A","PINTERNET
B","ContSupRef;")]

[Datastream("fetch", 999, 1)]

[Datastream("close", 1)]

To return only the e-mail addresses of people at GoldMine, add a filter to the “range” command:

[DataStream("range", "contsupp","contspfd","PINTERNET A","PINTERNET AZ",
"ContSupRef;AccountNo;&Recno();", "'@Ggoldmine.com' $ Tower(ContSupRef)")]
Example 4

The following DataStream returns all entries from all F2 lookups. The fields are delimited with a comma, and the
records with the default LF.

Page 66 of 463

GoldMine ™

[DataStream("range", "Tookup"™, "lookup", "A",
"Z"’"F-ie-ldName;Entry; ll,llll’ll , ll)]
[DataStream("fetch"™, 2000, 1)]
[Datastream("close", 1)]

Example 5

The following DataStream returns the exact packet as the one above, but using an SQL query:

[DataSstream("query", "select fieldname, entry from Tookup where fieldname
> 'A' order by
fieldname, entry", "",","™)]

Processing a Web Import Instruction File

Syntax [ExecInilmp(<filename>)]

GoldMine can send a DDE command to process a Web import instruction file. Using a DDE command allows other
applications to create contact records in GoldMine. To start processing an instruction file via DDE, send the
Execlnilmp(<filename>) command; for example, [Execlnilmp(“c:\goldmine\imp.ini”)].

NOTE: For details about setting up and working with the GoldMine Web Import Gateway, see “Capturing
Web Data” in Maintaining GoldMine.

Reading an Xbase Expression Without Opening a File

Syntax [EXPR(<expression>)]

The Expr function is similar to the Read function in that it attempts to evaluate an Xbase expression and return the
result as a string. The Expr function, however, does not require you to open a specific data file using the Open
function. The expression passed to the Expr function is evaluated against the current operating state of GoldMine
(usually, the currently displayed record), rather than the state of a specific work area. For this reason, you should
be aware that differences between the return values could exist for the same expression passed to Read and Expr.

Parameters

The Expr function takes one parameter—the Xbase expression to be evaluated. GoldMine supports a subset of the
Xbase dialect, so there is substantial flexibility in the application of this function. Enclose this parameter in
quotation marks (“).

When referencing field names within an expression, you should always use an alias; otherwise, GoldMine assumes
CONTACT1 to be the default alias.

Return Value

The Expr function returns a character string containing the value of the specified expression. If an error occurs, or
the expression could not be evaluated, the Expr function will return a null string.

Example

The following expression will return the number of characters in notes file of the current contact.

Page 67 of 463

GoldMine ™

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Ssub Main(Q

Dim T1channel As Long
Dim SExpr As String
Dim sRet As String
Dim sQ As String

sQ = chr(34)

1channel = DDEInitiate("GoldMine", "Data'")

SsExpr = "Length(Contactl->Notes)"

sRet = DDERequest(1Channel, "[EXPR(" + sQ + SExpr + sQ + ")]1")

MsgBox ("Notes Length = " + sRet + " characters")
End Sub
Adding Merge Fields to a Form
Syntax [FORMADDFIELDS(<FormNo>,<Fields>)]

The FormAddFields function adds merge fields to a form profile.

Parameters
The FormAddFields function takes two parameters. Enclose each parameter in quotation marks (“).
The first parameter is the number of the form.

The second parameter is a string that lists fields, macros, and expressions; each item in the string is separated by a
semicolon (;). GoldMine parses the string, checks for duplication, assigns names to the fields, and then stores the
items.

Example

The following example shows how to export a data file with GoldMine. It uses all of the Formxxxx functions, such
as FORMADDFIELDS, FORMNEWFORM, FORMQUERYCREATE, FORMCLEARFIELDS, FORMCLOSEFORM, and
FORMGETFIELDNAME

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main(Q)

Dim 1Channel As Long

Dim sRet As String

Dim sFieldList As String
Dim sFormNo As String
Dim sFile As String

Dim sNumRecs As String
Dim sMergeCode As String
Dim sQ As String

Page 68 of 463

GoldMine ™

sMergeCode =
sQ = chr(34)
'Populate the field Tist

sFieldList = "&Contact ; Phonel ; Contactl->State ; SUBSTR(Company,l1,5)"
1channel = DDEInitiate("GoldMine", "Data')

'Get a new Form Number

sFormNo = DDERequest(1Channel, "[FormNewFormNo()]1")

'Register the fields

sRet = DDERequest(1cChannel, "[FormAddFields(" + sQ + sFormNo + sQ + "'" +
sQ + sFieldList + sQ + ")1™)

'Display the field names as assigned by GoldMine
MsgBox ("&Contact=" + FieldName(1Channel, sFormNo, "&Contact"))

MsgBox ("Phone=" + FieldName(1Channel, sFormNo, "Phonel"))

MsgBox ("Contactl->State=" + FieldName(lChannel, sFormNo, '"Contactl-
>State"))

MsgBox ("SUBSTR=" + FieldName(lcChannel, sFormNo, "SUBSTR(Company,1,5)"))
'Give the output file a name

sFile = "C:\GMDATA.DBF"

'Create the file

sNumRecs = DDERequest(1Channel, "[FormCreateFile(" + sQ + sFormNo + sQ +
"," + sQ + sFile + sQ + "," + sQ + "21" + sQ + ", " + sQ + sMergeCode + sQ
+ "1

while DDERequest(1Channel, "[FormQueryCreate(0)]") <> "-1"

'wait until DBF 1is created

wend

'Clear the fields since we will not use them again

sRet = DDERequest(1Channel, "FormClearFields(" + sQ + sFormNo + sQ +
"1

'Close the file when done

sRet = DDERequest(1cChannel, "FormCloseForm()")

MsgBox (“Records finished exporting to " + sFile)

End Sub

Function FieldName(1Channel As Long, sFormNo As String, sField As String)
As String

Dim sQ As String

sQ = chr(34)

FieldName = DDERequest(1Channel, "[FormGetFieldName(" + sQ + SFormNo + sQ
+ "," + sQ + sField + sQ + ")1")

End Function

Deleting Fields from a Form

Syntax [FORMCLEARFIELDS(<FormNo>)]

The FormClearFields function opens an existing form profile and deletes all associated fields.

Parameters

The FormClearFields function takes one parameter—the number of the form. Enclose this parameter in quotation
marks (").

Page 69 of 463

GoldMine ™

Return Value

The FormClearFields function returns 1 if the profile is open, or 0 if an error occurs.

Example

See Adding Merge Fields to a Form .

Closing a Form Profile

Syntax [FORMCLOSEFORM(<FormNo>)]

The FormCloseForm function closes an open form profile.

Parameters

The FormCloseForm function takes one parameter, which is the number of the form. Enclose this parameter in
quotation marks (").

Example

See Adding Merge Fields to a Form .

Creating an Xbase File with Registered Fields

Syntax [FORMCREATEFILE(<FormNo>,<FileName>,<WhichRec>,<MergeCode>)]

The FormCreateFile function creates an Xbase (DBF) file with all registered fields. Any active filter or group that

applies to the contact record is taken into account. FormCreateFile can be used to export data via DDE.
Parameters

The FormCreateFile function takes four parameters. Enclose all parameters in quotation marks (").

The first parameter is the number of the form.

The second parameter is the name of the .DBF file to be created.

The third parameter indicates which records are to be exported. The WhichRec value is the sum of values for each
available listed below.

WhichRec Values

Value Description

1 Primary

2 Secondary

4 All records

8 Forward to last

16 Return control to the calling program immediately after export has started

Page 70 of 463

GoldMine ™

Examples of WhichRec Parameter

Current contact 1
All primary contacts 5(1+4)
Forward to last of primary and additional contacts 11 (1+2+8)

The fourth parameter is the merge code. If any merge code value(s) are included in the function, only records with
the matching merge code(s) will be included. To include multiple merge codes, place a space between each
individual merge code. If the fourth parameter is empty, all records are included.

Return Value

The FORMCREATEFILE function returns the total number of records in the output .DBF file.

Example

See Adding Merge Fields to a Form .

Returning a Field Name for an Expression

Syntax [FORMGETFIELDNAME(<FormNo>,<Field>)]

The FormGetFieldName function returns the field name for an expression, a macro, or a field.

Parameters
The FormGetFieldName function takes two parameters. Enclose both parameters in quotation marks (").

The first parameter is the number of the form. The second parameter is the name of the field, macro, or
expression to be associated with the file name.

Example

See Adding Merge Fields to a Form .

Returning a Value for Unattached Fields

Syntax [FORMNEWFORMNO()]

Return Value

The FormNewFormNo function returns a new, unique FormNo value that can be used to register fields not
attached to a GoldMine form. Enclose this parameter in quotation marks (").

Example

See Adding Merge Fields to a Form

Counting the Number of Exported Records

Syntax [FORMQUERYCREATE(<FLAGS>)]

Page 71 of 463

GoldMine ™

The FormQueryCreate function provides status information during an export by returning the number of records
exported during the export process.

Parameters
The FormQueryCreate function takes one optional parameter. Enclose this parameter in quotation marks (").
The following table lists values of FormQueryCreate parameters.

FormQueryCreate Parameters

Value Description

0 Export in progress (default)
1 Start process

2 Abort process

Return Value

The FormQueryCreate function returns the number of records created while an export is in progress, or -1 when
the record export process is completed.

Example

See Adding Merge Fields to a Form .

Creating a History Record

Syntax [INSHISTORY(<accno>,<rectype>,<ref>,<notes>,<actv>,<rslt>,<user>)]

The InsHistory function is used to create a history record in GoldMine. The InsHistory function provides a higher
level interface for creating these records than using Open, Append, and Replace.

Parameters
The InsHistory function takes up to seven parameters. All parameters must be passed in quotation marks (").
The first parameter is the account number of the contact record to which the new history record will be linked.

The second parameter is the record type to create. The following values are available:

InsHistory Valid Values (2nd parameter)

Value Record Type Value Record Type

A Appointment U Unknown

C Phone call ccC Call back

D To-do Cl Incoming call

E Event cM Returned message

Page 72 of 463

GoldMine ™

L Form co Outgoing call
M Sent message MG E-mail message
0] Other M Received e-mail
S Sale MO Sent e-mai

T Next action

The third parameter is the history Reference.

The fourth parameter (optional) is the Notes for the history record.
The fifth parameter (optional) is the Activity Code.

The sixth parameter (optional) is the Result Code.

The seventh parameter is the User. If this parameter is not specified, the User field defaults to the currently
logged user.

Return Value

The InsHistory function returns the record number (Xbase) or record ID (SQL) of the new history record if the
function was completed successfully. The function returns 0 if a new record could not be appended to the data
file.

Example
The following example shows how to create a history (incoming call) record for the current contact.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()

Dim 1Channel As Long

Dim sAccountNo As String
Dim sRecType As String
Dim sRef As String

Dim sRet As String

Dim sQ As String

sQ = chr(34)

1channel = DDEInitiate("GoldMine", "Data'")

sAccountNo = DDERequest(1Channel, "Contactl->AccountNo™)

sRecType = "CI" 'Incoming call

sRef = "New History"

sRet = DDERequest(1cChannel, "[InsHistory(" + sQ + sAccountNo + Chr$(34) +
"," + chr$(34) + sRecType + chr$(34) + "," + chr$(34) + sRef + sQ + ")]1")
If sRet = "0" Then

StatusBar = "History not Created"

End If

DDETerminate (1Channel)

Page 73 of 463

GoldMine ™

EndSub

Creating or Updating a Document Link

Syntax [LinkDoc(<recno>,<filepath>,<title>,<owner><notes>,<nSync>)]

The LinkDoc function is used to create or update a document link in GoldMine. Document links allow you to
launch directly into an application and load the application with a document by clicking on the desired document
listed in the contact’s Links tab. GoldMine maintains these links as records in the supplementary data file. The

LinkDoc function provides a higher level interface to these records than can be obtained by using Open, Append,
and Replace.

Parameters
The LinkDoc function takes up to six parameters.

The first parameter is the record number of the link record to be updated. If a new link record is to be created,
pass 0 as the first parameter.

NOTE: When GoldMine calls the mail merge macro, the record number of the linked document record is
passed as the sixth parameter.

The second parameter is the fully qualified path and filename of the file to link. Keep in mind that a valid
association must exist for the file’s extension if GoldMine is to automatically launch the file’s application. See
“Installing the GoldMine DDE Link” for information on creating a file association using Windows Explorer. Enclose
this parameter in quotation marks (“).

The third parameter is the document title. Enclose this parameter in quotation
marks (“).

The fourth parameter is the optional document owner. If this field is not passed, the document owner defaults to
the name of the currently logged GoldMine user.

The fifth parameter is optional notes for the linked document record in the Links tab.

The sixth parameter defines the remote synchronization status for the linked document from the values shown in
the following table.

NSync Valid Values

Value Action

-1 Uses the GoldMine default as defined by Allow new documents to sync by default in the Sync tab of
the Preferences window.

0 Does not synchronize the newly linked document.

1 Allows the newly linked document to synchronize.

Return Value

The LinkDoc function returns the new record number (Xbase) or record ID (SQL) if the function was completed
successfully. The function returns any empty string if a new record could not be appended to the data file, or an
existing record could not be locked for update.

Page 74 of 463

GoldMine ™

Example

The following example prompts the user for a file name and description, then creates a document link to the
current contact.

Note that the example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a

textbox.

For more information, see Establishing a DDE Conversation.

Sub Main(Q)

Dim 1Channel As Long
Dim sDocPath As String
Dim sTitle As String
Dim sRet As String

Dim sQ As String

sQ = chr$(34)

1Channel = DDEInitiate("GoldMine", "Data'")

sbocPath = InputBox("Enter Full Path of Document to Link")

sTitle = InputBox("Enter Title of Link™)

sRet = DDERequest(1Channel, "[Linkboc(0," + sQ + sbDocPath + sQ + "," + sQ
+ sTitle + sQ + ")1™)

DDETerminate (1Channel)

End Sub

Displaying a Message Dialog Box

Syntax

[MsgBox(<message>,<style>)]

The MsgBox function displays a standard Windows message dialog box.

Parameters

The MsgBox function accepts two parameters.

The first parameter is the message to display within the dialog box. Enclose this parameter in quotation marks (").

The second parameter is the optional style of the message box. This value is the sum of the following options:

MsgBox Style Values (2nd parameter)

Value Meaning

0 Display OK button only

1 Display OK and Cancel buttons

2 Display Abort, Retry, and Ignore buttons
3 Display Yes, No, and Cancel buttons

4 Display Yes and No buttons

Page 75 of 463

GoldMine ™

5 Display Retry and Cancel buttons
16 Display Stop icon

32 Display Question Mark icon

48 Display Exclamation Mark icon
64 Display Information icon

128 First button is default

256 Second button is default

512 Third button is default

Return Value
The MsgBox function returns the following values:

MsgBox Return Values

Return Description

1 OK button selected

2 Cancel button selected

3 Abort button selected

4 Retry button selected

5 Ignore button selected

6 Yes button selected

7 No button selected
Example

The following example shows how to display a message dialog box in GoldMine and return the result.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main(Q)

Dim 1Channel As Long
Dim sRet As String
Dim sQ As String

sQ = chr(34)
1Channel = DDEInitiate("GoldMine", "Data'")

Page 76 of 463

GoldMine ™

sRet = DDERequest(1Channel, "[MsgBox(" + sQ + "Press a Button, Any Button"
+sQ+ ", DI

If ret$ = "6" Then

MsgBox ("Yes was pressed")

Else

MsgBox (""No was pressed™)
End If

DDETerminate (1Channel)
End Sub

Adding a Merge Form

Syntax [NEWFORM(<apptype>,<filepath>,<title>,<macro>, <templatetype>,<flags>)]

The NewForm function adds a merge template record into the Merge Forms window in GoldMine. This function is
used primarily by the document merge link installation macro; however, the function can also be used to add
additional merge templates from a user-written application.

Parameters

The NewForm function takes up to six parameters; the first three parameters are required, and the last three
parameters are optional.

The first parameter is the type of document to which the new form record will point. This value must be a valid
Application Identifier, such as Word.Document.6, that corresponds to an entry in the Registration Database.
Enclose this parameter in quotation marks (").

The second parameter is the fully qualified path and filename of the template file.

The third parameter is the title of the document as it should appear in the Merge Forms browse window. Enclose
this parameter in quotation marks (").

The fourth parameter is the name of an optional DDE function to be called after the template is loaded by the
linked application. If this parameter is not specified, the default function is MAINMENU. Enclose this parameter in
quotation

marks (").

The fifth parameter is the optional type of template. If this parameter is not specified, the template type is
assumed to be Document. Enclose this parameter in quotation marks ("). GoldMine accepts the following values
for this parameter:

Document Types

Type Description
0 Document

1 Spreadsheet
2 Other

Page 77 of 463

GoldMine ™

The sixth parameter is a three-character field corresponding to the values of the Link To Doc, Save History and
Allow Hot Link options on the Form Setup dialog box. To set (check) one of these options, 1 is passed; to reset

(uncheck), 0 is passed. Enclose this parameter in quotation marks (“).

Flag Values

Position Description

0 Link To Doc check box

1 Save History check box

2 Allow Hot Link check box

Return Value

The NewForm function returns a form number.

Example

The following example shows how to create a merge form entry in GoldMine, using the currently active Word

Document.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a

textbox. For more information, see Establishing a DDE Conversation.

PubTic Sub Main()

Dim sQ As String

Dim Tchannel As Long
Dim iResult As Integer
Dim sDocTitle As String
Dim sFullName As String
Dim sAppName As String
Dim FSDlg As Dialog

'GoldMine Is Not running.

sQ = chr(34)

If Not (Tasks.Exists("GoldMine")) Then

MsgBox Prompt:="GoldMine is NOT Running", Buttons:=vbCritical,
Title:="Save As Merge Form"

GoTo Bye

End If

1channel = DDEInitiate("GoldMine", "Data'")

iResult = Dialogs(wdDialogFileSummaryInfo).Show

If iResult = 0 Then

GoTo Bye

End If

sDocTitle = sQ + Dialogs(wdDialogFileSummaryInfo).Title + sQ
iResult = Dialogs(wdDialogFileSaveAs).Show

If iResult = 0 Then

GoTo Bye

End If

Page 78 of 463

GoldMine ™

ActiveDocument.Save

sFullName$ = sQ + ActiveDocument.FullName + sQ

sAppName = sQ + "[GoldMineLink()]" + sQ

FormNo$ = DDERequest(1Channel, "[NewForm(Word.Document.8," + sFullName$ +
"," + sbocTitle$ + "," + sAppName + ")]1™)

ActiveDocument.Saved = False

ActiveDocument.SaveAs FileName:=sFullName$, FileFormat:=wdFormatTemplate
StatusBar = "Document has been saved as a GoldMine Merge Form"

Bye:

If T1channel Then

DDETerminate TcChannel

End If

End Sub

Creating a Group

Syntax [NEWGROUP(<ref>,<code>,<user>)]

The NewGroup function is used to create an empty group. This function must be called prior to adding group
members with the NewMember function.

Parameters
The NewGroup parameter takes up to three parameters; the first parameter is required, the last two are optional.
The first parameter is the Reference for the new group. Enclose this parameter in quotation marks (“).

The second parameter is the optional sort Code for the group. This parameter must be passed in quotation marks
if it contains any embedded spaces or delimiting marks.

The third parameter is the optional user name to whose groups list the new group will be added. If this parameter
is not passed, the new group will be added to the currently logged user’s list of groups. Enclose this parameter in
quotation marks (“).

Return Value

The NEWGROUP function returns a value representing the GROUP NUMBER of the new group. Zero is returned if
the group could not be added. The GROUP NUMBER value is used by the NewMember function to add members
to the new group.

Example

The following example shows how to create a group called “New Group” and make the current contact a member
of that group.

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main()

Dim Tchannel As Long
Dim sGroupNo As String
Dim sAcountNo As String

Page 79 of 463

GoldMine ™

Dim sQ As String
Dim sRet As String

sQ = Cchr(34)

1Channel = DDEInitiate("GoldMine", "Data'")

sGroupNo = DDERequest(1Channel, "[NewGroup(" + sQ + "New Group" + sQ + ","
+ sQ + "New" + sQ + "1™

If sGroupNo <> “0” Then

sAccountNo = DDERequest(1Channel, "Contactl->AccountNo")

sRet = DDERequest(1Channel, "[NewMember(" + sQ + sGroupNo + sQ + "," + sQ
+ SAccountNo + sQ + "," + sQ + "New Member" + sQ + "," + sQ + "Sort" + sQ
+ "1

If sRet = "" Then

StatusBar = "Error Creating New Member"

Else

StatusBar = "Group Created and Member Added. "

End If

Else

StatusBar = "Error Creating New Group"

End If

DDETerminate (1Channel)

End Sub

Adding a Group Member

Syntax [NEWMEMBER(<groupno>,<accno>,<ref> <code>)]

The NewMember function is used to add a member to a group created with the NewGroup function.

Parameters

The NewMember function takes up to four parameters; the first two parameters are required, and the last two
are optional.

The first parameter is the GROUP NUMBER of the group to which the member will be added. This value is
returned by the NewGroup function. Enclose this parameter in quotation marks (").

The second parameter is the account number of the contact record to add to the group. Enclose this parameter in
quotation marks (").

The third parameter is the optional group member Reference. Enclose this parameter in quotation marks (").
The fourth parameter is the optional group member sort Code. Group members are ordered alphabetically by the
value in this field. Enclose this parameter in quotation marks (").

Example

See Creating a Group .

Creating a Macro

Syntax [PLAYMACRO(<Macro>,<wait>)]

Page 80 of 463

GoldMine ™

A macro groups together a series of commands, keystrokes, and/or mouse clicks into a one-step operation. You
can create a macro to automate a sequence of tasks that you perform frequently in GoldMine.

Parameters

The PlayMacro function takes two parameters that identify the macro and assign a wait state.

The first parameter identifies the macro. Either the number for the currently logged user or a valid macro
filename can be used to identify a macro.

Identifying a Macro by Number

Each user can create up to 100 macros from the GoldMine toolbar. Each macro can be assigned an optional
numeric identification from 800 to 899. For example, you can assign 800 to identify your first macro, 801 to
identify your second macro, and so on.

TIP: For details about creating a macro from the GoldMine toolbar, see “Customizing Toolbars”
in the online Help.

Identifying a Macro by File Name
You can assign a file name to identify the macro, such as C:\GOLDMINE\MACROS\JOHN.801.

The second parameter assigns a wait state that determines GoldMine availability to process another macro or task
while the current macro executes. To set GoldMine to wait for the currently executing macro to finish before
starting another task, set the parameter to 1. For example, if you are setting up a sequence of macros to run
tutorial lessons, you want GoldMine to wait for each lesson to finish before executing the next macro that will run
the following lesson.

To allow GoldMine to perform background processing, such as indexing, while the macro(s) execute, set the
parameter to 0.

Return Value

The PlayMacro function returns an integer value based on the wait parameter; that is, GoldMine availability to
process a task in addition to the currently running macro. If the wait parameter is 0 (GoldMine does not wait for
the macro to finish to process another task), the PlayMacro function will always return 1. If the wait parameter is
1 (GoldMine will wait for the current macro to finish before processing another macro or task), the PlayMacro
function will return either 0 or 1 under the following conditions:

PlayMacro Return Values

Return Description
0 Error occurred during macro playback
1 Macro played successfully

Example

The following example shows how to play back a macro via DDE.

TIP: To prevent unwanted macros from being executed, some parts of this example have been
commented out.

Page 81 of 463

GoldMine ™

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Ssub Main(Q

Dim Tchannel As Long

Dim sRet As String
Dim sQ As String

sQ = chr(34)
'un comment the following line to execute
'1channel = DDEInitiate("Goldmine", "Data")

'Play macro 800 for current user
sRet = DDERequest(1Channel, "[PlayMacro(800,0)]")

'Play Macro 802 for specified use (BILL)
sRet = DDERequest(1cChannel, "[EXPR(" + sQ + "C:\GOLDMINE\MACROS\BILL.802"

+sQ +)1

End Sub

To Play a Macro from the Command Line

You can also play a macro from the command line (DOS prompt). Executing a macro from the command line
can be useful in running functions at night, such as indexing, running an Automated Process, or synchronizing
with remote sites with a transfer set created via macro. You can either identify a macro by an identification
number, like GMW4 /m:801, or by file name like GMW4 /m:c: \index.801. If necessary, the command line
statement can start GoldMine and then, once started, run the macro.
Optional switches include:

/m: Logs in automatically to GoldMine

/u:[username] Provides the username entry to log in to GoldMine

/p:[password] Provides the password entry to log in to GoldMine
If running the Plus! Pack with Windows, you can run a macro from the System Agent by placing a command
line switch for GoldMine in the Program field of the Schedule a New Program dialog box that will run a

macro. For example, to log in John with his username and password, then run John’s first macro, place the
following macro in the System Agent:

GMWS5 Ju:john /p:pswd /m:800

Where GMWS5/ starts Goldmine, u:john/ is login user John, p:pswd/ enters the password password, and
m:800 runs first macro.

Creating and Sending a Pager Message

Syntax [SENDPAGE(<Message>,<From>,<To>)]

The SendPage function allows you to create and send a message to the pager of a GoldMine user. The function
consists of the following components:

Page 82 of 463

GoldMine ™

<Message> can consist of any text message that you create with this function to send to a pager; most pages
can accept messages of 70—100 characters.

<From> includes the sender’s name as an optional “signature.”

<To> identifies an optional GoldMine user who will receive the pager message. Information about the pager
must be entered in the Edit|Preferences|Pager tab, such as ID code or PIN number, telephone number of the
pager, and maximum message size in characters that the pager can accept.

Return Value

The SendPage function can return one of two values.

SendPage Return Values

Return Description
0 Error occurred during the attempt to send the message to the pager
1 Pager message was transmitted successfully

Example

The following example sends the message “This is a pager message” from John Doe:

NOTE: The example below is written in Visual Basic for Applications, and the DDEInitiate and DDERequest
functions are not a part of Visual Basic 6.0. DDE functionality is performed via the LinkRequest method in a
textbox. For more information, see Establishing a DDE Conversation.

Sub Main(Q)

Dim TcChannel As Long
Dim sMsg As String
Dim sFrom As String
Dim sRet As String
Dim sQ As String

sQ = chr(34)

1Channel = DDEInitiate("GoldMine", "Data'")

sMsg = "This is a pager message"

sFrom = "Jon Doe"

sRet = DDERequest(1Channel, "[SendPage(" + sQ + sMsg + sQ + "," + sQ +
sFrom + sQ + ")1")

End Sub

Displaying a Message in the GoldMine Status Bar

Syntax [StatusMsg(<message>,<delay>)]

The StatusMsg function displays a message in the GoldMine status bar.

Parameters

The StatusMsg function takes two parameters. Enclose each parameter in quotation marks (").

Page 83 of 463

GoldMine ™

First parameter is the message.

Second parameter is an optional delay, after which time the message is removed from the status bar.

Example

See “RecNo” on page 105.

Converting TLog Timestamps

Syntax [SyncStamp(<stamp>)]

The SyncStamp function converts a TLog timestamp to a date and time representation, and from a date and time
representation back to the TLog time stamp format.

Parameter

The SyncStamp function takes one parameter. Enclose the parameter in quotation marks (").

Return Values

When the <stamp> string parameter is exactly 17 characters long, formatted as Date:Time in form of
CCYYMMDD:HH:MM:SS, the return string is in TLog time stamp format, exactly seven characters long. When the
<stamp> parameter is seven characters long, and formatted as a TLog timestamp, the return string is formatted as
CCYYMMDD:HH:MM:SS. An empty return string indicates an error.

Example 1
The following example converts February 1, 1998 at 7:01 p.m. to a TLog time stamp format.

[SyncStamp("19980201:19:01:30")] returns "+H#G><N2"

Example 2
The following example converts a TLog time stamp format to the date and time of February 1, 1998 at 7:01 p.m.

[SyncStamp ("+#G><N2")]
returns '"19980201:19:01:30"

DDE Macros

To facilitate the use of DDEAUTO fields, GoldMine allows you to select a macro as the service item. Upon
encountering a DDE service item that starts with an ampersand (&), GoldMine searches an internal table of macro
names. If a match is found, the macro is processed and the result is returned, as if a DDE function or expression
had been used.

Most macros are sensitive to the setting of the RECORDOBJ function’s SETRECORD subfunction. This DDE function
is used primarily to gain access to additional contacts and other supplementary information. When the
SETRECORD type is set to PRIMARY, the following macros will return the value from the corresponding fields in the
primary information portion of the contact record. When the SETRECORD type is set to CONTACTS (additional
contacts), or another supplementary record type, the macros will return the value from the corresponding field in
the supplementary file (CONTSUPP.DBF).

The following macros can be used as DDE service items:

Page 84 of 463

GoldMine ™

&Address

Returns a string containing the values of both &Address1 and &Address2,
separated by a carriage return and line feed character. If either &Address1 or
&Address2 does not contain any data, a single line of data is returned, without the
carriage return and line feed character.

This macro can be used to perform rudimentary blank line suppression within
linked applications that do not support blank address line suppression internally.
The action of this macro string is similar to the action of the &Address macro. The
&Address2 macro can be used to return an additional contact address by using the
RECORDOBJ SETRECORD subfunction.

&Address1

Returns the first Address field from the active contact record. Typically, this value
will be extracted from the Address1 field in the primary display portion of the
contact record; however, when the RECORDOBJ SETRECORD subfunction has been
used to change the returned record type to CONTACTS, then GoldMine returns the
value from the Address1 field on the additional contact record, if a value is
entered. When the Address1 field on the additional contact record is blank, then
the &Address1 macro returns the value in the Address1 field in the primary display
portion of the contact record. When the RECORDOBJ SETRECORD type is set to
return a record type other than CONTACTS, the &Address1 macro returns the value
in Address1 field in the primary display portion of the contact record.

&Address2

Returns the second Address field from the active contact record. Typically, this
value will be extracted from the Address2 field in the primary display portion of the
contact record; however, when the RECORDOBJ SETRECORD subfunction has been
used to change the returned record type to ADDITIONAL, then GoldMine returns
the value from the Address2 field on the additional contact record, if an entry
exists in the Address2 field on the additional contact record. When the Address2
field on the additional contact record is blank, then the &Address2 macro returns
the value in the Address2 field in the primary display portion of the contact record.
When the RECORDOBJ SETRECORD type is set to return a record type other than
PRIMARY or ADDITIONAL, the &Address2 macro returns the value in the Address2
field of the primary display portion of the contact record.

&BrowseRecNo

Xbase: Returns the record number of the last selected record in a browse window.
SQL: Returns the record ID of the last selected record in a browse window.

&CalRefresh

Refreshes the graphical calendar display. Set up GoldMine to run this macro after
adding calendar records using DDE.

&City

Returns the City field from the active contact record. The action of this macro
string is similar to the action of &Address1. The &City macro can be used to return
an additional contact city by using the RECORDOBJ SETRECORD subfunction.

Page 85 of 463

GoldMine ™

&CityStateZip

Returns a format string of text containing the City, State, and Zip fields from the
active contact record. This string is returned in the following format:

City, State Zip

The action of this macro string is similar to the action of &Address1. The
&CityStateZip macro can be used to return an additional contact city, state, and ZIP
Code by using the RECORDOBJ SETRECORD subfunction.

&CommonDir

Xbase: Returns the path information for the directory where the contact sets are
located.
SQL: Returns the BDE alias where the contact sets are located.

&Contact

Returns a Contact name from the active contact record. Normally, this value will be
extracted from the Contact field in the primary display portion of the contact
record; however, the RECORDOBJ SETRECORD subfunction can be used to change
the returned record type to additional contact, or another type of supplementary
record. When the RECORDOBJ SETRECORD type is set to return record types other
than PRIMARY, the &Contact macro returns the value in Contact field in CONTSUPP
for the current supplementary record.

&Country

Returns the Country field from the active contact record. The action of this macro
string is similar to the action of &Address1. The & Country macro can be used to
return an additional contact country by using the RECORDOBJ SETRECORD
subfunction.

&Diall

Returns the Phonel entry from the active contact record. The returned phone
number is formatted for dialing. GoldMine applies the same rules used to dial the
phone via TAPI. If selected, PREDIAL.INI settings are applied to phone number
selection.

&Dial2

Returns the Phone2 entry from the active contact record. For details, see &Diall
above.

&Dial3

Returns the Phone3 entry from the active contact record. For details, see &Diall
above.

&DialFax

Returns the FAX entry from the active contact record. For details, see &Diall
above.

&EmailAddress

Returns the primary e-mail address for the currently selected contact.

&Fax

Returns the fax number as it should be sent to an auto-dialer for automatic fax
transmission.

&Filter

Returns the activated filter expression.

&FirstName

Returns the first name of the current contact.

Page 86 of 463

GoldMine ™

Returns a string containing the complete address for the contact record, composed
of values of &Address1, &Address2, &City, &State, and &ZIP.

&FullAddress The action of this macro string is similar to the action of &Addressl. The
&FullAddress macro can be used to return an additional contact address by using
the RECORDOBJ SETRECORD subfunction.

Returns the ID of the currently selected tab. Typically, this value will verify that the
correct tab is selected when a user starts a custom application.

The following values are valid:

0 = Summary

1 = Fields

2 = GM+View

3 = Notes

4 = Contacts

5 = Details

6 = Referral

7 = Pending

8 = History
&GetRoTablD 9 = Links

10 = Members

11 = APs/Tracks

12 = Opportunities

13 = Projects

14 = Relationships/Org tree

15 = Cases

16 = HEAT View if installed, else it will go to the first tab
17+ = custom if installed, otherwise the first tab

The following example tests the selection of the Details tab:
ch=DDElnitiate(“GoldMine”, “Data”)

If DDERequest$(Ch, “&GetRoTablD”) <> “6” Then

MsgBox “You must select a detail record first”

End If

&GetRoTabPos Returns the currently selected tab position. Since the tabs can be rearranged, this
method is not always reliable for determining the currently selected tab. For
details, see &GetRoTablD.

&GoldDir Xbase: Returns path information for the directory in which GoldMine is installed.
SQL: Returns path information for BDE alias in which GoldMine is installed.

Returns the name of the current contact in the format:

&LastFirstName .
last name, first name

Returns the number of concurrent users allowed to log in to the installed copy of

&LicU
fcusers GoldMine.

Page 87 of 463

GoldMine ™

&LicUsersAvailable

Returns the number of users allowed to log in to the installed copy of GoldMine
license.

&NameAddress

Returns a string containing the contact’s name, company, and complete address of
the current contact record. Each address line is separated by a carriage return and
line feed, and the entire string is formatted so that the string can be inserted
directly into a merge template. If any of the address lines on the contact record is
empty, that address line will be suppressed. This macro can be used to perform
rudimentary blank line suppression within linked applications that do not support
blank address line suppression internally.

The action of this macro string is similar to the action of the &ADDRESS macros,
and the &NAMEADDRESS macro can be used to return an additional contact
address by using the RECORDOBJ SETRECORD subfunction.

&NameTitleAddress

Returns a string containing the contact’s name, title, department, company, and
complete address of the current contact record. Each line is separated by a
carriage return and line feed, and the entire string is formatted so that the string
can be inserted directly into a merge template. If any of the lines on the contact
record is empty, that line will be suppressed. This macro can be used to perform
rudimentary blank line suppression within linked applications that do not support
blank address line suppression internally.

The action of this macro string is similar to the action of the &ADDRESS macros,
and the &NAMETITLEADDRESS macro can be used to return an additional contact
address by using the RECORDOBJ SETRECORD subfunction.

&NewReclD

Returns a unique record ID, which can be used when creating new records.

&Notes

Returns the Notes from the active contact record. Typically, this value will be
extracted from the Notes field in the primary display portion of the contact record;
however, the RECORDOBJ SETRECORD subfunction can be used to change the
returned record type to additional contact, or another type of supplementary
record. When the RECORDOBJ SETRECORD type is set to other than PRIMARY, the
&TITLE macro returns the value in Notes field in CONTSUPP for the current
supplementary record.

&Phone

Returns a telephone number from the selected contact record.

The action of this macro string is similar to the action of the &ADDRESS1. The
&PHONE macro can be used to return an additional contact telephone number by
using the RECORDOBJ SETRECORD subfunction.

Page 88 of 463

GoldMine ™

&Profile(s)

Two related macros:
&Profile: Returns the first matching profile record for the selected contact.
&Profiles: Returns all profile records for the selected contact.
Both of these macros take optional parameters. Each parameter must be
separated by a period (.). Although GoldMine does not typically pass parameters
with a DDE macro, the structure of &Profiles must be different for DDE fields in
Microsoft Word document templates, which do not take DDE commands.
The following examples show the syntax for the &Profile(s) macros:
&Profile Example 1
&Profile.ProfileName.Reference.Flags
Retrieves the first profile that matches the ProfileName and Reference.
In both of the above examples, the Reference parameter is optional. If passed, the
Reference parameter acts as a “begin with” condition on the profile reference. If
the Reference parameter is not passed, all ProfileName profiles are evaluated.
The optional Flags parameter has the following values:
2 Returns the extended profile fields
4 Returns the ProfileName and Reference
The &Profile(s) macro can easily fill in a Word table with the selected contact’s
profile information because tabs separate each field value, and a CR/LF separates
each profile record.
&Profile Example 2
The following example returns the first e-mail address of the contact:
&Profile.E-mail Address
&Profiles Example 1
The following example returns all the computer profiles that begin with the word
notebook:
&Profiles.Computer.Notebook
&Profiles Example 2
The following examples use the Flags parameter to specify the profile fields to
return:
&Profiles.Computer.Notebook
Notebook ThinkPad 770|
Notebook Compag Elite]
Notebook Del1 1200]

&Profiles.Computer.Notebook.?2
Computer |Notebook ThinkPad 770]|
Computer |Notebook Compaq Elite]|
Computer|Notebook Dell 1200] |

&Profiles.Computer.Notebook.4
Computer|Notebook ThinkPad 770|IBM|233Mz|
Computer |Notebook Compaq Elite|Compaq]|200mz|
Computer |Notebook Dell 1200|Del1|166mz|

Page 89 of 463

GoldMine ™

&RoTabPage

Returns the currently selected tab. Typically, this value will verify that the correct
tab is selected when a user starts a custom application. Values between 1 and 9
represent tabs in the first row of tabs; for example, 1 represents the Summary tab
. Values between 10 and 18 represent tabs in the second row, and 19-27 represent
tabs in the third row.
The following example tests the selection of the fifth (Profiles) tab:
ch=DDEInitiate(“Goldmine”, “Data”)
If DDERequest$(Ch, “&RoTabPage”) <> “5” Then
MsgBox “You must select a profile record first”
End If

&SerialNo

Returns the serial number of the installed GoldMine program.

&SetRoTab#

Selects the tab that corresponds to the number (represented by #) in the active
contact record.

The following values are valid:

1 =Summary

2 = Fields

3 =GM+View

4 = Notes

5 = Contacts

6 = Details

7 = Referral

8 = Pending

9 = History

10 = Links

11 = Members

12 = APs/Tracks

13 = Opportunities

14 = Projects

15 = Relationships/Org tree

16 = Cases

17 = HEAT View if installed, else it will go to the first tab
18+ = custom if installed, otherwise the first tab

ch=DDEInitiate(“Goldmine”, “Data”)
DDERequest$(Ch, “&SetRoTab4”)

Displays the Notes tab in the contact record.

&ShutDown

Logs out the currently logged user, and quits GoldMine.

&State

Returns the State field from the active contact record. The action of this macro
string is similar to the action of the &ADDRESS1. The &STATE macro can be used to
return an additional contact state by using the RECORDOBJ SETRECORD
subfunction.

&SysDir

Returns the GoldMine system directory.

Page 90 of 463

GoldMine ™

&Sysinfo

Displays system information as returned by Help>About GoldMine>System Info.

&Title

Returns the Title from the active contact record. Normally, this value will be
extracted from the Title field in the primary display portion of the contact record;
however, the RECORDOBJ SETRECORD subfunction can be used to change the
returned record type to additional contact, or another type of supplementary
record. When the RECORDOBJ SETRECORD type is set to other than PRIMARY, the
&TITLE macro returns the value in Title field in CONTSUPP for the current
supplementary record.

&User_Var

Returns the defined field value from all users, a specified user, or the currently
logged user. For details on defining values, see “Defining Field Values for use with
External Applications” in Maintaining GoldMine.
The &User_Var macro allows GoldMine users to store specific data that can be
retrieved later into applications that are linked via DDE with GoldMine. This macro
can be defined in the [user_var] section of both the GM.INI and the username.INI
of GoldMine.
Usage Syntax:

&User_var.<variable name>.<GoldMine username>
Example:

&User_var.Territory.Dan
(Where <variable name> is a descriptive name of the macro and <GoldMine
username> assigns a defined value to a specific GoldMine user.)
<GoldMine username> is optional, as GoldMine will assign these values to the
current GoldMine user.

&UserFullName

Returns the full name of the currently logged GoldMine user as the name appears
in the FullName field in the Users Master File for the user.

&UserName

Returns the login name of the currently logged GoldMine user.

&Version

Returns the version number of the installed GoldMine program.

&WebsSite

Returns http://<Web site> for the active contact.

&ZIP

Returns the Zip field from the currently active contact record. The action of this
macro string is similar to the action of the &ADDRESS1. The &ZIP macro can be
used to return an additional contact ZIP Code by using the RECORDOBJ SETRECORD
subfunction. The DDE macro can be used to reindex or rebuild the database.

DDE Macros for Merge Forms

The following DDE macros are used primarily for creating DDE links to GoldMine through the Merge Forms
function. The values returned by each of these macros are updated by GoldMine when a Merge Form is launched
by selecting Edit, Link, Print or Fax from the Merge Forms dialog box.

Page 91 of 463

GoldMine ™

&PARAM1 Returns the path and filename of the document template associated with the merge form
(filename) selected when Edit, Link, Print, or Fax was selected. This value is obtained from the Template
File field in the merge form’s Form Setting dialog box.
&PARAM?2 Returns a value indicating whether the Edit, Link, Print, or Fax button was selected to launch
(action) linked application.
&PARAM2 Parameters
Value Description
1 Edit selected
2 Link selected
3 Print selected
4 Fax selected
&PARAM3 Returns a value corresponding to the setting of the Record Range options on the Merge
(range) Forms dialog box when the Edit, Link, Print, or Fax button was selected.

&PARAM3 Parameters

Value Description

1 This contact selected

2 All contacts selected

3 Forward to last selected

&PARAMA Returns a value corresponding to the setting of the Primary and Additional check boxes on

(scope) the Merge Forms dialog box when the Edit, Link, Print, or Fax button was selected.
&PARAM4 Parameters

Value Description

1 Primary checked

2 Additional checked

3 Both Primary and Additional checked

Page 92 of 463

GoldMine ™

&PARAMS5 Returns a value corresponding to the status of the Link to Doc, Save History, and/or Allow

(flags) Hot Link check boxes on the Merge Forms dialog box. In addition, the returned value
determines whether the form was merged as the result of an Automated Processes action.
Returns a seven-character string. Each position of the string can contain either 0, indicating

the item

was not checked (or Automated Processes is not active), or 1, indicating the item

was checked (or Automated Processes is active).

&PARAMS5 Parameters
Position Description
1 Link to Doc
2 Save History
3 Allow Hot Link
4 Unused
5 Unused
6 Unused
7 Automated Processes status
&PARAMG6 Returns a value containing the record number of the last Linked Document

(LinkDoc record number)

supplementary record created as a result of launching a Merge Form. When you
launch a merge form with Link to Doc selected, GoldMine creates a linked
document record to hold the saved document. This value can be saved and used to
update the linked document record by passing the record number to the LinkDoc
DDE function.

&PARAM7
(contact record pointer)

Returns a pointer to a minimized contact record that is created when Print or Fax is
selected on the Merge Forms dialog box, and the Record Range is All Contacts or
Forward to Last. This value can then be passed to the RecordObj function to further
control a document merge from the linked application.

&PARAMS
(merge code value)

Returns the merge code entered in the Merge code field of the Merge Forms dialog
box.

&PARAMSY
(history record)

Returns the RecNo or ReclD of the history record created by GoldMine. This macro
is useful for updating the history record.

DDE Macros for the GoldMine License

The following DDE macros return data for the current GoldMine license. The descriptions for each macro include

the corresponding field name

from the form that appears in the Registration tab of the GoldMine Net-Update

window. For details on the Net-Update process, see “Using Net-Update” in the online Help.

Page 93 of 463

GoldMine ™

&LicInfolicTo

Returns the Organization entry from the registration form.

&Liclnfo_Contact

Returns the Contact Name entry from the registration form.

&lLicInfo_LicEmail

Returns the E-mail address entry from the registration form.

&Licinfo_Phone

Returns the telephone number entry from the first Phone/Fax field.

&LicInfo_Fax

Returns the fax number entry from the second Phone/Fax field.

&Licinfo_Addressl

Returns the Address1 entry from the registration form.

&LicInfo_Address2

Returns the Address2 entry from the registration form.

&LicInfo_City

Returns the city entry from the first City/State field.

&LicInfo_State

Returns the state or province entry from the second City/State field.

&Lliclnfo_Zip

Returns the ZIP Code entry from the first Zip/Country field.

&LicIlnfo_Country

Returns the country entry from the second Zip/Country field.

Page 94 of 463

GoldMine™

Using GMXS32.DLL for Database Access
and Sync Log Updates

Overview

The GoldMine GMxs32.DLL is a standard dynamic-link library (DLL) that offers developers efficient methods to
access GoldMine databases and update GoldMine synchronization logs when external applications update
GoldMine data. Most development environments can load GMxs32.DLL. GoldMine does not need to run to use
GMXS32.DLL.

GMXS32.DLL installs into the \WINDOWS\SYSTEM directory automatically with GoldMine. Therefore, third-party
developers do not need to distribute GMxs32.pLL with their applications.

The actual file name for the API will vary depending on the version of GoldMine. For versions of GoldMine in the
5.0 ranges, the dll is named GM5532.DLL. For versions in the 6.0 ranges, the dll is named GM6532.DLL

For an in-depth discussion on interfacing with GoldMine, visit the Public.GoldMine.Programming newsgroup,
which you can access directly from the GoldMine Web site at http://www.goldmine.com.

This document contains the information you need to:

O Load and initialize GMXs32.DLL

O Streamline integration with GoldMine

O Work with DataStream functions

O Work with low-level data access functions

O Update GoldMine synchronization information when data is changed by an external application not
utilizing the GoldMine API.

Passing Multiple Parameters to a Function

Each Name/Value (NV) set, or container, simply combines a “Name” and a “Value.” In the following example:
Company=GoldMine, Inc
Company is the Name and GoldMine, Inc is the Value.

Using a set of NV pairs provides an easy mechanism to pass multiple parameters to a function. The user can
populate the NV pairs into a container, then execute a Business Logic transaction against the container. The
transaction adds extra pairs to the container to return the results.

Page 95 of 463

http://www.goldmine.com/

GoldMine ™

Since the NV container remains in memory until cleared, it can make several calls without clearing all the previous
values. This capability is useful to call the same function with only slight changes to the values, such as when a
return value of one call is needed for a subsequent call.

Using the Business Logic methods, a developer can easily read and write GoldMine data. Previously, integrating
with GoldMine required a great familiarity with the schema and methodology of GoldMine databases. The
Business Logic functions require less direct knowledge and provide a more standardized and secure way to
integrate with GoldMine. Business Logic functions wrap several other low-level calls to perform common tasks. In
addition, the Business Logic functions take user security restrictions into account when reading and updating
GoldMine data.

Comparing Low Level/DDE Methodology to Business
Logic Methodology

We can compare an example flow to a common task using low level/DDE or Business Logic. In the following
example, you can see that Method 2 has a simpler flow than Method 1.

Method 1: Updating a Contact Record using the low level functions or DDE
1. Open the Contactl database.

Set the index tag.

Seek the contact record.

If not found, then Append a new record.

Replace field values.

oV Pk wWwN

Close the database.

Method 2: Updating a Contact Record using the Business Logic

1. Load an NV Container with the values for the contact record.
2. Execute the WriteContact method.

Loading GMXS32.DLL and Logging In

The following section describes the functions available to load the BDE and log in to a GoldMine table. For
function prototypes and code examples in C++, Visual Basic and Delphi, see the .

If using C/C++, note that the GMxs32.DLL functions use the stdcall convention.
Before using any of the functions, you must perform the following steps:

1. GMXs32.DLL must be dynamically loaded in C/C++ (simply declare them in VB).

2. GMW_LoadAPI function must be called to load the APl with the set parameters for the programmer to work
with.

The GMW _UnloadAPI() function must always be called before terminating the application and freeing the DLL.

The following functions initialize and close the API sessions:

Page 96 of 463

GoldMine ™

O GMW_LoadAPI: loads set parameters for an API session
O GMW_UnloadAPI: closes the API session

NOTE: As of GoldMine Version 7.0, the Borland Database Engine is no longer used. References to BDE in
the following sections apply only to integrations developed in GoldMine Version 6.7 or lower.
For GoldMine Version 6.7 or Lower

The GMW _LoadBDE function must be called to load the BDE and initialize the database objects. The GMW_
UnloadBDE() function must always be called before terminating the application and freeing the DLL.

The following functions initialize and close the BDE sessions:

O GMW_LoadBDE: loads a BDE session
O GMW_UnloadBDE: closes the BDE session

Setting the SQL Database Login Name and PasswordGoldMine
6.7 or lower only)

This topic pertains to SQL only. GMW_SetSQLUserPass should be called immediately prior to the GMW_LoadBDE
call. GMW_SetSQLUserPass is required only when accessing SQL tables, and will have no effect on Xbase tables.
This function is not required if using DDE login credentials with versions of GoldMine beyond 5.70.20222.

Syntax
C/C++ int _stdcall GMW_SetSQLUserPass(char *szUserName, char *szPassword)
VB Public Declare Function GMW_SetSQLUserPass Lib "gm6s32.dll" (ByVal strUserName As
String, ByVal strPassword As String) As Long
Parameters

The GMW_SetSQLUserPass function takes two parameters:
O szUserName: specifies the SQL login name.
O szPassword: specifies the SQL login name’s password.
Return Values
The GMW_SetSQLUserPass function returns the following values:
GMW_SetSQLUserPass Return Values

Return Description

0 Failure

1 Success
Example

GMW_SetSQLUserPass("JON", "MyPASSWORD");

Page 97 of 463

GoldMine ™

Loading an API Session (GoldMine 7.0 or higher)

Syntax

C/C++ int GMW_LoadAPI(char *szSysDir, char *szGoldDir, char *szCommonDir, char *szUser,
char *szPassword)

VB Public Declare Function GMW_LoadAPI Lib "gm6s32.dll" (ByVal strSysDir As String, ByVal
strGoldDir As String, ByVal strCommonDir As String, ByVal strUser As String, ByVal
strPassword As String) As Long

Parameters

The GMW _LoadAPI function takes five parameters.
SzGoldDir: Specifies the location of CAL.DBF or the database alias name to use as the main database.

NOTE: The database alias name must be appended with a colon (":").

SzCommonDir: Specifies the location of CONTACT1.DBF or the database alias name to use as the contact set
database.

NOTE: The database alias name must be appended with a colon (":").
SzUser: Specifies the GoldMine user name (must be UPPERCASE).

For APl version 5.70.20222 and later: You may set this parameter to the value of *DDE_LOGIN_
CREDENTIALS* to use login credentials returned for the user logged into a running copy of GoldMine through
DDE. For GoldMine 6.7 or higher, you may also use the Ul APl equivalent.

SzPassword: Specifies the user’s password (must be UPPERCASE).

For API version 5.70.20222 and later: You may set this to the return string from the GetLoginCredentials DDE
command if the User parameter is set to *DDE_Login_Credentials*. The credential string is only valid for 30
seconds.

Return Values
The GMW _LoadAPI function returns the following values:

GMW_LoadBDE Return Values

Return Description

1 Success

0 API already loaded

-1 API failed to load

-2 Cannot find license file
-3 Cannot load license file

Page 98 of 463

GoldMine ™

-4 Cannot validate the license file username/password

-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user
Notes

GMW_LoadAPI must be called before calling any function that accesses databases, such as GMW_UpdateSyncLog
and GMW_ReadlmpTLog. GMW_UnloadAPI must be called before unloading the DLL. GMW_LoadAPI may be
called as many times as necessary. Be sure to match a corresponding GMW_UnloadAPI for every call of GMW _
LoadAPI.

Example

GMW_LoadAPI("d:\\Gm4", "d:\\Gm4", "d:\\GM4\\demo", "JON", “PASS”);

or

GMW_LoadAPI("d:\\GmM4", "d:\\Gm4", "d:\\GM4\\demo",
“*DDE_LOGIN_CREDENTIALS*”, szDDEReturnString);

Loading a BDE Session (GoldMine 6.7 or lower)

Syntax

C/C++ int GMW _LoadBDE(char *szSysDir, char *szGoldDir, char *szCommonDir, char *szUser,
char *szPassword)

VB Public Declare Function GMW_LoadBDE Lib "gm6s32.dII" (ByVal strSysDir As String, ByVal
strGoldDir As String, ByVal strCommonDir As String, ByVal strUser As String, ByVal
strPassword As String) As Long

Parameters

The GMW_LoadBDE function takes five parameters.
SzGoldDir: Specifies the location of CAL.DBF.
SzCommonDir: Specifies the location of CONTACT1.DBF.

SzUser: Specifies the GoldMine user name (must be UPPERCASE).
For APl version 5.70.20222 and later: You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to
use login credentials returned for the user logged into a running copy of GoldMine through DDE.

Page 99 of 463

GoldMine ™

SzPassword: Specifies the user’s password (must be UPPERCASE).

For API version 5.70.20222 and later: You may set this to the return string from the GetLoginCredentials DDE
command if the User parameter is set to *DDE_Login_Credentials*. The credential string is only valid for 30
seconds.

Return Values
The GMW_LoadBDE function returns the following values:
GMW_LoadBDE Return Values

Return Description

1 Success

0 BDE already loaded

-1 BDE failed to load

-2 Cannot find license file

-3 Cannot load license file

-4 Cannot validate the license file username/password

-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user
Notes

GMW _LoadBDE must be called before calling any function that accesses databases, such as GMW_UpdateSynclLog
and GMW_ReadImpTLog. GMW_UnloadBDE must be called before unloading the DLL. GMW_LoadBDE may be
called as many times as necessary. Be sure to match a corresponding GMW_UnloadBDE for every call of GMW _
LoadBDE.

Example

GMW_LoadBDE("d:\\GM4", "d:\\GM4", "d:\\GM4\\demo", "JON", “PASS”);

or

GMW_LoadBDE("d:\\GM4", "d:\\GmM4", "d:\\GM4\\demo",
“*DDE_LOGIN_CREDENTIALS*”, szDDEReturnString);

Logging in a User

GMW_Login may be used to login a different user than was originally logged in through GMW_LoadAPI or GMW_
LoadBDE.

Page 100 of 463

GoldMine ™

Syntax
C/C++ int GMW_Login(char *szUser, char *szPassword, char *szSQLUser, char *szSQLPassword)
VB Public Declare Function GMW_Login Lib "gm6s32.dIl" (ByVal strUser As String, ByVal
strPassword As String, Optional ByVal strSQLUser As String, Optional ByVal
strSQLPassword As String) As Long
Parameters

szUser: Specifies the GoldMine user name (must be UPPERCASE).
For APl version 5.70.20222 and later: You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to
use login credentials returned for the user logged into a running copy of GoldMine through DDE.

szPassword: Specifies the user’s password (must be UPPERCASE).
For APl version 5.70.20222 and later: You may set this to the return string from the GetLoginCredentials DDE
command if the User parameter is set to *DDE_Login_Credentials*. The credential string is only valid for 30

seconds.
5z5QLUser: Specifies the user’s SQL login name. Omit if using DDE login credentials.

525QLPassword: Specifies the user’s SQL password. Omit if using DDE login credentials.

Return Values

The GMW_Login function returns the following values:

GMW._Login Return Values

Return Description

1 Success

0 Failure

-1 User does not have permission to open the current contact set.
Example

GMW_Login("JOE", "PASS", "sA", "");
or
GMW_Login(“*DDE_LOGIN_CREDENTIALS*”, szDDEReturnString);

Closing an API Session (GoldMine 7.0 or higher)

Syntax
C/C++ int GMW_UnloadAPI()
VB Public Declare Function GMW _UnloadAPI Lib "gm6s32.dIl" () As Long

Page 101 of 463

GoldMine ™

Return Values
The GMW _UnloadAPI function returns the following values:
GMW _UnloadBDE Return Values

Return Description

0 Failure

1 Success
Notes

If GMW _LoadAPI is called, GMW_UnloadAPI must be called before unloading the DLL.

Example
GMW_UnloadAPI();
The following functions perform additional functions:

GMW_Getlicenselnfo: Returns GoldMine licensing information

Closing a BDE Session (GoldMine 6.7 or lower)

Syntax
C/C++ int GMW_UnloadBDE()
VB Public Declare Function GMW_UnloadBDE Lib "gm6s32.dll" () As Long

Return Values
The GMW_UnloadBDE function returns the following values:
GMW_UnloadBDE Return Values

Return Description

0 Failure

1 Success
Notes

If GMW _LoadBDE is called, GMW_UnloadBDE must be called before unloading the DLL.

Example
GMW_UnloadBDE();
The following functions perform additional functions:

GMW_SetSQLUserPass: Sets the SQL database login name and password

Page 102 of 463

GoldMine ™

GMW _Getlicenselnfo: Returns GoldMine licensing information

Logging in Multiple Users through the API

Some integrated solutions for GoldMine require more than one user logged into GoldMine. These are usually
some type of server application or a Web-based interface. The following functions enable you to handle these
situations.

The first function call you will make will still be the GMW_LoadAPI or GMW_LoadBDE function. You must enter a
valid username to call this function, but you can leave the password blank. You can also use *DDE_LOGIN_
CREDENTIALS* to call this function. For more information on the GMW _LoadAPl or GMW_LoadBDE functions, see
and .

Logging In

To log in multiple users, use the GMW_MULogin function. Logging in a user with this function will use a seat of
your GoldMine license.

Syntax

C/C++ int __stdcall GMW_MULogin (char* szUser, char* szPassword, char* szSQLUser, char*
szSQLPassword, char* szCommonDir)

VB Public Declare Function GMW_MULogin Lib "gm6s32.dIl" (ByVal strUser As String, ByVal
strPassword As String,ByVal strSQLUser As String, ByVal strSQLPassword As String, ByVal
strCommonDir As String) As Long

Parameters

szUser is the GoldMine login name

szPassword is the GoldMine password

sz5QLUser is the username for the MS SQL server
szSQLPassword is the password for the MS SQL server

szCommondir is to set a different, specific contact file directory for this user

Return Values
The GMW_MULogin function returns the following values:

GMW_MULogin Return Values

Return Description
>0 The session ID for this user
0 Failed to set TLS value

Page 103 of 463

GoldMine ™

-1 Failed to load license file

-2 Failed to validate name and password

-3 No more seats available

-4 Unknown general exception

-5 User does not have access to the specified contact set.

Logging Out

To log out a user when multiple users are logged in, use the GMW_MULogout function. This function will free the
license seat previously used by the GMW_MULogin function.

Syntax
C/C++ int __stdcall GMW_MULogout (int nSessionID)
VB Public Declare Function GMW_MULogout Lib "gm6s32.dll" (ByVal nSessionID As Long) As
Long
Parameters

nSessionlD is the integer value returned by the GMW_MULogin function

Returns

The function will return TRUE if the specified SessionID was valid.

Switching Between Login Sessions

If you are working with more than one login session, it is important to note that the API functions always work on
the last user logged in. The functions do not have a parameter to specify which session (user) to operate on. In
order to switch to a different login session, use the GMW_MUBeginSession function.

Syntax
C/C++ int __stdcall GMW_MUBeginSession (int nSessionID)
VB Public Declare Function GMW_MUBeginSession Lib "gm6s32.dIl" (ByVal nSessionID As
Long) As Long
Parameters

nSessionlID is the integer value returned by the GMW_MULogin function and specifies which login session under
which you want the API calls to operate.

Returns

The function returns the SessionID on success, and 0 on failure.

Page 104 of 463

GoldMine ™

Special Consideration for Multi-Threaded Applications

There may be an instance when your application will not be able to guarantee that every data request will go
through the same thread that created the session, such as the case with Internet Information Server. If you try to
access an API session from a different thread than the one that created the session, you may encounter
exceptions.
To handle these situations, use the GMxTP.DLL. Each of the functions in the GMxs32.DLL is wrapped through the
GMXTP.DLL, so there is no need to load both. In addition, the above multiple login functions have slightly altered
names:

GMW_TP_MULogin

GMW_TP_MULogout

GMW _TP_MUBeginSession

In addition, there is one additional function to be aware of, GMW_TP_CopySecurityTokentoWorkthread.

Syntax
C/C++ GMW_TP_CopySecurityTokentoWorkThread ()
VB Public Declare Sub GMW_TP_CopySecurityTokentoWorkThread lib “gm6s32.d1l” ()

This function ensures that the thread that is attempting access gets the identity of the working thread instead of
the process. This function is especially important when dealing with 1IS Extensions.

Working with Business Logic Functions using the
Name/Value Pair Method

The following section describes the functions available for the programmer to manipulate Name Value containers,
used for accessing the high-level business logic functions via the GMxs32.pLL. For function prototypes and code
examples in C++, Visual Basic and Delphi, see .

For information on which business logic functions are available, and their expected name/value pairs, see ..

Notes

O These functions require that you are successfully logged into a GoldMine database using the GMW_
LoadAPl or GMW_LoadBDE function.

O You must pass an empty NV container with all calls that do not take any parameters.

Creating an NV Container

GMW_NV_Create creates an NV container. This is the first step in using the name/value pair containers. This is

analogous to creating a structure to store multiple variables indicating the values you wish to assign to fields in
GoldMine.

Page 105 of 463

GoldMine ™

Syntax

C/C++ HGMNV __stdcall GMW_NV_Create()

VB Public Declare Function GMW_NV_Create Lib "gm6s32.dIl" () As Long
Example

IGMNV = GMW_NV_Create

Return Value

Pointer to a new NV container

Creating an NV Container with Copied Values

GMW_NV_CreateCopy creates an NV container and copies the values from an existing NV container.

Syntax
C/C++ HGMNV __stdcall GMW_NV_CreateCopy(HGMNV hgmnv)
VB Public Declare Function GMW_NV_CreateCopy Lib "gm6s32.dIl" (ByVal hgmnv As Long) As

Long

where hgmnv represents the pointer to the source NV container.

Example

IGMNV2 = GMW_NV_CreateCopy(pGMNV)

Return Value

Pointer to a new NV container.

Copying Values between NV Containers

GMW_NV_Copy copies the values from one NV container to another. GMW_NV_Create or GMW_NV_CreateCopy
must have previously created both NV containers.

Syntax
C/C++ void _stdcall GMW_NV_Copy (HGMNV hgmnvDestination, HGMNV hgmnvSource)
VB Public Declare Sub GMW_NV_Copy Lib "gm6s32.dIl" (ByVal hgmnvDestination As Long,
ByVal hgmnvSource As Long)
Parameters

hgmnvDestination is the pointer to the destination container.

hgmnvSource is the pointer to the source container.

Page 106 of 463

GoldMine ™

Example

GMW_NV_Copy IGMNV2, IGMNV
Return Value

n/a

Deleting an NV Container

GMW_NV_Delete deletes an NV container and releases its memory. Be sure to call this for all previously created
containers before exiting your application.

Syntax
C/C++ void __stdcall GMW_NV_Delete(HGMNV hgmnv)
VB Public Declare Sub GMW_NV_Delete Lib "gm6s32.dIl" (ByVal hgmnv As Long)

where hgmnv is the pointer to the NV container to delete.

Example

GMW_NV_Delete IGMNV

Return Value

n/a

Reading Values from an NV Container

GMW_NV_GetValue reads a value stored in an NV container. If the name does not exit in the container, the
default value is returned. This method is used to read data out of the container returned from GoldMine. For
example, after creating a contact, you would call GMW_NV_GetValue to read the new Recid or Accountno
assigned to the contact.

Syntax
C/C++ const char* __stdcall GMW_NV_GetValue(HGMNV hgmnv, const char* name, const char*
DefaultValue)
VB Public Declare Function GMW_NV_GetValue Lib "gm6s32.dIl" (ByVal hgmnv As Long,
ByVal Name As String, ByVal DefaultValue As String) As GMWStr
Parameters

hgmnv is the pointer to a valid name value container
Name is the name of the value to return

DefaultValue is the default value if <Name> is null or does not exist.

Page 107 of 463

GoldMine ™

Example

sValue = GMW_NV_GetValue (IGMNV, ‘Accountno’, ‘(none)’)

Return Values

The value of the Name is returned. If the Name is null or does not exist, the DefaultValue value is returned.

Storing NV Pairs in a Container

GMW_NV_SetValue stores a Name/Value pair in the specified container. Use this function to specify the values
that you wish to assign to the GoldMine record (contact, cal, history, etc). Call this function for each field value
you need to assign.

Syntax
C/C++ void __stdcall GMW_NV_SetValue(HGMNV hgmnv, const char* name, const char* value)
VB Public Declare Sub GMW_NV_SetValue Lib "gm6s32.dIl" (ByVal hgmnv As Long, ByVal
Name As String, ByVal Value As String)
Parameters

hgmnv is the pointer to a valid name value container.
Name is the name of the value to set.

Value is the value to assign to <Name>.

Example

GMW_NV_SetValue IGMNV, ‘Phonel’, (310)555-1212’

Return Value

n/a

Searching for an NV Pair

GMW_NV_Name€xists checks if the specified Name/Value exists within the NV container.

Syntax
C/C++ long __stdcall GMW_NV_NameExists(HGMNV hgmnv, const char* name)
VB Public Declare Function GMW_NV_NameExists Lib "gm6s32.dll" (ByVal hgmnv As Long,
ByVal Name As String) As Long
Parameters

hgmnv is the pointer to a valid name value container.

Name is the name of the value to set.

Page 108 of 463

GoldMine ™

Example

iResult = GMW_NV_NameExists (IGMNV, ‘Phonel’)

Return Values

GMW_NV_NamekExists Return Values

Return Description
0 Value does not exist in container
1 Value exists in container

Removing one NV Pair

GMW_NV_EraseName removes a Name/Value pair from the specified container. This function is useful for
removing the Recid name/value pair from a container that has already been used once to create a new record. To
reuse the container using all of the same name/value pairs, the Recid name/value pair needs to be removed in
order to create another new record.

Syntax
C/C++ void __stdcall GMW_NV_EraseName(HGMNV hgmnv, const char* name)
VB Public Declare Sub GMW_NV_EraseName Lib "gm6s32.dIl" (ByVal hgmnv As Long, ByVal
Name As String)
Parameters

hgmnv is the pointer to a valid name value container

Name is the name of the value to set

Example

GMW _NV_EraseName IGMNV, ‘Phonel’

Return Value

n/a

Removing all NV Pairs from a Container

GMW_NV_EraseAll removes all Name/Value pairs from the specified container.

Syntax
C/C++ void __stdcall GMW_NV_EraseAll(HGMNV hgmnv)
VB Public Declare Sub GMW_NV_EraseAll Lib "gm6s32.dll" (ByVal hgmnv As Long)

Page 109 of 463

GoldMine ™

Parameter

hgmnv is the pointer to a valid name value container.

Example

GMW_NV_EraseAll IGMNV

Return Value

n/a

Totaling NV Pairs in a Container

GMW_NV_Count returns the number of Name/Value pairs within the specified container.

Syntax

C/C++ long __ stdcall GMW_NV_Count(HGMNV hgmnv)

VB Public Declare Function GMW_NV_Count Lib "gm6s32.dll" (ByVal hgmnv As Long) As Long
Parameter

hgmnv is the pointer to a valid name value container.

Example

icount = GMW_NV_Count 1GMNV

Return Value

Number of NVs within the specified container.

Finding an NV Name

GMW_NV_GetNameFromindex finds the name of the NV stored at a specific index within the container. The first
item in the container is at index value 1.

Syntax
C/C++ const char* __stdcall GMW_NV_GetNameFromIndex(HGMNV hgmnv, long index))
VB Public Declare Function GMW_NV_GetNameFromIndex Lib "gm6s32.dll" (ByVal hgmnv As
Long, ByVal index As Long) As GMWStr
Parameters

hgmnv is the pointer to a valid name value container

Index is the item number to return.

Page 110 of 463

GoldMine ™

Example

sName = GMW_NV_GetNameFromIndex (1GMNV, 3)

Return Value

The name stored at <Index> within the container.

Finding an NV Value

GMW _NV_GetValueFromIndex finds and returns the value of the NV stored at the specified index within the
container. The first item in the container is stored an index value 1.

Syntax
C/C++ const char* __stdcall GMW_NV_GetValueFromIndex(HGMNV hgmnv, long index)
VB Public Declare Function GMW_NV_GetValueFromIndex Lib "gm6s32.dIl" (ByVal hgmnv As
Long, ByVal index As Long) As GMWStr
Parameters

hgmnv is the pointer to a valid name value container

Index is the item number to return

Example

svalue = GMW_NV_GetvalueFromIndex(pGMNV, 3)

Return Value

The value stored at <Index> within the container.

Setting NV Pairs

GMW_NV_SetStr sets one or more Name/Value pairs. This function is used if you would like to set multiple
name/value pairs in a single call.

Syntax
C/C++ void __stdcall GMW_NV_SetStr(HGMNV hgmnv, char dimName, char dimVal, const char*
pszValueStr)
VB Public Declare Sub GMW_NV_SetStr Lib "gm6s32.dll" (ByVal hgmnv As Long, ByVal
strDImName As String, ByVal strDImVal As String, ByVal ValueStr As String)
Parameters

hgmnv is the pointer to a valid name value container.
DimName is the delimiter between the name and its value.

DIimVal is the delimiter between each NV pairs.

Page 111 of 463

GoldMine ™

ValueStr is the string containing the name values.

Example

GMW_NV_SetStr 1GMNV,'=',';"', 'Company=GoldMine;Keyl=Cust'
GMW_NV_SetStr 1GMNV, '&','&', 'Company&GoldMine&Keyl&Cust'

NOTE: * The delimiters may be the same for DImName and DImVal.
Return Value

n/a

Executing Business Logic Methods

All of the Business Logic methods are accessed through the GMW _Execute function. You must be successfully
logged into a GoldMine database for this call to work properly. For details about Business Logic methods, see .

Syntax
C/C++ long _stdcall GMW_Execute(const char *szFuncName, HGMNV hgmnv)
VB Public Declare Function GMW_Execute Lib "gm6s32.dIl" (ByVal strFuncName As String,
ByVal hgmnv As Any) As Long
Parameters

FuncName is one of the various business logic functions described below.

hgmnv is the pointer to a Name/Value container.

Example

GMW_EXxecute “WriteContact”, 1GMNV

Return Values

GMW_Execute Return Values

Return Description
0 Failure
>0 Success

Working with Multi-Value Name/Value Pairs

Some business logic methods use a special name/value pair that contains multiple values. In addition, a
name/value pair may simply hold a string value, or it may hold the handle(s) to one or more name/value
containers. The lifetime of an embedded NV value is controlled by its parent. You do not need to call GMW_NV_
Delete on it.

Page 112 of 463

GoldMine ™

The following functions are used to manipulate and read multi-value pairs.

Determining the Type of a Name/Value Pair

The GMW_NV_GetValueType function is used to determine if a name/value pair is a multi-value pair or a
container.

GoldMine API Version: 5.50.10111

Syntax
C/C++ long _stdcall GMW_NV_GetValueType(HGMNV hgmnv, const char *name)
VB Public Declare Function GMW_NV_GetValueType Lib "gm6s32.dIl" (ByVal hgmnv As Long,
ByVal strName As String) As GMWNVValueType
Parameters

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair for which you want to determine the type.

Return Values
Possible return values are as follows:

GetValueType Return Values

Value Description
GM_NV_VALUE_TYPE_SINGLE_NV The value is one NV Containers
GMW_NV_VALUE_TYPE_MULTI_NV The value stores multiple NV containers
GMW_NV_VALUE_TYPE_MULTI_STRING The value stores multiple string values

Determining the Position of an NV Container in an NV
Hierarchy

If the value in an NV pair contains another container, the container that holds the second container is the parent
of the second container. When there are no more parents, or you are at the top level of the hierarchy, the
container is considered the root. The following functions will indicate whether the container is a parent or root, or
return the handle to the root or parent.

GoldMine API Version: 5.50.10111

Syntax
C/C++ BOOL _stdcall GMW_NV_IsRoot(HGMNV hgmnv)
VB Public Declare Function GMW_NV_IsRoot Lib "gm6s32.dll" (ByVal hgmnv As Long) As Long

Page 113 of 463

GoldMine ™

Returns TRUE (not zero) if the specified hgmnv is the root.

Parameters

hgmnv is the pointer to a Name/Value container.

Example

If(GMW_NV_is Root (hgmnv)) {it’s the root} else {it’s a child}

Syntax
C/C++ HGMNV _stdcall GMW_NV_GetRoot(HGMNV hgmnv)
VB Public Declare Function GMW_NV_GetRoot Lib "gm6s32.dIl" (ByVal hgmnv As Long) As

Long

Returns the hgmnv of the root for the specified container. If the root’s hgmnv is specified, the same hgmnv will be
returned.

Parameters

hgmnv is the pointer to a Name/Value container.

Example
hROOtNV = GMN_NV_GetRoot (hgmnv)
Syntax
C/C++ HGMNV _stdcall GMW_NV_GetParent(HGMNV hgmnv)
VB Public Declare Function GMW_NV_GetParent Lib "gm6s32.dll" (ByVal hgmnv As Long) As

Long

Returns the hgmnv of the parent for the specified container. The function returns NULL if the specified hgmnv has
no parent (is the root).

Parameters

hgmnv is the pointer to a Name/Value container.

Example

hParentNvV = GMW_NV_GetParent(hgmnv)

Getting the Number of Values in a Multi-Value Pair

The GMW_NV_GetMultiValueCount function will return the number of values included in a multi-value
name/value pair.

GoldMine API Version: 5.50.10111

Page 114 of 463

GoldMine ™

Syntax
C/C++ long _ stdcall GMW_NV_GetMultiValueCount(HGMNV hgmnv, const char* name)
VB Public Declare Function GMW_NV_GetMultiValueCount Lib "gm6s32.dIl" (ByVal hgmnv As
Long, ByVal strName As String) As Long
Parameters

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair for which you want to receive the count of values.

Example

numberofvalues = GMW_NV_GetMultivalueCountChgmnv, “POP3_Account”)

Retrieving Containers from an NV Pair

When a value contains one container, the GMW_NV_GetNVValue function is used to retrieve the hgmnv for that
child container.

GoldMine API Version: 5.50.10111

Syntax
C/C++ HGMNV _stdcall GMW_NV_GetNvValue(HGMNV hgmnv, const char* name)
VB Public Declare Function GMW_NV_GetNvValue Lib "gm6s32.dIl" (ByVal hgmnv As Long,
ByVal strName As String) As Long
Parameters

hgmnv is the pointer to a Name/Value container.

Name is the name of the name/value pair from which you want to receive the child container.

Example
hSubNV = GMW_NV_GetNvvalueChgmnv, “TheNVvName”)

When a value contains multiple containers, the GMW_NV_GetMultiNvValue function is used to retrieve the
hgmnv for the child containers.

Syntax
C/C++ HGMNV _stdcall GMW_NV_GetMultiNvValue(HGMNV hgmnv, const char* name, long
position);
VB Public Declare Function GMW_NV_GetMultiNvValue Lib "gm6s32.dIl" (ByVal hgmnv As

Long, ByVal strName As String, ByVal position As Long) As Long '1 based

Page 115 of 463

GoldMine ™

Parameters
hgmnv is the pointer to a Name/Value container.
Name is the name of the name/value pair from which you want to receive the child container.
Position is the nth value you want to retrieve (1 based). If you wanted the tenth container in the value, then
position would be 10.
Example

hSubNV = GMW_NV_GtMultiNvvalue(Chgmnv, “TheNvName”, 10)

Retrieving the Values in a Multi-Value Pair

The GMW_NV_GetMultiValue function is used to retrieve the values from a multi-value pair. It is called for each
value and the number of the value to retrieve must be specified. This function is used to retrieve string values. To
retrieve NV containers from the value, use the GMW_NV_GetNvValue function or the GMW_NV_
GetMultiNvValue function.

GoldMine API Version: 5.50.10111

Syntax
C/C++ const char* _stdcall GMW_NV_GetMultiValue(HGMNV hgmnv, const char* name, long
element, const char* defaultValue)
VB Public Declare Function GMW_NV_GetMultiValue Lib "gm6s32.dIl" (ByVal hgmnv As Long,
ByVal strName As String, element As Long, ByVal strDefaultValue As String) As GMWStr
Parameters

hgmnv is the pointer to a Name/Value container.
Name is the name of the name/value pair for which you want to receive the values from.
Element is the number of the value to be returned. This is 1 based.

DefaultValue is the default value to return if the element supplied is not found.

Example
To return the fifth element:

strrifthElemnt = GMW_NV_GetMultivalue(Chgmnv,
“POP3_Account”, 5, “No Account”)

Deleting Values from a Multi-Value Pair

The GMW_NV_EraseName function will delete the entire Multi-Value Pair.
GoldMine API Version: 5.50.10111

Page 116 of 463

GoldMine ™

Assigning a Container to a Parent

If you need to populate a container that will be a child container, one approach is to create the container, fill int
with its respective values, and then copy the container into the value of the NV pair desired.

When the NV pair holds only one container, the GMW_NV_SetNvValue function is used.
GoldMine API Version: 5.50.10111

Syntax
C/C++ void _stdcall GMW_NV_SetNvValue(HGMNV hgmnv, const char* name, HGMNV
hgmnvValue)
VB Public Declare Sub GMW_NV_SetNvValue Lib "gm6s32.dIlI" (ByVal hgmnv As Long, ByVal
strName As String, ByVal hgmnvValue As Long)
Parameters

hgmnv is the pointer to the parent Name/Value container.
Name is the name of the name/value pair into which you want to copy the child container.
hgmnvValue is the prepared NV container to copy to the parent container.

Example

GMW NV_SetNvValue hgmnv, “TheNVName”, hChildNV

The GMW_NV_AppendNvValue function will append a copy of the specified child container to an NV pair value
that contains multiple containers.

Syntax
C/C++ long _stdcall GMW_NV_AppendNvValue(HGMNV hgmnv, const char* name, HGMNV
hgmnvValue)
VB Public Declare Function GMW_NV_AppendNvValue Lib "gm6s32.dll" (ByVal hgmnv As
Long, ByVal strName As String, ByVal hgmnvValue As Long) As Long
Parameters

hgmnv is the pointer to the Name/Value container.
Name is the name of the name/value pair into which you want to copy the child container.

hgmnvValue is the prepared NV container to copy to the parent container.

Example
GMW_NV_AppendNvvalue hgmnv, “The NvName”, hchildNv

Creating an Empty Child Container Within the Parent

Page 117 of 463

GoldMine ™

The two preceding functions took a prepared NV container and copied it to the parent container. Another (best
practice) method would be to allow the API to create the child container for you, return the hgmnv to that child,
and then allow you to fill it with the appropriate values.

The GMW_NV_SetEmptyNvValue will create a child container for an NV pair and return the hgmnv for that child.
This function is used when the value is to hold only one child container.

GoldMine API Version: 5.50.10111

Syntax
C/C++ HGMNV _stdcall GMW_NV_SetEmptyNvValue(HGMNV hgmnv, const char* name)
VB Public Declare Function GMW_NV_SetEmptyNvValue Lib "gm6s32.dll" (ByVal hgmnv As
Long, ByVal strName As String) As Long
Parameters

hgmnv is the pointer to the parent Name/Value container.

Name is the name of the name/value pair in which you want to create the child container.

Example

hChildNv = GMW_NVSetEmptyNvvalueChgmnv, “TheNvName”)
‘now set the values of the child container using the returned HGMNV

When you need to append an empty child container to an NV pair containing multiple children, use the GMW_
NV_AppencdEmptyNvValue function.

Syntax
C/C++ HGMNV _stdcall GMW_NV_AppendEmptyNvValue(HGMNV hgmnv, const char* name)
VB Public Declare Function GMW_NV_AppendEmptyNvValue Lib "gm6s32.dll" (ByVal hgmnv
As Long, ByVal strName As String) As Long
Parameters

hgmnv is the pointer to the parent Name/Value container.

Name is the name of the name/value pair to which you want to append the new empty child container.

Example

hchildNv = GMW_NV_AppendEmptyNvvalue(Chgmnv, “TheNvName”)
‘now set the values of the child container using the returned HGMNV.

Appending String Values to a Multi-Value Pair

The GMW_NV_AppendValue function will append values to a multi-value pair.
GoldMine API Version: 5.50.10111

Page 118 of 463

GoldMine ™

Syntax
C/C++ long _stdcall GMW_NV_AppendValue(HGMNV hgmnv, const char* name, const char*
value)
VB Public Declare Function GMW_NV_AppendValue Lib "gm6s32.dll" (ByVal hgmnv As Long,
ByVal strName As String, ByVal strValue As String) As Long
Parameters

hgmnv is the pointer to a Name/Value container.
Name is the name of the name/value pair for which you want to receive the count of values.

Value is the value to be appended to the end of the list of values.

Example
To set five (5) values for the POP3_Account value:

For i =1 To 5
GMW_NV_Append hgmnv, “POP3_Account”, i
Next i

Low-level Data Access & Manipulation

The following sections describe additional functions in the GMxs32.pLL that allow data reading and updating via
low-level methods. Use of the following functions requires in-depth knowledge of the GoldMine data structures
and business rules. They are useful for accessing and writing data that is not accessible via the high-level business
logic functions.

Reading Security and Rights for a DLL User

The GMW _UserAccess function retrieves specific permission information for the logged-in user.

GoldMine API Version: 5.00.041

Syntax
C/C++ int _stdcall GMW_UserAccess(long iOption)
VB Public Declare Function GMW _UserAccess lib “gm6s32.dIl” (ByVal iOption as long) as
Integer
Parameters

GMW _UserAccess takes one parameter, iOption, which is a value for the types of rights settings you wish to
query.

Page 119 of 463

GoldMine ™

iOption values

Value Rights

100 Master Rights

101 Access to other user’s calendar
102 Access to other user’s history

103 Access to other user’s sales

104 Access to other user’s reports

105 Access to other user’s merge forms
106 Access to other user’s filters

107 Access to other user’s groups

108 Access to other user’s links

111 Right to create a record

112 Right to edit a record

113 Right to delete a record

114 Right to change record owner

115 Right to field views

116 Right to schedule automated processes
118 Right to SQL Query

119 Right to NetUpdate

124 Right to build groups

Return Values
The GMW _UserAccess function returns 1 if the user has the queried rights.

Using GMW __CalAccess, you can query whether the user logged in via the DLL has rights to read/write a CAL
record.

Syntax
C/C++ int _stdcall GMW_CalAccess(char *szRecType, char *szUserlD, char *szNumber1)
VB Public Declare Function GMW_CalAccess lib “gm6s32.dIl” (ByVal sRectype as String, ByVal

sUserlID as String, ByVal sNumber1 as String) as Integer

Page 120 of 463

GoldMine ™

Parameters
szRecType is the RecType of the record.
szUserlID is the UserlID of the record.

szNumberl1 is the Number1l value of the record.

Return Values
The GMW _CalAccess function returns 1 if the user has rights to read/write.

Using GMW _HistAccess, you can query if the user logged in via the DLL has rights to read/write a CONTHIST
record.

Syntax
C/C++ int _stdcall GMW_HistAccess(char *szRecType, char *szUserlD)
VB Public Declare Function GMW_HistAccess Lib "gm5s32.dIl" (ByVal szRecType As String,
ByVal szUserlD As String) As Integer
Parameters

szRecType is the RecType of the record.

szUserlID is the UserID of the record.

Return Values

The GMW_HistAccess function returns 1 if the user has rights to read /write.

Returning GoldMine Licensing Information

GoldMine API Version: 5.00.041

Syntax
C/C++ int_stdcall GMW_GetLicenselnfo(GMW__LicInfo *pLic)
VB Public Declare Function GMW_GetLicenselnfo Lib "gm6s32.dll" (Licinfo As GMW_LicInfo)
As Long
Parameters

GMW_GetLicenselnfo takes one parameter plic, which is a pointer to a client allocated GMW_Liclnfo structure.

Return Values
The GMW_GetLicenselnfo function returns the following values:

GMW_Getlicenselnfo Return Values

Page 121 of 463

GoldMine ™

Return Description

0 Failure

1 Success
Notes

The GMW_LicInfo structure includes the following items:

GMW _GetLicenselnfo Structure

Typel/Size Name Description
char/60 Licensee Licensee name
char /40 LicNo Master serial number
char /20 SiteName Undocked site name
long integer LicUsers; Licensed users
long integer SQLUsers; Licensed SQL users
long integer GSSites; License GoldSync sites
long integer isDemo; Is demo install? 1=True
long integer isServerlLic; Is primary ('D' or 'E') license? 1=True
long integer isRemotelic; Is remote (‘U’ or ‘S’) license? 1=True
long integer isUSALicense; Is USA license? 1=True
long integer DLLVersion DLL Version number
long integer Reservedl Reserved
long integer Reserved2 Reserved
char /100 sReserved Reserved
Example

GMW_LicInfo oLic;
GMW_GetLicenseInfo(&oLic;

Returning Calendar Data

The ReadSchedule call returns all calendar data for a given ReclD. You can also make the ReadSchedule call
through the XML API.

Page 122 of 463

GoldMine ™

Syntax

C/C++ pnv = (GMWnv*)GMW_NV_CreateCls();
pnv->Set("RecID", "SOMEVALIDRECID");
GMW_NV_Execute("ReadSchedule", pnv);

Retrieving Data with DataStream

DataStream returns the data of ordered records from any GoldMine table using the most efficient method
available. The caller can specify:

O Fields and expressions to return
O Range of records to return
O Optional filter to apply to the data set

DataStream SQL query capabilities are very fast on SQL databases.

The DataStream method allows for many useful applications. One such group of applications would merge HTML
templates with the data returned by GoldMine DataStream to publish the contents of GoldMine data on the
Internet. Web pages can be created to display GoldMine data requested by a visitor. Based on visitor selections, a
company could dynamically present a variety of HTML pages, including dealer addresses in a particular city,
financial numbers stored in Contact2, and even seating availability at upcoming conferences. With a fast Internet
connection and a strong SQL server, the GoldMine client could respond simultaneously to dozens of requests.

Advantages of Using DataStream

GoldMine DataStream is absolutely the fastest way to read data from GoldMine tables. Used correctly,
DataStream will return the data faster than most development environments would directly. DataStream offers
the following advantages:

O Efficiency: DataStream issues a single, most efficient SQL query or Xbase seek to retrieve records from the
back-end database to the local client. On SQL databases, requests of a few hundred records could be
sent from the server to the client with a single network transaction, greatly minimizing network traffic.

O Speed: All fields and expressions are parsed initially by GMW_DS_Range() and GMW_DS_Query(), and then
quickly evaluated against each record in GMW_DS_Fetch. Other DDE methods (and development
environments) require that each field be parsed and evaluated each time its data is read. This makes a
big difference when reading hundreds or thousands of records.

O Simplicity: Only three function calls are required to read all the data. Using traditional record-by-record
qguerying would require one call for each field of each record (reading 10 fields from 50 records would
require 500 function calls).

O Results: All the work to gather and format the data is done in C++, which is the fastest way to fly. The caller
needs only to parse the resulting packet string.

DataStream Record Selection
The following DataStream functions are listed in the order in which they must be called.
GMW_DS _Range(): Opens a ranged cursor
GMW_DS_Query(): Opens an SQL query cursor

Page 123 of 463

GoldMine ™

GMW _DS_Fetch(): Fetches records
GMW _DS_Close(): Closes cursor

Either the GMW _DS_Range() function or the GMW_DS_Query() function must be called first to request the data.
These functions return the integer handle, iHandle, which must be passed to the GMW_DS_Fetch() and GMW _
DS_Close() functions.

You must use either GMW_DS_Range() or GMW_DS_Query()—you cannot use both. The GMW_DS_Range and
GMW_DS_Query functions execute equally fast on SQL and FireBird databases. GMW_DS_Range executes much
faster on Xbase tables than does GMW_DS_Query.

GMW_DS_Range

Syntax
C/C++ long GMW_DS_Range(char *szTable, char *szTag, char *szTopLimit, char *szBotLimit, char
*szFields, char *szFilter, char *szFDIm, char *szRDIm);
VB Public Declare Function GMW_DS_Range Lib "gm6s32.dIl" (ByVal strTable As String, ByVal

strTag As String, ByVal strTopLimit As String, ByVal strBotLimit As String, ByVal strFields As
String, ByVal strFilter As String, ByVal strFDIm As String, ByVal strRDIm As String) As Long

GMW_DS_Range returns a range of records based on an index.

Parameters
The following parameters are required:
szTable specifies the table name (such as “Contactl1”) or the table ID.
szTag designates the tag that corresponds to the index file.
szTopLimit specifies the top limit of the range. (Must conform to the index expression.)
szBotLimit specifies the bottom limit of the range. (Must conform to the index expression.)

szFields specifies the requested fields and expression to return—see “GMW _DS_Range Field Selection” on the
following page.

The following parameters are optional:
szFilter designates an optional Xbase filter expression.
szFDIm specifies the field delimiter (default: carriage return).

szRDIm specifies the record delimiter (default: line feed).

Return Values
The GMW_DS_Range function returns the following values:

GMW_DS_Range Return Values

Return Description

Page 124 of 463

GoldMine ™

0 Failure

1-20 Success (handle)

GMW_DS_Range Field Selection

The szFields parameter passed to GMW_DS_Range should consist of the field names and Xbase expressions to
evaluate against each record in the data set. Each field must be terminated with a semicolon (;). Xbase
expressions must be prefixed with an ampersand (&), and terminated with a semicolon. For example, the
following commands request the first 100 cities from the Lookup file, including the city name and record number
(ReclID under SQL):

ihl =
03"
rl = GMW_DS_Fetch(ihl, szBuf, iBufSize, 100)
r2 = GMW_DS_Close(ihl)

GMW_DS_Range("Tookup", "lookup", "CITY", "CITYZ", "Entry; &RecNo

The following commands request the first 10 profiles of the current contact record, followed by a request for the
next 50 profiles:

ihl = GMW_DS_Range("contsupp","contspfd", sAccNo+"P", sAccNo+"P",
"Contact;ContSupRef;™)

rl = GMW_DS_Fetch(ihl, szBuf, iBufSize, 10)

rl = GMW_DS_Fetch(ihl, szBuf, iBufSize, 50)

rl = GMW_DS_Close(ihl)

GMW_DS_Query

Syntax
C/C++ long GMW_DS_Query(char *szSQL, char *szFilter, char *szFDIm, char *szRDIm);
VB Public Declare Function GMW_DS_Query Lib "gm6s32.dII" (ByVal strSQL As String,

Optional ByVal strFilter As String, Optional ByVal strFDIm As String, Optional ByVal
strRDIm As String) As Long

This function is very fast on SQL databases.

Parameters

szSQL query sends the query for evaluation on the server. The SQL query can join multiple tables and return any
number of fields.

Optional parameter szFilter specifies a Boolean Xbase filter expression to apply to the data set (even on SQL
tables), similar to the DDE SETFILTER command.

Optional parameter szFDIm overrides the return packet’s default field delimiter of CR (carriage return).

Optional parameter szRDIm overrides the return packet’s default record delimiter of LF (line feed).

Return Values

The GMW_DS_Query function returns the following values:

Page 125 of 463

GoldMine ™

GMW_DS_QueryReturn Values

Return Description

0 Failure

-1 Invalid Query/Timeout
1-20 Success (handle)

GMW_DS_Fetch

Syntax
C/C++ long GMW_DS_Fetch(long iHandle, char *szBuf, int iBufSize,
int nGetRecs);
VB Public Declare Function GMW_DS_Fetch Lib "gm6s32.dIl" (ByVal iHandle As Long, ByVal

strbuf As String, ByVal iBufSize As Long, ByVal nGetRecs As Long) As Long

GMW_DS_Fetch returns a single packet string containing the requested data from all records processed by the
current “fetch” command, as specified by the nGetRecs parameter. iHandle must be the value returned from
GMW_DS_Range() or GMW_DS_Query(). For details about the packet format, see below.

GMW_DS_Fetch Return Packet

GMW_DS_Fetch returns a single packet string containing the data from all requested records. The packet includes
a header record, followed by one record for each record evaluated by “fetch.” Within each record in the packet,
the fields are separated by a field delimiter specified in GMW_DS_Range or GMW_DS_Query. By default, the field
delimiter is the carriage return character (13 or 0x0D).

The records in the packet are separated by the record delimiter. By default, the record delimiter is the line feed
character by default (10 or Ox0A).

These delimiters are convenient when the requested data does not contain notes from blob fields. You can pass 0
for szFDIm, szRDIm to use the default delimiters. When requesting notes, override the default delimiters by
passing other delimiter values to GMW_DS_Range() and GMW_DS_Query(). For packets with notes, good
delimiters are the ASCII characters 1 and 2.

The City Lookup example from above might return a packet of data similar to:

3000-0004
Boston|23
London| 393

Los Angeles|633
New York|29

The packet header record consists of two sections:
First byte can be 0, 3, or 4:
0 indicates that more records are available, which could be fetched with another GMW_DS_Fetch call

3 indicates the end-of-file (EOF)

Page 126 of 463

GoldMine ™

4 indicates the beginning-of-file (BOF)
Number following the dash indicates the total number of data records contained in the packet.

DataStream takes about as much time to read three records as to read 30. For best performance, adjust the
number of records requested by GMW_DS_Fetch to return 8K—32K packets.

The calling application must allocate the memory for a large enough packet buffer, and pass that memory buffer
to GMW_DS_Fetch. When the number of records cannot be estimated to allocate a packet buffer, GMW_DS_
Fetch can be called twice, once to fetch the data and return a buffer size, and a second time to retrieve the data
into the buffer. When GMW_DS_Fetch is first called to get the buffer size, the szBuf and iBufSize parameters must
both be 0. The nGetRecs parameter must indicate the number of records to fetch. When GMW_DS_Fetch is then
called to retrieve the data that has been fetched by the first call, the nGetRecs parameter must be 0.

NOTE: If the return DataStream is too large for the specified buffer size, GMW_DS_Fetch returns a value of
-5. When the buffer in increased to an adequate size, GMW_DS_Fetch will return the data in a DataStream.
This behavior prevents the dropping of data due to undersized buffers.

GMW_DS_Close

Syntax
C/C++ long GMW_DS_Close(long iHandle)
VB Public Declare Function GMW_DS_Close Lib "gm6s32.d11" (ByVal iHandle As Long) As Long

GMW_DS_Close must be called when the operation is complete. Unclosed data streams will leak memory and
leave the database connections needlessly open. Passing an iHandle of O closes all open DataStream objects.

Accessing Low-Level Data Using Work Areas

The GoldMine GMxs32.DLL provides a complete set of functions that allow low-level access to the database tables.
Using these functions, you can:

O Open particular data files

O Seek the values of the fields in the records in the data files
O Append records to the tables

O Delete records

O Replace data in the records

Database applications that need varied access to GoldMine data typically use this suite of functions. To work
successfully, these functions rely on a work area parameter. Using this parameter, you can open multiple data files
concurrently and manipulate each file independently by referencing the file by work area. These functions also
maintain synchronization information, which is stored in the TLogs.

GMXS32.DLL offers the low-level access functions that are listed in the following table.

Page 127 of 463

GoldMine ™

GMXS32.DLL Low-Level Access Functions

Function Name

Description

Opening and Closing Databases

GMW_DB_Open

Opens one GoldMine data file for processing by another application

GMW_DB_Close

Releases a previously OPENed file when processing is complete

GMW_DB_IsSQL

In GM 7.0, Determines whether the table is MSSQL (1) or Other (0). Use the
getDBEngineType function to retrieve additional DB engine information.

Creating and Deleting Records

GMW_DB_Append

Adds a new, empty record to a GoldMine data file

GMW_DB_Delete

Deletes the current record in the specified work area.

Reading and Writing Data

GMW_DB_Read

Queries a data file for the value of a field

GMW_DB_RecNo

Determines either current record number position (Xbase), or the
record ID (SQL)

GMW_DB_Replace

Changes the value in a particular field in one GoldMine data file

GMW_DB_Unlock

Unlocks a record previously locked by a call to either GMW_DB_Append or GMW_
DB_Replace

Limiting Scope of Data

GMW_DB_Filter

Limits access to data in a GoldMine database by creating a subset of records based
on expression criteria

GMW_DB_Range

Activates the index in a table, and sets a range of values to limit the scope of data
that GoldMine will search

Searching for Data

GMW_DB_Search

Performs a sequential search on a file

GMW_DB_Seek

Positions to the first record matching the seek value

GMW_DB_SetOrder

Sets the current index tag on the table

Navigating the Database

GMW_DB_Move

Positions the record pointer to a particular record in a data file

GMW_DB_Goto

Positions to a specific record in the table

Page 128 of 463

GoldMine ™

GMW_DB_Top Positions to the first record in the table
GMW_DB_Skip Positions to the next or prior record in the table
GMW_DB_Bottom Positions to the last record in the table

GMXS32.DLL Low-Level Access Functions

Function Name Description

GMW_DB_QuickSeek Wraps several DLL functions to perform a Seek based on an index
GMW_DB_QuickRead Wraps several DLL function to perform a Read
GMW_DB_QuickReplace Woraps several DLL functions to perform a Replace

Detailed descriptions of each database access function appear on the following pages. Some of the following
functions refer to table names, field names, and index tags. For details, see or .

Opening a Data File

GMW_DB_Open opens one GoldMine data file for processing by another application.

Syntax
C/C++ long GMW_DB_Open(char *szTablename);
VB Public Declare Function GMW_DB_Open Lib "gm6s32.dIl" (ByVal strTableName As String)
As Long
Parameter

The GMW_DB_Open function takes only szTableName, which is the name of the table to be opened.

Return Values

The GMW_DB_Open function returns the following values:

GMW _DB_Open Return Values

Return Description
0 Error occurred
>0 Work area handle for table

Closing a Data File

GMW_DB_Close releases a previously OPENed file when processing is complete. All previously opened files must
be properly closed—failure to do so can result in database errors.

Page 129 of 463

GoldMine ™

Syntax

C/C++ long GMW_DB_Close(long pArea);

VB Public Declare Function GMW_DB_Close Lib "gm6s32.dIl" (ByVal IArea As Long) As Long
Parameters

The GMW_DB_Close function takes only pArea, which is the work area handle of the file opened by the GMW _
DB_Open function.

Return Values

The GMW_DB_Close function returns the following values:

GMW_DB_Close Return Values

Return Description
0 Error occurred
1 Table properly closed

Checking for an SQL Table

GMW_DB_IsSQL is used to determine if the table is MSSQL (1) or Other (0). Use the getDBEngineType function to
retrieve more detailed DB engine information.

Syntax

C/C++ long GMW_DB_IsSql(long pArea);

VB Public Declare Function GMW_DB_1sSQL Lib "gm6s32.dll" (ByVal IArea As Long) As Long
Parameter

The GMW_DB_IsSQL function takes only pArea, which is the work area handle of the file opened by the GMW _
DB_Open function.

Return Values

The GMW_DB_IsSQL function returns the following values in GoldMine 7.0:

GMW_DB_IsSQL Return Values

Return Description
0 Table is not MSSQL
1 Table is MSSQL

Page 130 of 463

GoldMine ™

Adding a Record
GMW_DB_Append adds an empty record to a GoldMine data file.

Syntax
C/C++ long GMW_DB_Append(long pArea, char* szReclD);
VB Public Declare Function GMW_DB_Append Lib "gm6s32.dIl" (ByVal IArea As Long, ByVal

strReclD As String) As Long

Before using GMW_DB_Append, you must open a data file using the GMW_DB_Open function. After executing
the GMW_DB_Append function, the record pointer is positioned at the new empty record, and the record is
locked and ready to accept field replacements.

When a CONTACT1 record is appended, GoldMine automatically fills in the new record with the appropriate
ACCOUNTNO and CREATEBY values. For all other records, you must replace the ACCOUNTNO field with the value
from the CONTACT1 record with which the new record is to be linked. For records that require remote
synchronization initialization, GoldMine will automatically fill in the value of the RECID field when these records
are appended.

Parameters
pArea is the work area handle of the file opened by the GMW_DB_Open function.
szReclD specifies the size of the character buffer to accept the return value. The szRecID buffer must be at least 20
characters.
Return Value
Xbase: APPEND function returns the record number of the new record, or 0 if the file could not be locked.

SQL and FireBird: APPEND function returns the RECID of the new record in the szRecID parameter.

Deleting the Current Record

GMW_DB_Delete deletes the current record in the specified work area and moves the record pointer to the next
record.

For records that require remote synchronization initialization, GoldMine will automatically maintain the TLog

entry.
Syntax
C/C++ long GMW_DB_Delete(long pArea);
VB Public Declare Function GMW_DB_Delete Lib "gm6s32.dIl" (ByVal |IArea As Long) As Long
Parameter

The GMW_DB_Delete function takes only pArea, which is the work area handle of the file opened by the GMW _
DB_Open function.

Page 131 of 463

GoldMine ™

Return Values

The GMW_DB_Delete function returns the following values:

GMW_DB_Delete Return Values

Return Description
0 Error occurred
1 Record deleted

Querying for a Field Value
GMW_DB_Read queries a data file for the value of a field.

Syntax
C/C++ long GMW_DB_Read(long pArea, char *szField, char *szBuf, int iBufSize);
VB Public Declare Function GMW_DB_Read Lib "gm6s32.dIl" (ByVal IArea As Long, ByVal
strField As String, ByVal strbuf As String, ByVal IBufSize As Long) As Long
Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.
szField is the name of the field to read within the table.

szBuf is the buffer in which the function will return the results.

iBufSize specifies the size of the buffer.

GMW_DB_Range Return Values

Return Description
0 Error occurred
1 Success

Checking the Current Record Number or Record ID

GMW_DB_RecNo is used to determine either current record number position (Xbase) or the record ID (SQL and
FireBird).

Syntax
C/C++ long GMW_DB_RecNo(long pArea, char *szReclD);
VB Public Declare Function GMW_DB_RecNo Lib "gm6s32.dIl" (ByVal |Area As Long, ByVal

strReclD As String) As Long

Page 132 of 463

GoldMine ™

Parameters
pArea is the work area handle of the file opened by the GMW_DB_Open function.

SzReclD is a character string that accepts the return value of RecNo (Xbase) or RecID (SQL).

Return Value
Xbase: Returns the current record number

SQL: Returns the current ReclD

Changing a Field Value
GMW_DB_Replace changes the value in a particular field in one GoldMine data file.

For records that require remote synchronization initialization, GoldMine will automatically maintain the TLog
entry.

Syntax
C/C++ long GMW_DB_Replace(long pArea, char *szField, char *szData, int iAddTo);
VB Public Declare Function GMW_DB_Replace Lib "gm6s32.dll" (ByVal |IArea As Long, ByVal
strField As String, ByVal strData As String, ByVal iAddTo As Long) As Long
Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.
szField specifies the name of the field to be replaced.
szData specifies the data to be placed in the field.
iAddTo indicates if the data is to be appended to the existing data. A value of 1 will append the data. A value of 0
will overwrite the data.
Return Values
The GMW_DB_Replace function returns the following values:

GMW _DB_Replace Return Values

Return Description
0 Error occurred
1 Field was successfully replaced

Unlocking a Record
GMW_DB_Unlock unlocks a record previously locked by a call to either GMW_DB_Append or GMW_DB_Replace.

Page 133 of 463

GoldMine ™

Syntax

C/C++ long GMW_DB_Unlock(long pArea);

VB Public Declare Function GMW_DB_Unlock Lib "gm6s32.dIl" (ByVal IArea As Long) As Long
Parameter

The GMW_DB_Unlock function takes only pArea, which is the work area handle of the file opened by the GMW _
DB_Open function.

Return Values

The GMW_DB_Unlock function returns the following values:

GMW_DB_Unlock Return Values

Return Description
0 Error occurred
1 Success

Creating a Subset of Records

GMW_DB_Filter limits access to data in a GoldMine database by creating a subset of records based on expression
criteria. If successfully called, all other functions (Top, Bottom, Skip, and so on) will respect the filter.

Syntax
C/C++ long GMW_DB_Filter(long pArea, char *szFilterExpr);
VB Public Declare Function GMW_DB_Filter Lib "gm6s32.dll" (ByVal IArea As Long, ByVal
strFilterExpr As String) As Long
Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szFilterExpr is the valid Xbase expression. To remove the filter, send an empty string as the second parameter.

Return Values
The GMW _DB_Filter function returns the following values:

GMW _DB_Filter Return Values

Return Description
0 Error occurred
1 Success

Page 134 of 463

GoldMine ™

Limiting Search Scope

GMW_DB_Range activates the index in a table and sets a range of values to
limit the scope of data that GoldMine will search. This function is faster than GMW_DB_Filter.

The Min and Max values must be formatted the same as the selected index tag’s expression.

If successfully called, all other functions (Top, Bottom, Skip, etc.) will respect the range.

Syntax
C/C++ long GMW_DB_Range(long pArea, char *szMin, char *szMax, char *szTag);
VB Public Declare Function GMW_DB_Range Lib "gm6s32.dllI" (ByVal |Area As Long, ByVal
strMin As String, ByVal strMax As String, ByVal strTag As String) As Long
Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.
szMin specifies the minimum or lower value of the range.
szMax specifies maximum or upper value of the range.

szTag is the index tag name.

Return Values

The GMW_DB_Range function returns the following values:

GMW_DB_Range Return Values

Return Description
0 Error occurred
1 Success

Performing a Sequential Search

GMW_DB_Search performs a sequential search on a file.

Syntax
C/C++ long GMW_DB_Search(long pArea, char *szExpr, char *szReclD);
VB Public Declare Function GMW_DB_Search Lib "gm6s32.dll" (ByVal |Area As Long, ByVal
strExpr As String, ByVal strReclD As String) As Long
Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szExpr is the valid Xbase expression. For a record to be “found” this expression must result as TRUE.

Page 135 of 463

GoldMine ™

szReclID is the buffer where the return value is stored. The return value will be a record number under Xbase or a
ReclD under SQL. You may pass NULL as the third parameter if you do not want the RecNo/ReclID.

Return Values
The GMW_DB_Search function returns the following values:

GMW_DB_Search Return Values

Return Description
0 No match found
>0 Xbase: RecNo of the matching record; SQL: ReclD of the matching record

Moving to the First Record Match

GMW_DB_Seek positions to the first record matching the seek value.

Syntax
C/C++ long GMW_DB_Seek(long pArea, char * szParam);
VB Public Declare Function GMW_DB_Seek Lib "gm6s32.dIl" (ByVal IArea As Long, ByVal
strParam As String) As Long
Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szParam is the value you will seek. This value must match the format of the index expression for the currently
active index.

Return Values

The GMW_DB_Seek function returns the following values:

GMW _DB_Seek Return Values

Return Description

0 Error occurred

1 Exact match found. Cursor moved to record.

2 Exact match not found. Cursor placed at closest matching record.
3 EOF (end of file)

4 BOF (beginning of file)

Setting the Current Index Tag
GMW_DB_SetOrder sets the current index tag on the table.

Page 136 of 463

GoldMine ™

Syntax
C/C++ long GMW_DB_SetOrder(long pArea, char *szTag);
VB Public Declare Function GMW_DB_SetOrder Lib "gm6s32.dIl" (ByVal IArea As Long, ByVal
strTag As String) As Long
Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function. For a list of index names, see .

szTag is the name of the index tag to activate on the table.

Return Values

The GMW_DB_SetOrder function returns the following values:

GMW_DB_SetOrder Return Values

Return Description
0 Error occurred
1 Index successfully activated

Positioning the Record Pointer

GMW_DB_Move positions the record pointer to a particular record in a data file.

Syntax
C/C++ long GMW_DB_Move(long pArea, char *szCommand, char *szParam);
VB Public Declare Function GMW_DB_Move Lib "gm6s32.dIl" (ByVal |IArea As Long, ByVal
strCommand As String, ByVal strParam As String) As Long
Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szCommand is the command to execute. Each of these commands has an independent function equivalent that is
the preferred method to use. This function remains as a legacy to its DDE counterpart.

szParam is the scope or value for the command.

GMW_DB_Move Commands and Function Equivalents

Command Parameter Function Equivalents
TOP Not required GMW_DB_Top
BOTTOM Not required GMW_DB_Bottom

Page 137 of 463

GoldMine ™

SKIP Number of records to skip GMW_DB_Skip
GOTO Record Number/ReclD GMW_DB_Goto
SEEK Search key value GMW_DB_Seek
SETORDER Index Tag GMW_DB_SetOrder

Return Values

The GMW_DB_Move function returns the following values:

GMW_DB_Move Return Values

Return Description

0 Error occurred

1 Exact match found. Cursor moved to record or index-activated.
2 Exact match not found. Cursor placed at closes matching record.
3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to a Specified Record

GMW_DB_Goto positions to a specific record in the table.

Syntax
C/C++ long GMW_DB_Goto(long pArea, char *szRecNo);
VB Public Declare Function GMW_DB_Goto Lib "gm6s32.dIl" (ByVal |Area As Long, ByVal
strRecNo As String) As Long
Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

szRecNo specifies where the cursor should be placed, and is either the Record number for Xbase or the ReclD for
saL

Return Values

The GMW_DB_Goto function returns the following values:

GMW_DB_Goto Return Values

Return Description

Page 138 of 463

GoldMine ™

0 Error occurred

1 Exact match found. Cursor moved to record or Index activated.

2 Exact match NOT found. Cursor placed at closest matching record.
3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to the First Record
GMW_DB_Top positions to the first record in the table.

Syntax

C/C++ long GMW_DB_Top(long pArea);

VB Public Declare Function GMW_DB_Top Lib "gm6s32.dIl" (ByVal |IArea As Long) As Long
Parameter

The GMW_DB_Top function takes only pArea, which is the work area handle of the file opened by the GMW_DB_
Open function.

Return Values

The GMW_DB_Top function returns the following values:

GMW _DB_TopReturn Values

Return Description
0 Error occurred
1 Cursor moved to top of file

Moving to the Previous or Following Record

GMW_DB_Skip positions to the previous or following record in the table.

Syntax
C/C++ long GMW_DB_Skip(long pArea, int nSkip);
VB Public Declare Function GMW_DB_Skip Lib "gm6s32.dIl" (ByVal IArea As Long, ByVal ISkip
As Long) As Long
Parameters

pArea is the work area handle of the file opened by the GMW_DB_Open function.

Page 139 of 463

GoldMine ™

nSkip specifies the number records to skip. This value can be positive to move forward in the table or negative to
move backwards.

Return Values

The GMW_DB_Skip function returns the following values:

GMW_DB_Skip Return Values

Return Description

0 Error occurred

1 Cursor successfully moved

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to the Last Record

GMW_DB_Bottom positions to the last record in the table.

Syntax

C/C++ long GMW_DB_Bottom(long pArea);

VB Public Declare Function GMW_DB_Bottom Lib "gm6s32.dIl" (ByVal |Area As Long) As Long
Parameter

The GMW_DB_Bottom function takes only pArea, which is the work area handle of the file opened by the GMW _
DB_Open function.

Return Values

The GMW_DB_Bottom function returns the following values:

GMW_DB_Bottom Return Values

Return Description
0 Error occurred
1 Cursor positioned on the last record in the table

Seeking a Record

GMW_DB_QuickSeek wraps several other database functions to provide a quick and easy way to seek a record in
the database.

Page 140 of 463

GoldMine ™

Syntax
C/C++ long GMW_DB_QuickSeek(char *szTableName, char *szIndex, char *szSeekValue, char
*szReclD);
VB Public Declare Function GMW_DB_QuickSeek Lib "gm6s32.dll" (ByVal strTableName As
String, ByVal strindex As String, ByVal strSeekValue As String, ByVal strRecID As String) As
Long
Parameters

szTableName is the name of the table to be opened.
szindex is the index to use for the table.
szSeekValue is the seek expression to use.

szReclD is returned by the function. This is the RecID of the record found.

Return Values
The GMW_DB_QuickSeek function returns the following values:
GMW_DB_QuickSeek Return Values

Return Description
-2 Invalid Index
-1 Invalid table
0 Failure

1 Success

Reading a Field Value

GMW_DB_QuickRead wraps several other database functions to provide a quick and easy way to read a field
value from a record in the database.

Syntax
C/C++ long GMW_DB_QuickRead(char *szTableName, char *szRecID, char *szField, char
*szValue, int iLen);
VB GMW_DB_QuickRead Lib "gm6s32.dIl" (ByVal strTableName As String, ByVal strRecID As
String, ByVal strField As StringByVal strValue As String, ByVal iLen As Long) As Long
Parameters

szTableName is the name of the table to be opened.

szReclD is the ReclID of the record from which to read.

Page 141 of 463

GoldMine ™

szField is the Field name to return.
szValue is the value returned by the function.

iLen is the length of the returned data.

Return Values
The GMW_DB_QuickRead function returns the following values:
GMW_DB_QuickRead Return Values

Return Description

-4 Invalid Fieldname
-3 ReclD not found
-2 Invalid RecIlD

-1 Invalid table

0 Failure

1 Success

Replacing a Field Value

GMW_DB_QuickReplace wraps several other database functions to provide a quick and easy way to replace a field
value from a record in the database.

Syntax
C/C++ long GMW_DB_QuickReplace(char *szTableName, char *szReclD, char *szField, char
*szValue, int iAddTo);
VB GMW_DB_QuickReplace Lib "gm6s32.dIl" (ByVal strTableName As String, ByVal strRecID
As String, ByVal strField As String, ByVal strValue As String, ByVal iAddTo As Integer) As
Long
Parameters

szTableName is the name of the table to be opened.
szReclID is the ReclID of the record to be updated.
szField is the Field name to replace.

szValue is the value to store in the field.

iAddTo indicates if the value data is to be appended (1) or replaced (0=default).

Return Values

The GMW_DB_QuickReplace function returns the following values:

Page 142 of 463

GoldMine ™

GMW_DB_QuickReplace Return Values

Return Description

-4 Invalid Fieldname
-3 RecID not found
-2 Invalid RecID

-1 Invalid table

0 Failure

1 Success

Updating Sync Logs with GMXS32.DLL

The GoldMine GMXS32.DLL provides a method to update GoldMine synchronization logs whenever an external
application updates GoldMine data.

GMxs32.DLL offers the following synchronization functions:
GMW _UpdateSyncLog: Updates the sync log file
GMW_ReadImpTLog: Imports a prepared TLog import file
GMW_NewReclD: Gets a new ReclD

GMW_SyncStamp: Converts sync stamp to time and converts time back to sync stamp

Updating the Sync Log File

Syntax
C/C++ int GMW_UpdateSyncLog(char *szTable, char *szReclD, char *szField, char *szAction)
VB GMW_UpdateSyncLog Lib "gm6s32.dllI" (ByVal strTable As String, ByVal strReclID As String,
ByVal strField As String, ByVal strAction As String) As Long
Parameters

szTable specifies the table name (such as “Contact1”) or the table ID.

szReclD specifies the ReclD of the updated record: the correct RecID must be passed, and the ReclD value must be
exactly 15 characters long.

szField specifies the name of the field that has changed. This parameter is only relevant when the Action
parameter is U. szField is ignored when Action is N or D.

szAction should be N when a new record has been appended, D when a record has been deleted, or U when a
field in a record has been updated.

Page 143 of 463

GoldMine ™

Return Values

The GMW _UpdateSyncLog function returns the following values:

GMW _UpdateSyncLog Return Values

Return Description

0 Error

1 New TLog entry created

2 New TLog entry updated

4 Field TLog entry created

8 Field TLog entry updated

16 Deleted record TLog entry created

32 New TLog Entry removed

Example

char szTable[10] = "CONTACT1";
char szField[12] = "KEY2";
char szRecID[20] = "\0";

char szAction = 'U';
GMW_NewRecID(szRecID,"JON"); GMW_UpdateSyncLog(szTable, szRecID,
szField, szAction);

Importing a Prepared TLog Import File

GMW_ReadIlmpTLog reads the status of a TLog import file, then deletes the import file when the process is
completed.

Syntax
C/C++ int GMW_ReadImpTLog(char *szFile, int bDelWhenDone, char *szStatus)
VB Public Declare Function GMW_ReadlmpTLog Lib "gm6s32.dIl" (ByVal strFile As String,
ByVal IDelWhenDone As Long, ByVal strStatus As String) As Long
Parameters

szFile specifies the import file name—see below for the import file structure.
IDeleteWhenDone specifies to delete the import file when the process has completed.

SzStatus buffer used to monitor the status of the process. Optional, can be NULL. If passed, the szStatus buffer
must be at least 10 characters long.

Page 144 of 463

GoldMine ™

Return Values
The GMW_ReadImpTLog function returns the following values:
GMW_ReadlmpTLog Return Values

Return Description

0 Failure

>0 Success, total number of imported TLog records
Notes

GMW_LoadAPIl or GMW_LoadBDE must be called before calling GMW_ReadlmpTLog for the first time. GMW _
ReadlmpTLog is executed in a thread, so multiple calls can be made. Your application can determine when the
imported process completes by setting the iDeleteWhenDone parameter to 1, and noting when the import file is
deleted. The TLog import must have the structure shown in the following table.

TLog Import Structure
Field Name Type Length
Table ID char 10
RecID char 15
Field ID char 10
Action ID char 1
Example

char szImpFile[80] = "d:\\GoldMine\\tlogimp.dbf";

char szStatus[20] = "\0";

int iDeletewhenDone = 1;

int nTotRead = GMW_ReadImpTLog(szImpFile, iDeletewhenDone, szStatus);

Getting a New Record ID

GMW_NewReclID returns a new ReclD in the szRecIDBuf.

Syntax
C/C++ char* GMW_NewRecID(char *szRecIDBuf, char *szUser)
VB Public Declare Function GMW_NewReclID Lib "gm6s32.dIl" (ByVal strRecID As String, ByVal

strUser As String) As GMWStr

Page 145 of 463

GoldMine ™

Parameters

szReclID specifies the application allocated buffer to contain the new ReclID. The buffer must be at least 16
characters long.

szUser specifies the GoldMine user name.

Return Value

pointer to szRecIDBuf

Notes

GMW _NewReclID returns a new ReclD in the szRecIDBuf. GMW_NewRecID can be called without first calling
GMW_LoadAPl or GMW_LoadBDE.

Example
char szRecID[20] = "\0";
char szUser[10] = "JON";
GMW_NewRecID(szRecID, szuUser);
Converting the Sync Stamp

GMW_SyncStamp converts Sync Stamp to time format and back.

Syntax
C/C++ int GMW_SyncStamp(char *szStamp, char *szOutBuf)
VB Public Declare Function GMW_SyncStamp Lib "gm6s32.dll" (ByVal strStamp As String,
ByVal strOutBuf As String) As Long
Parameters

When the szStamp string parameter is exactly 17 characters long, formatted as Date:Time in form of
CCYYMMDD:HH:MM:SS, the return string in szOutBuf is in TLog timestamp format, exactly seven characters long.
When the szStamp parameter is seven characters long formatted as a TLog timestamp, the return string in
szOutBuf is formatted as CCYYMMDD:HH:MM:SS.

Return Values

The GMW _SyncStamp function returns the following values:

GMW _SyncStamp Return Values

Return Description
0 Failure
1 Success

Page 146 of 463

GoldMine ™

Notes

An empty return string indicates an error.

Example

The following examples convert February 1, 1998, at 7:01pm to a TLog time stamp format, then back to a date and
time format:

Char szout[20] = "\O"
GMW_SyncStamp("19980201:19:01:30", szout); // returns "+#G><N2"
GMW_SyncStamp ("+#G><N2", szout); // returns "19980201:19:01:30"

Page 147 of 463

GoldMine™

Working with the XML API

Overview

Beginning in GoldMine version 6.7, the GoldMine API can be accessed using XML via the GMXMLAPI.DLL. The
programmer may pass XML generated programmatically by concatenating strings or by using the Document
Object Model (DOM). XML provides a simple and flexible medium for passing and receiving data from
GoldMine’s API.

A DOM Parser, such as MSXML or Xerces, should be utilized in constructing the XML documents for the
GoldMine XML API. All GoldMine data needs to be XMLEncoded to avoid conflicts with XML entities (ie. < > ‘ &).
A DOM Parser would handle this, in addition to creating well-formed XML. Finally, some of the XML documents
returned will be too large to be handled by manually looping through the XML; whereas a parser would make
accessing the returned data much more manageable.

The GMXMLAPI.DLL is used independently of the GMXS32.DLL. The XML API exposes all of the functionality
present in the GMXS32, including the low-level data access functions. However, the power of implementing an
integration with XML allows the use of the GoldMine APl in any development environment that supports COM,
including VB, VB.NET, C++, C#, and JAVA.

This chapter will discuss how to login to GoldMine with the XML API, how to call the business logic functions,
and accessing the low level data functions. For specific information on the names of the business logic functions
and acceptable data parameters and their return values, see .

Executing Your XML Document

Once the XML document has been created, pass it to the GoldMine XML API with the ExecuteCommand
method. This is the only method exposed in the XML API. It accepts one parameter, xmlin (the XML document
prepared by the developer) and returns the resulting XML document detailing result and/or error codes.

Example

xmlout = GMAPI.ExecuteCommand(xmlIn)

Creating Your XML Document

The root XML element for the GoldMine XML APl is defined as the following:

Page 148 of 463

GoldMine ™

<GMAPI call="FunctionName'>

<data name="Parameterl">Parameter Vvalue</data>
<data name="Parameter2">Parameter value 2</data>
</GMAPI>

Loading the API (GoldMine 7.0 or higher)

The first function to execute is loading the API with the desired parameters. Calling the LoadAPI function will also
login the specified user into the API.

NOTE: The GoldMine XML API will always use a GoldMine seat for each user that is logged into it. The total
number of users logged into GoldMine will be all workstation users and add-on applications combined.

To load the APl and login the user, create the following XML:

<GMAPI call="LoadAPI">

<data name="User">kevin</data>

<data name="Password">mygmpass</data>

<data name="SysDir'">c:\program files\goldmine\</data>_

<data name="GoldDir">c:\program files\goldmine\gmbase\</data> _
<data name="Combir'">c:\program files\goldmine\common\</data> _
<data name="SQLUser'">sa</data>_

<data name="sQLPassword"></data>

</GMAPI>

Parameters

The LoadAPI function takes seven parameters.

User: Specifies the GoldMine user name (case insensitive).
You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to use login credentials returned for the
user logged into a running copy of GoldMine through DDE or COM.

Password: Specifies the user’s password (case insensitive).

You may set this to the return string from the GetLoginCredentials DDE or COM command if the User parameter is
set to *DDE_Login_Credentials*. The credential string is only valid for 30 seconds.

SysDir: Specifies the location of the LICENSE.BIN file (Version 7.0 or | ater).

GoldDir: Specifies the location of the CAL table or the database alias name to use as the main database.

NOTE: The database alias name must be appended with a colon (":").

ComDir: Specifies the location of the CONTACT1 table or the database alias name to use as the contact set
database.

NOTE: The database alias name must be appended with a colon (":").
SQLUser: The login name for the SQL Server, if applicable.
SQLPassword: The password for the SQL Server, if applicable.

NOTE: The GMXS32.DLL required the call of GMW_SetSQLUserPass prior to calling GMW _LoadBDE in order
to set the SQL username and password. This extra call is not used in the XML API.

Page 149 of 463

GoldMine ™

The returned XML from LoadAPI will indicate if the call succeeded, and if so, a SessionID. This session ID is used to
reference this particular user’s APl session. This is important in applications where multiple users are logged into
the APl simultaneiously. Even if the integration will only have one user logged in at a time, the Session ID must still
be referenced in future calls to the XML API.

<GMAPI SessionID="1" call="LoadAPI">
<status code="1">API loaded successfully</status>
</GMAPI>

The status code will always give a description as to the cause of any generated errors. The possible return codes
are as follows.

LoadAPI Return Values

Return Description

1 APl loaded successfully

0 APl already loaded

-1 API failed to load

-2 Cannot find license file

-3 Cannot load license file

-4 Cannot validate the license file username/password
-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user

Loading BDE (GoldMine 6.7)

The first function that needs to be executed is loading the Borland Database Engine. Calling the function to load
BDE will also login the specified user into the API.

NOTE: The GoldMine XML API will always use a GoldMine seat for each user that is logged into it. The total
number of users logged into GoldMine will be all workstation users and add-on applications combined.

To load the Borland Database Engine, create the following XML:

<GMAPI call="LoadBDE">

<data name="User'">kevin</data>

<data name="Password">mygmpass</data>

<data name="SysDir'">c:\program files\goldmine\</data>_

<data name="GoldDir">c:\program files\goldmine\gmbase\</data> _

Page 150 of 463

GoldMine ™

<data name="Combir">c:\program files\goldmine\common\</data> _
<data name="sSQLUser">sa</data>_

<data name="sQLPassword'"></data>

</GMAPI>

Parameters
The LoadBDE function takes seven parameters.

User: Specifies the GoldMine user name (case insensitive).
You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to use login credentials returned for the
user logged into a running copy of GoldMine through DDE or COM.

Password: Specifies the user’s password (case insensitive).
You may set this to the return string from the GetLoginCredentials DDE or COM command if the User parameter is
set to *DDE_Login_Credentials*. The credential string is only valid for 30 seconds.

SysDir: Specifies the location of the LICENSE.DBF.

GoldDir: Specifies the location of CAL.DBF.

ComDir: Specifies the location of CONTACT1.DBF.

SQLUser: The login name for the SQL Server, if applicable.
SQLPassword: The password for the SQL Server, if applicable.

NOTE: The GMXS32.DLL required the call of GMW_SetSQLUserPass prior to calling GMW_LoadBDE in order
to set the SQL username and password. This extra call is not used in the XML API.

The returned XML from LoadBDE will indicate if the call succeeded, and if so, a SessionID. This session ID is used to
reference this particular user’s API session. This is important in applications where multiple users are logged into
the APl simultaneiously. Even if the integration will only have one user logged in at a time, the Session ID must still
be referenced in future calls to the XML API.

<GMAPI SessioniID="1" call="LoadBDE">

<status code="1">BDE loaded successfully</status>
</GMAPI>

The status code will always give a description as to the cause of any generated errors. The possible return codes
are as follows.

LoadBDE Return Values

Return Description

1 BDE loaded successfully
0 BDE already loaded

-1 BDE failed to load

-2 Cannot find license file

Page 151 of 463

GoldMine ™

-3 Cannot load license file

-4 Cannot validate the license file username/password
-5 Invalid GoldDir

-6 Invalid CommonDir

-7 Failed to allocate the needed TLS slot

-8 General Failure

-9 No access to specified contact set for this user

Logging in Subsequent Users

If an additional user needs to be logged into the XML API, call the Login method.

<GMAPI call="Login">

<data name="User'">MASTER</data>

<data name="password">ACCESS</data>

<data name="Combir'">c:\program files\goldmine\common\</data> _
<data name="SQLUser">sa</data>

<data name="sQLPassword'">mypassword</data>

</GMAPI>

Parameters
The Login function takes five parameters.

User: Specifies the GoldMine user name (case insensitive).
You may set this parameter to the value of *DDE_LOGIN_CREDENTIALS* to use login credentials returned for the
user logged into a running copy of GoldMine through DDE or COM.

Password: Specifies the user’s password (case insensitive).
You may set this to the return string from the GetLoginCredentials DDE or COM command if the User parameter
is set to *DDE_Login_Credentials*. The credential string is only valid for 30 seconds.

ComDir: Specifies the location of CONTACT1.DBF or the database alias name to use as the contact set database.
NOTE: The database alias name must be appended with a colon (":")..

SQLUser: The login name for the SQL Server, if applicable.

SQLPassword: The password for the SQL Server, if applicable.

The Login function returns the following XML:

<GMAPI SessionID="2" call="Login">
<status code="1">Login Successful</status>
</GMAPI>

Page 152 of 463

GoldMine ™

Login Return Values

Return Description

1 Success

0 Failure

-1 User does not have permission to open the current contact set.

Logging Out

To log out a user when multiple users are logged in, use the Logout function. This function will free the license
seat previously used by the Login function. Be sure to call this function for each session that has been opened.

Syntax

XML <GMAPI call="Logout" SessionID="2"/>

Parameters

SessionlD is the integer value returned by the Login function.

Return

The function will return a code attribute of “1” if the specified SessionID was valid. The returned XML will look like
the following:

<GMAPI SessionID="2" call="Logout">
<status code="1">Logout succeeded for the supplied session.</status>
</GMAPI>

Unloading the API (GoldMine 7.0 or higher)

Before ending your GoldMine integration application, the API needs to be unloaded. The XML to unload the APl is
as follows:

<GMAPI call="unloadAPI" SessionID="1"/>

The actual SessionID will be the value that was returned by the LoadAPI call.

Unloading BDE (GoldMine 6.7)

Before ending your GoldMine integration application, the Borland Database Engine needs to be unloaded. The
XML to unload the BDE is as follows:

<GMAPI call="unTloadBDE" SessionID="1"/>

Page 153 of 463

GoldMine ™

The actual SessionID will be the value that was returned by the LoadBDE call.

Accessing Data with Business Logic Functions

Reading and modifying GoldMine data with the business logic functions is the best-practice method for integrating
with GoldMine. For the XML root element, the call will be any business logic function name, as described in
Chapter 6, Business Logic Functions. Each data name will be the name portion of the defined name/value pairs,
and the text for that node is the value portion of a name/value pair. For example, to create a contact using the
GoldMine XML API, one would create an XML document like the following:

<GMAPI call="writeContact” SessionID="1">
<data name="Contact”>Sam Jackson</data>
<data name="Company”>Jackson Plumbing</data>
<data name="Phonel”>(123)456-7890</data>
</GMAPI>

Accessing Nested Nodes of Data

Some business logic functions require or return nodes that contain nested nodes. For example, if you wish to add
members to a contact group, the XML would look like the following:

<GMAPI call="AddContactGrpMembers" SessionID="1">
<data name="GroupNo">1234</data>

<data name="Members">

<data name="AccountNo'">A3042474804 wB9!JCat</data>
<data name="Reference">A Reference value</data>
</data>

<data name="Members">

<data name="AccountNo">A3082867459(LP:#JGab</data>
<data name="Reference">Another Reference</data>
</data>

<data name="Members">

<data name="AccountNo">A3060244052#3? (N3Ste</data>
<data name="Reference">The last Reference value</data>
</data>

</GMAPI>

Each time there needs to be an additional node for the Members node, simply repeat the Members node with the
required data. This applies to any business logic function that requires more than one data value for a node, or
more than one nested node.

Business Logic Function Return Values

The business logic functions will return the same return codes as described in Chapter 6, Business Logic Functions.
An example of the XML returned is as follows:

Input XML:
<GMAPI call="writeContact" SessionID="1">

Page 154 of 463

GoldMine ™

<data name="Contact">Joe Smith</data>

<data name="Company'>Joes Window washing</data>
<data name="phonel">3106548963</data>

</GMAPI>

Returned XML.:

<GMAPI SessionID="1" call="writeContact">

<status code="1">Success</status>

<data name="Return'">

<data name="AccountNo">A4100552319*T_sS{3Del</data>
<data name="COMPANY'">Joes Window washing</data>
<data name="CONTACT">Joe Smith</data>

<data name="PHONE1">3106548963</data>

<data name="RecID">AP7Q62B& *AK=3\T</data>
</data>

</GMAPI>

Accessing Low-level Data Manipulation Functionality

The following sections describe additional functions in the GoldMine XML API that allow data reading and
updating via low-level methods. Use of the following functions requires in-depth knowledge of the GoldMine data
structures and business rules. They are useful for accessing and writing data that is not accessible via the high-
level business logic functions.

Retrieving Data with DataStream

DataStream returns the data of ordered records from any GoldMine table using the most efficient method
available. The caller can specify:

O Fields and expressions to return
O Range of records to return
O Optional filter to apply to the data set

DataStream SQL query capabilities are very fast on SQL databases.

The DataStream method allows for many useful applications. One such group of applications would merge HTML
templates with the data returned by GoldMine DataStream to publish the contents of GoldMine data on the
Internet. Web pages can be created to display GoldMine data requested by a visitor. Based on visitor selections, a
company could dynamically present a variety of HTML pages, including dealer addresses in a particular city,
financial numbers stored in Contact2, and even seating availability at upcoming conferences. With a fast Internet
connection and a strong SQL server, the GoldMine client could respond simultaneously to dozens of requests.

Advantages of Using DataStream

GoldMine DataStream is absolutely the fastest way to read data from GoldMine tables. Used correctly,
DataStream will return the data faster than most development environments would directly. DataStream offers
the following advantages:

Page 155 of 463

GoldMine ™

O Efficiency: DataStream issues a single, most efficient SQL query or Xbase seek to retrieve records from the
back-end database to the local client. On SQL databases, requests of a few hundred records could be
sent from the server to the client with a single network transaction, greatly minimizing network traffic.

O Speed: All fields and expressions are parsed initially by DS_Range and DS_Query, and then quickly
evaluated against each record in DS_Fetch. Other DDE methods (and development environments)
require that each field be parsed and evaluated each time its data is read. This makes a big difference
when reading hundreds or thousands of records.

O Simplicity: Only three function calls are required to read all the data. Using traditional record-by-record
querying would require one call for each field of each record (reading 10 fields from 50 records would
require 500 function calls).

O Results: All the work to gather and format the data is done in C++, which is the fastest method. The caller
needs only to parse the resulting packet string.

DataStream Record Selection

The following DataStream functions are listed in the order in which they must be called.

DS _Range: Opens a ranged cursor

DS _Query: Opens an SQL query cursor

DS _Fetch: Fetches records

DS _Close: Closes cursor

Either the DS_Range function or the DS_Query function must be called first to request the data. These functions
return the integer handle which must be passed to the DS_Fetch and DS_Close functions.

You must use either DS_Range or DS_Query—you cannot use both. The DS_Range and DS_Query functions
execute equally fast on SQL databases. DS_Range executes much faster on Xbase tables than does DS_Query.

DS_Range

Syntax

XML <GMAPI call = “DS_Range” sessionid="X">

<data name = "Table">CONTACT1l</data>

<data name = "Tag'">Contacc</data>

<data name="TopLimit"> A3042474804 wB9!Jcat</data>
<data name ="BotLimit"> A4090244569#H431*3Dav</data>
<data name="Fields">CONTACT; COMPANY; PHONEl</data>
<data name="Filter"/>

</GMAPI>

DS_Range returns a range of records based on an index.

Parameters

The following parameters are required:

Table specifies the table name (such as “Contact1”) or the table ID.

Tag designates the tag that corresponds to the index file.

Page 156 of 463

GoldMine ™

TopLimit specifies the top limit of the range. (Must conform to the index expression.)
BotLimit (or BottomLimit) specifies the bottom limit of the range. (Must conform to the index expression.)

Fields specifies the requested fields and expression to return—see “DS_Range Field Selection” on the
following page.

The following parameter is optional:

Filter designates an optional Xbase filter expression.

Return Values
The XML returned by DS_Range will look like the following:

<GMAPI SessionID="2" call="DS_Range">
<status code="1">1</status>
</GMAPI>

The text of the code attribute is used as the “Area” or “Handle” value for DS_Fetch.

The DS_Range function returns the following values:

GMW_DS_Range Return Values

Return Description
0 Failure
1-20 Success (handle)

DS_Range Field Selection

The Fields parameter passed to DS_Range should consist of the field names and Xbase expressions to evaluate
against each record in the data set. Each field must be terminated with a semicolon (;). Xbase expressions must be
prefixed with an ampersand (&), and terminated with a semicolon. Be sure to XML encode this as the ampersand
is an XML entitiy.

DS_Query
Syntax
XML <GMAPI call ="DS_Query” SessionID ="1">
<data name = “SQL”>select recid from contsupp</data>
<data name=“Filter">xBase expression filter</data>
</GMAPI>

This function is very fast on SQL databases.

Parameters

5QL query sends the query for evaluation on the server. The SQL query can join multiple tables and return any
number of fields.

Page 157 of 463

GoldMine ™

Optional parameter Filter specifies a Boolean Xbase filter expression to apply to the data set (even on SQL tables),
similar to the DDE SETFILTER command.

Return Values
The DS_Query function returns the following values:

DS_QueryReturn Values

Return Description
0 Failure
-1 Invalid Query/Timeout
1-20 Success (handle)
DS Fetch

DS_Fetch returns a single packet string containing the requested data from all records processed by the current
“fetch” command.

Syntax
XML <GMAPI call="DS_Fetch” SessionID="3">

<data name="Area”>Value returned from Query or
Range</data>
<data name="RecordCount”>50</data>
<data name="Raw”>1</data>
</GMAPI>

Parameters

RecordCount (or RecCount) specifies the number of records to return.

Area must be the value returned from DS_Range() or DS_Query().

Optional Parameters

FldDmt (or FieldDelimiter) specifies the field delimiter (default: carriage return). Omit this data node completely to
use the default value.

RowDmt (or RowDelimiter) specifies the record delimiter (default: line feed). Omit this data node completely to
use the default value.

Raw indicates the format the data should be returned as. The default (“0”) puts the data into XML format. Setting
Raw to “1” returns the data stream in the old return packet format, as described below.

For details about the packet format, see .

The XML Return packet

DS_Fetch has an option in the GoldMine XML API to return the data in an XML format that is easier to process
than the traditional datastream return packet.

Page 158 of 463

GoldMine ™

Consider the following DS_Query XML call:

<GMAPI call="DS_Query" SessionID="1">

<data name="sQL">select contact, company, keyl from contactl where
contact="Rafael zimberoff’</data>

<data name="Filter"/>

</GMAPI>

Return

<GMAPI SessionID="1" call="DS_Query'><status code="1">1</status></GMAPI>

The DS_Fetch call to retrieve the requested data is:

<GMAPI call="DS_Fetch" SessionID="1">
<data name="Area''>1l</data>

<data name="Raw">0</data>

<data name="RecordCount'>25</data>
</GMAPI>

The resulting XML datastream return packet is:

<GMAPI SessionID="1" call="DS_Fetch">
<status code="1">Success</status>
<data name="Return">

<data name="Header">

<data name="f1ield">

<data name="Field_Name">CONTACT</data>
<data name="Field_Type">C</data>

<data name="Field_Length">40</data>
<data name="Field_becimal'">0</data>
</data>

<data name="f1ield">

<data name="Field_Name">COMPANY</data>
<data name="Field_Type">C</data>

<data name="Field_Length">40</data>
<data name="Field_becimal">0</data>
</data>

<data name="field">

<data name="Field_Name">KEYl</data>
<data name="Field_Type">C</data>

<data name="Field_Length">20</data>
<data name="Field_becimal">0</data>
</data>

</data>

<data name="CountData'">3000-0001</data>
<data name="Rows">

<data Name="Row">

<data name="CONTACT">Rafael zimberoff</data>
<data name="COMPANY">Z-Firm LLC</data>
<data name="KEY1l">Partner</data>

Page 159 of 463

GoldMine ™

</data>
</data>
</data>
</GMAPI>

The Header node contains child nodes for each field included in the SQL query, describing the fields’ properties.
The CountData node’s text corresponds with the old fetch return packet’s header data:

The first digit can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another DS_Fetch call
3 indicates the end-of-file (EOF)

4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in the packet.

The Rows node contains a child node for each data record returned by the query.

DS_Fetch Return Packet

DS_Fetch returns a single packet string containing the data from all requested records. The packet includes a
header record, followed by one record for each record evaluated by “fetch.” Within each record in the packet, the
fields are separated by a field delimiter specified in DS_Fetch. By default, the field delimiter is the carriage return
character (13 or 0x0D).

The records in the packet are separated by the record delimiter. By default, the record delimiter is the line feed
character by default (10 or Ox0A).

These delimiters are convenient when the requested data does not contain notes from blob fields. You can omit
FldDmt and RowDmt to use the default delimiters. When requesting notes, override the default delimiters by
passing other delimiter values to DS_Fetch. For packets with notes, good delimiters are the ASCII characters 1 and
2.

The XML example above might return xml similar to:

<GMAPI SessionID="3" call="DS_Fetch">
<status code="1">3000-0003
A3053029581% 06B3Sim

A4082371189*> $>B3Vin
A4090244569#H43*3Dav

</status>

</GMAPI>

The packet header record consists of two sections:

First byte can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another DS_Fetch call
3 indicates the end-of-file (EOF)

4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in the packet.

Page 160 of 463

GoldMine ™

DS_Close

DS_Close must be called when the operation is complete. Unclosed data streams will leak memory and leave the
database connections needlessly open. Passing an Area (or Handle) of 0 closes all open DataStream objects.

Syntax
XML <GMAPI call="DS_Close" SessionID="4">
<data name="Area">1l</data>
</GMAPI>

DS_Close returns the following XML:

<GMAPI SessionID="4" call="DS_Close">
<status code="1">Success</status>
</GMAPI>

Accessing Low-Level Data Using Work Areas

The GoldMine XML API provides a complete set of functions that allow low-level access to the database tables.
Using these functions, you can:

O Open particular data files

O Seek the values of the fields in the records in the data files
O Append records to the tables

O Delete records

O Replace data in the records

Database applications that need varied access to GoldMine data typically use this suite of functions. To work
successfully, these functions rely on a work area parameter. Using this parameter, you can open multiple data files
concurrently and manipulate each file independently by referencing the file by work area. These functions also
maintain synchronization information, which is stored in the TLogs.

The GoldMine XML API offers the low-level access functions that are listed in the following table.

GMXS32.DLL Low-Level Access Functions

Function Name Description

Opening and Closing Databases

O DB_Open Opens one GoldMine data file for processing by another application
O DB_Close Releases a previously OPENed file when processing is complete
O DB_lssQL Determines whether the table is SQL (1) or Xbase (0)

Creating and Deleting Records

O DB_Append Adds a new, empty record to a GoldMine data file

Page 161 of 463

GoldMine ™

O DB_Delete

Deletes the current record in the specified work area.

Reading and Writing Data

O DB_Read Queries a data file for the value of a field
Determines either current record number position (Xbase), or the
O DB_RecNo
- record ID (SQL)
O DB_Replace Changes the value in a particular field in one GoldMine data file
O DB_Unlock Unlocks a record previously locked by a call to either GMW_DB_Append or GMW _

DB_Replace

Limiting Scope of Data

O DB_Filter

Limits access to data in a GoldMine database by creating a subset of records based
on expression criteria

O DB_Range

Activates the index in a table, and sets a range of values to limit the scope of data
that GoldMine will search

Searching for Data

O DB_Search

Performs a sequential search on a file

O DB_Seek

Positions to the first record matching the seek value

O DB_SetOrder

Sets the current index tag on the table

Navigating the Database

O DB_Move Positions the record pointer to a particular record in a data file
O DB_Goto Positions to a specific record in the table

O DB _Top Positions to the first record in the table

O DB_Skip Positions to the next or prior record in the table

O DB_Bottom Positions to the last record in the table

GMXS32.DLL Low-Level Access Functions

Function Name

Description

DB_QuickSeek

Wraps several DLL functions to perform a Seek based on an index

DB_QuickRead

Wraps several DLL function to perform a Read

DB_QuickReplace

Woraps several DLL functions to perform a Replace

Page 162 of 463

GoldMine ™

For details, see or ”.

Opening a Data File

DB_Open opens one GoldMine data file for processing by another application. Be sure to call DB_Close after
completing all operations on the open table. Failing to do so will cause the UnloadAPI or UnloadBDE function to
wait indefinitely for the resource to close.

Syntax
XML <GMAPI call="DB_Open" SessioniID="1">
<data name="Table">Contactl</data>
</GMAPI>
Parameter

The DB_Open function takes only Table(or File), which is the name of the table to be opened.

Return Values
The XML returned by DB_Open for a successful call will look like the following:

<GMAPI SessionID="2" call="DB_Open">
<status code="1">76007040</status>
</GMAPI>

The code attribute will be 1 on success and the text of the attribute is the workarea to be used for subsequent
low-level calls. If the call is unsuccessful, the code will be 0 and the text will indicate an error.

DB_Open Code Attribute Values

Code Text
0 Error occurred
1 Work area handle for table, for example 57919176

Closing a Data File

DB_Close releases a previously opened file when processing is complete. All previously opened files must be
properly closed—failure to do so can result in database errors.

Syntax
XML <GMAPI call="DB_Close" SessionID="2">
<data name="Area'">76007040</data>
</GMAPI>
Parameters

The DB_Close function takes only Area, which is the work area handle of the file opened by the DB_Open function.

Page 163 of 463

GoldMine ™

Return Values
DB_Close returns the following XML on success:

<GMAPI SessionID="2" call="DB_Close">
<status code="1">Success</status>
</GMAPI>

Checking for an SQL Table
DB_IsSQL is used to determine if the table is MSSQL (1) or Other (0).

Syntax
XML <GMAPI call="DB_IsSQL" SessionID="3">
<data name="Area'>76021592</data>
</GMAPI>
Parameter

The DB_IsSQL function takes only Area, which is the work area handle of the file opened by the DB_Open function.

Return Value
The DB_IsSQL function returns the following values:

<GMAPI SessionID="3" call="DB_IsSQL">
<status code="0">The open file is xBase.</status>
</GMAPI>

DB_IsSQL Code Attribute Values

Code Description
0 The open file is Other
1 The open file is MSSQL

Adding a Record
DB_Append adds an empty record to a GoldMine data file.

Syntax
XML <GMAPI call="DB_Append" SessionID="3">
<data name="Area">76021592</data>
</GMAPI>

Before using DB_Append, you must open a data file using the DB_Open function. After executing the DB_Append
function, the record pointer is positioned at the new empty record, and the record is locked and ready to accept
field replacements.

Page 164 of 463

GoldMine ™

When a CONTACT1 record is appended, GoldMine automatically fills in the new record with the appropriate
ACCOUNTNO and CREATEBY values. For all other records, you must replace the ACCOUNTNO field with the value
from the CONTACT1 record with which the new record is to be linked. The GoldMine XML API will automatically fill
in the value of the RECID field.

Parameters

Area is the work area handle of the file opened by the DB_Open function.

Return Value

Xbase: APPEND function returns the record number of the new record as the code attribute, or 0 if the file could
not be locked. The text of the code attribute is also the record number in xBase, Record ID in SQL and FireBird.

<GMAPI SessioniID="3" call="DB_Append">
<status code="64">64</status>
</GMAPI>

SQL: APPEND function returns the RECID of the new record in the text of the code attribute. The code will be 1 or
0 indicating success or failure.

<GMAPI SessionID="3" call="DB_Append">
<status code="1">9NDJRIN(EQ[)IW:</status>
</GMAPI>

Deleting the Current Record

DB_Delete deletes the current record in the specified work area and moves the record pointer to the next record.

Syntax
XML <GMAPI call="DB_Delete" SessionID="4">
<data name="Area''>73140736</data >
</GMAPI>
Parameter

The DB_Delete function takes only Area, which is the work area handle of the file opened by the DB_Open
function.

Return Value
The DB_Delete function returns the following XML:

<GMAPI SessionID="4" call="DB_Delete">
<status code="1">Success</status>
</GMAPI>

DB_Delete Code Attribute Values

Code Description

Page 165 of 463

GoldMine ™

0 Error occurred

1 Record deleted

Reading a Field Value
DB_Read queries a data file for the value of a field.

Syntax
XML <GMAPI call="DB_Read" SessionID="5">
<data name="Area'>73154424</data>
<data name="Field">Company</data>
</GMAPI>
Parameters

Area is the work area handle of the file opened by the GMW_DB_Open function.

Field is the name of the field to read within the table.

Return Value
The XML returned for DB_Read using the sample XML above is as follows:

<GMAPI SessionID="5" call="DB_Read">
<status code="1">GoldMine, Inc.</status>
</GMAPI>

DB_Range Code Attribute Values

Code Description
0 Error occurred
1 Success

Checking the Current Record Number or Record ID

DB_RecNo is used to determine either current record number position (Xbase) or the record ID (SQL or FireBird).

Syntax
XML <GMAPI call="DB_RecNo" SessionID="7">
<data name="Area'">73166392</data>
</GMAPI>
Parameters

Area is the work area handle of the file opened by the DB_Open function.

Page 166 of 463

GoldMine ™

Return Value
Xbase: Returns the current record number
SQL: Returns the current ReclD
The returned XML will look like the following:

<GMAPI SessionID="7" call="DB_RecNo">
<status code="1">BDNHWD5#0PA5]WV</status>
</GMAPI>

Changing a Field Value

DB_Replace changes the value in a particular field in one GoldMine data file. After all replace operations on a
single record are complete, the record must be unlocked using DB_Unlock.

Syntax
XML <GMAPI call="DB_Replace" Sessionib="9">

<data name="Area'>73177576</data>
<data name="Field">Contact</data>
<data name="Newvalue">XML Contact</data>
<data name="Append">0</data>
</GMAPI>

Parameters

Area is the work area handle of the file opened by the DB_Open function.
Field specifies the name of the field to be replaced.
NewValue specifies the data to be placed in the field.
Append indicates if the data is to be appended to the existing data. A value of 1 will append the data. A value of 0
will overwrite the data.
Return Value
The DB_Replace function returns the following XML:

<GMAPI SessionID="9" call="DB_Replace">
<status code="1">Success</status>
</GMAPI>

DB_Replace Code Attribute Values

Code Description
0 Error occurred
1 Field was successfully replaced

Page 167 of 463

GoldMine ™

Unlocking a Record

DB_Unlock unlocks a record previously locked by a call to either DB_Append or DB_Replace.

Syntax
XML <GMAPI call="DB_UnTlock" SessionID="3">
<data name="Area'">75885408</data>
</GMAPI>
Parameter

The DB_Unlock function takes only Area, which is the work area handle of the file opened by the DB_Open
function.

Return Value
The DB_Unlock function returns the following XML:

<GMAPI SessionID="3" call="DB_Unlock">
<status code="1">Success</status>
</GMAPI>

DB_Unlock Code Attribute Values

Code Description
0 Error occurred
1 Success

Creating a Subset of Records

DB_Filter limits access to data in a GoldMine database by creating a subset of records based on expression

criteria. This function is similar to DB_Range. If successfully called, all other functions (Top, Bottom, Skip, and so
on) will respect the filter.

Syntax

<GMAPI call="DB_Filter" SessionID="1"> <data

XML name="Area'">57919176</data> <data name="Filter">contact1-
>contact="Paul Redstone"</data></GMAPI>

Note

The Filter value above is XML encoded. Passing the value contact1->contact="Paul Redstone” through an XML
Parser would handle the XML encoding automatically.

Parameters

Area is the work area handle of the file opened by the GMW_DB_Open function.

Page 168 of 463

GoldMine ™

Filter (or FilterExpr, Expr, Expression) is the valid Xbase expression. To remove the filter, send an empty string as
the second parameter.

Return Value
The DB_Filter function returns the following XML:

<GMAPI SessionID="1" call="DB_Filter">
<status code="1">Success</status>
</GMAPI>

DB_Filter Code Attribute Values

Code Description
0 Failure
1 Success

Limiting Search Scope

DB_Range activates the index in a table and sets a range of values to limit the scope of data that GoldMine will
search. This function is faster than DB_Filter.

The Min and Max values must be formatted the same as the selected index tag’s expression.

If successfully called, all other functions (Top, Bottom, Skip, etc.) will respect the range.

Syntax
XML <GMAPI call="DB_Range" SessionIbD="1">

<data name="Area'>57917464</data>
<data name="Min">A3042474804 wB9!JCat </data>
<data name="Max'">A4090244569#H4]*3Dav</data>
<data name="Tag">Contacc'"</data>
</GMAPI>

Parameters

Area is the work area handle of the file opened by the GMW_DB_Open function.
Min specifies the minimum or lower value of the range.
Max specifies maximum or upper value of the range.

Tag is the index tag name.

Return Value
The DB_Range function returns the following XML:

<GMAPI SessionID="1" call="DB_Range">
<status code="1">Success</status>
</GMAPI>

Page 169 of 463

GoldMine ™

DB_Range Code Attribute Values

Code Description
0 Error occurred
1 Success

Performing a Sequential Search

DB_Search performs a sequential search on a file.

Syntax
XML <GMAPI call="DB_Search" SessionID="1">
<data name="Area'>60211128</data>
<data name="Expression'">contactl->contact="David
Evans'</data>
</GMAPI>
Parameters

Area is the work area handle of the file opened by the GMW_DB_Open function.
Expr (or Expression) is the valid Xbase expression. For a record to be “found” this expression must result as TRUE.
Be sure to XML encode this, since the “>” in an Xbase expression is an XML entity.
Return Value
The DB_Search function returns the following XML:

<GMAPI SessionID="1" call="DB_Search">
<status code="1">23</status>
</GMAPI>

The text of the code attribute will be the record number for dBase databases, and the RecID for SQL databases.

DB_Search Code Attribute Values

Return Description

0 No match found

Success — the text of the attribute will be:
Xbase: RecNo of the matching record; SQL: ReclD of the matching record

Moving to the First Record Match

DB_Seek positions to the first record matching the seek value. DB_SetOrder must be called at some point prior to
calling DB_Seek in order to set an index tag.

Page 170 of 463

GoldMine ™

Syntax
XML <GMAPI call="DB_Seek" SessionID="1">
<data name="Area">60211128</data>
<data name="Expression">A3100554903(zuw)3Dav</data>
</GMAPI>
Parameters

Area is the work area handle of the file opened by the GMW_DB_Open function.
Param is the value you will seek. This value must match the format of the index expression for the currently active
index.
Return Value
The DB_Seek function returns the following XML:

<GMAPI SessionID="1" call="DB_Seek">
<status code="1">Success- Exact match found.</status>
</GMAPI>

DB_Seek Return Values

Return Description

0 Error occurred

1 Exact match found. Cursor moved to record.

2 Exact match not found. Cursor placed at closest matching record.
3 EOF (end of file)

4 BOF (beginning of file)

Setting the Current Index Tag

DB_SetOrder sets the current index tag on the table.

Syntax
XML <GMAPI call="DB_SetOorder" SessionID="1">
<data name="Area'>60211128</data>
<data name="Tag">CONTACC</data>
</GMAPI>
Parameters

Area is the work area handle of the file opened by the DB_Open function. Tag is the name of the index tag to
activate on the table. For a list of index names, see .

Page 171 of 463

GoldMine ™

Return Value
The DB_SetOrder function returns the following XML:

<GMAPI SessionID="1" call="DB_SetOrder">
<status code="1">Success</status>
</GMAPI>

DB_SetOrder Code Attribute Values

Code Description
0 Error occurred
1 Index successfully activated

Positioning the Record Pointer

DB_Move positions the record pointer to a particular record in a data file.

Syntax
XML <GMAPI call="DB_Move" SessionID="1">
<data name="Area'>60211128</data>
<data name="Command">SKIP</data>
<data name="Parameter'>2</data>
</GMAPI>
Parameters

Area is the work area handle of the file opened by the GMW_DB_Open function.

Command is the command to execute. Each of these commands has an independent function equivalent that is
the preferred method to use. This function remains as a legacy to its DDE counterpart.

Parameter is the scope or value for the command.

DB_Move Commands and Function Equivalents

Command Parameter Function Equivalents
TOP Not required DB_Top

BOTTOM Not required DB_Bottom

SKIP Number of records to skip DB_Skip

GOTO Record Number/ReclD DB_Goto

SEEK Search key value DB_Seek

SETORDER Index Tag DB_SetOrder

Page 172 of 463

GoldMine ™

Return Value
The DB_Move function returns the following XML:

<GMAPI SessionID="1" call="DB_Move">

<status code="1">Exact match found. Cursor moved to record or index
activated.</status>

</GMAPI>

DB_Move Code Attribute Values

Code Description

0 Error occurred

1 Exact match found. Cursor moved to record or index-activated.

2 Exact match not found. Cursor placed at closest matching record.
3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to a Specified Record

DB_Goto positions to a specific record in the table.

Syntax
XML <GMAPI call="DB_Goto" SessionID="1">
<data name="Area'>60211128</data>
<data name="RecordNumber">9zZ2RME8 (X%(!3\T</data>
</GMAPI>
Parameters

Area is the work area handle of the file opened by the GMW_DB_Open function.
RecNo (or RecordNumber) specifies where the cursor should be placed, and is either the Record number for Xbase
or the ReclD for SQL. The ReclID works for Xbase as well.
Return Value
The DB_Goto function returns the following XML:

<GMAPI SessionID="1" call="DB_Goto">

<status code="1">Exact match found. Cursor moved to record or index
activated.</status>

</GMAPI>

Page 173 of 463

GoldMine ™

DB_Goto Code Attribute Values

Return Description

0 Error occurred

1 Exact match found. Cursor moved to record or Index activated.

2 Exact match NOT found. Cursor placed at closest matching record.
3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to the First Record
DB_Top positions to the first record in the table. This function should not be called with an SQL database.

Syntax
XML <GMAPI call="DB_Top" SessionID="1">
<data name="Area'>60211128</data>
</GMAPI>
Parameter

The DB_Top function takes only Area, which is the work area handle of the file opened by the DB_Open function.

Return Value
The DB_Top function returns the following XML:

<GMAPI SessionID="1" call="DB_Top">
<status code="1">Success</status>
</GMAPI>

DB _Top Code Attribute Values

Code Description
0 Error occurred
1 Cursor moved to top of file

Moving to the Previous or Following Record

DB_Skip positions to the previous or following record in the table.

Page 174 of 463

GoldMine ™

Syntax
XML <GMAPI call="DB_Skip" SessioniD="1">
<data name="Area'">60211128</data>
<data name="skip'">3</data>
</GMAPI>
Parameters

Area is the work area handle of the file opened by the DB_Open function.
Skip specifies the number records to skip. This value can be positive to move forward in the table or negative to
move backwards.
Return Value
The DB_Skip function returns the following XML:

<GMAPI SessioniID="1" call="DB_Skip">
<status code="1">Success</status>
</GMAPI>

DB_Skip Code Attribute Values

Return Description

0 Error occurred

1 Cursor successfully moved

3 Cursor at end-of-file (EOF)

4 Cursor at beginning-of-file (BOF)

Moving to the Last Record

DB_Bottom positions to the last record in the table.

Syntax
XML <GMAPI call="DB_Bottom" SessionID="1">
<data name="Area'">60211128</data>
</GMAPI>
Parameter

The DB_Bottom function takes only Area, which is the work area handle of the file opened by the DB_Open
function.

Return Value

The DB_Bottom function returns the following XML:

Page 175 of 463

GoldMine ™

<GMAPI SessionID="1" call="DB_Bottom">
<status code="1">Success</status>
</GMAPI>

DB_Bottom Code Attribute Values

Code Description
0 Error occurred
1 Cursor positioned on the last record in the table

Seeking a Record

DB_QuickSeek wraps several other database functions to provide a quick and easy way to seek a record in the
database.

Syntax
XML <GMAPI call="DB_QuickSeek" SessionID="1">
<data name="Table">Contactl</data>
<data name="Index'">CONTACC</data>
<data name="Seekvalue'">A3100554903 (zuw) 3Dav</data>
</GMAPI>
Parameters

Table is the name of the table to be opened.
Index is the index to use for the table.

SeekValue is the seek expression to use.

Return Value
The DB_QuickSeek function returns the following XML:

<GMAPI SessionID="1" call="DB_QuickSeek">
<status code="1">972RME8 (X%(!3\T</status>
</GMAPI>

DB_QuickSeek Code Attribute Values

Return Description

-2 Invalid Index

-1 Invalid table

0 Failure

1 Success — The text will be the recid of the found record.

Page 176 of 463

GoldMine ™

Reading a Field Value

DB_QuickRead wraps several other database functions to provide a quick and easy way to read a field value from
a record in the database.

Syntax
XML <GMAPI call="DB_QuickRead" SessionID="1">
<data name="Table">Contactl</data>
<data name="Recid">9Z2RME8(X%(!3\T</data>
<data name="Field">Contact</data>
</GMAPI>
Parameters

Table is the name of the table to be opened.
ReclD (or RecordID) is the RecID of the record from which to read.

Field (or FieldName) is the Field name to return.

Return Value

The DB_QuickRead function returns the following XML:

DB_QuickRead Code Attribute Values

Return Description

-4 Invalid Fieldname
-3 ReclD not found
-2 Invalid RecID

-1 Invalid table

0 Failure

1 Success

Replacing a Field Value

DB_QuickReplace wraps several other database functions to provide a quick and easy way to replace a field value
from a record in the database.

Page 177 of 463

GoldMine ™

Syntax
XML <GMAPI call="DB_QuickReplace" SessionID="1">

<data name="Table">Contactl</data>
<data name="Recid">9Z2RME8(X%(!3\T</data>
<data name="Field">Key3</data>
<data name="Data'>Updated by XML API</data>
<data name="AddTo">0</data>
</GMAPI>

Parameters

Table is the name of the table to be opened.

ReclD (or RecordID) is the RecID of the record to be updated.

Field (or FieldName) is the Field name to replace.

Value (or Data, NewValue) is the value to store in the field.

AddTo (or Append) indicates if the value data is to be appended (1) or replaced (O=default).

Return Value

The DB_QuickReplace function returns the following XML:

<GMAPI SessionID="1" call="DB_QuickReplace">
<status code="1">Success</status>

</GMAPI>

DB_QuickReplace Code Attribute Values

Return Description

-4 Invalid Fieldname
-3 ReclD not found
-2 Invalid RecID

-1 Invalid table

0 Failure

1 Success

Returning Calendar Data

The ReadSchedule call returns all calendar data for a given ReclD.

Page 178 of 463

GoldMine ™

Syntax

XML

<GMAPI call="ReadSchedule" SessionID="XXX">
<data name="RecID">BUAQI6O!* C8]wv</data>
</GMAPI>

Return Value
The ReadSchedule

<GMAPI
<statu

call returns the following XML:

call="ReadSchedule" SessionID="XXX">
s code="1">Success</status>

<data name="Return'">

<data name="ACCOUNTNO">A5040658567& _:+]Mat</data>
<data name="ACTVCODE" />

<data name="COLORCODE'">0</data>

<data name="CONTACT">Matthew w & Kathleen Blacklock</data>
<data name="DURATION"> 30</data>

<data name="LINK">1</data>

<data name="LOPRECID"> UAQI60((X$]]wv</data>

<data name="NOTIFY'">0</data>

<data name="ONDATE">20060530</data>

<data name="ONTIME"> 7:00am </data>

<data name="PRIVATE">0</data>

<data name="RECID">BUAQI6O!* C8]wv</data>

<data name="RECTYPE">C</data>

<data name="REF"/>

<data name="RSVP'">0</data>

<data name="UPDATERELATED">0</data>

<data name="USERID">GUY</data>

</data>

</GMAPI>

For Sales-type records, The ReadSchedule call returns more data:

<GMAPI
<statu

<data
<data
<data
<data
<data
<data
<data
<data
<data
<data
<data
<data
<data
<data

Page 179 of 463

call="ReadSchedule" SessionID="XXX">

s code="1">Success</status>

name="Return'>

name="ACCOUNTNO">A5040658567& _:+]Mat</data>
name="ACTVCODE">AA </data>
name="AMOUNT">1110</data>
name="COLORCODE">0</data>

name="CONTACT">Matthew W & Kathleen Blacklock</data>
name="DURATION"> 30</data>

name="LINK">1</data>

name="LOPRECID"> UAQROL&6K]O]wv</data>
name="NOTIFY">0</data>
name="ONDATE">20060530</data>

name="ONTIME" />

name="POTNSALE">1110</data>
name="PRIVATE">0</data>

GoldMine ™

<data name="PROBSALE'">30</data>
<data name="RECID">BUAQROL (?B&+]wv</data>
<data name="RECTYPE">S</data>
<data name="REF">Johnny Apple Sauce! </data>
<data name="RSVP'">1l</data>
<data name="UNITSSALE'">2</data>
<data name="UPDATERELATED">0</data>
<data name="USERID">GUY</data>
</data>
</GMAPI>

Updating Sync Logs
The GoldMine XML API provides a method to update GoldMine synchronization logs whenever an external
application updates GoldMine data.
The GoldMine XML API offers the following synchronization functions:
UpdateSyncLog: Updates the sync log file
ReadimpTLog: Imports a prepared TLog import file
NewReclID: Gets a new RecID

SyncStamp: Converts sync stamp to time and converts time back to sync stamp

Updating the Sync Log File

Syntax
XML <GMAPI call="updateSyncLog" SessionID="1">

<data name="Table">Contactl</data>
<data name="RecID">9NDIRIN(EQ[)IW:</data>
<data name="Field">Key3</data>
<data name="Action">U</data>
</GMAPI>

Parameters

Table specifies the table name (such as “Contact1”) or the table ID.

RecID specifies the ReclD of the updated record: the correct RecID must be passed, and the RecID value must be
exactly 15 characters long.

Field specifies the name of the field that has changed. This parameter is only relevant when the Action parameter
is U. Field is ignored when Action is N or D.

Action should be N when a new record has been appended, D when a record has been deleted, or U when a field
in a record has been updated.
Return Value
The UpdateSyncLog function returns the following XML:
<GMAPI SessionID="1" call="updateSyncLog">

Page 180 of 463

GoldMine ™

<status code="4">Field TLog entry created.</status>
</GMAPI>

UpdateSyncLog Code Attribute Values

Return Description

0 Error

1 New TLog entry created

2 New TLog entry updated

4 Field TLog entry created

8 Field TLog entry updated

16 Deleted record TLog entry created
32 New TLog Entry removed

Importing a Prepared TLog Import File

ReadlmpTLog reads the status of a TLog import file, then deletes the import file when the process is completed.

Syntax
XML <GMAPI call="ReadImpTLog" SessionID="1">
<data name="File">c:\tlogs\mytlog.dbf</data>
<data name="Delete'">1l</data>
</GMAPI>
Parameters

File specifies the import file name—see below for the import file structure.

Delete specifies to delete the import file when the process has completed.

Return Value

ReadlmpTLog function returns the following values in the code attribute:

ReadlmpTLog Code Attribute Values

Code Description
0 Failure
1 Success -- Text is total number of imported TLog records

Page 181 of 463

GoldMine ™

Notes

LoadAPI or LoadBDE must be called before calling ReadlmpTLog for the first time. Your application can determine
when the imported process completes by setting the Delete parameter to 1, and noting when the import file is
deleted. The TLog import must have the structure shown in the following table.

TLog Import Structure
Field Name Type Length
Table ID char 10
RecID char 15
Field ID char 10
Action ID char 1

Getting a New Record ID

NewReclD returns a new ReclID in the text of the code attribute of the returned XML.

Syntax
XML <GMAPI call="NewRecID" SessionID="1">
<data name="User'">KEVIN</data>
</GMAPI>
Parameters

User specifies the GoldMine user name.

Return Value

<GMAPI SessionID="1" call="NewRecID">
<status code="1">AQN8HKO I9& =$R</status>
</GMAPI>

Notes

The resulting Recid is XML encoded because it contains an XML entity. Reading the text of the code attribute via
an XML Parser would return the correctly XML unencoded ReclID.

Converting the Sync Stamp

SyncStamp converts Sync Stamp to time format and back.

Syntax
XML <GMAPI call="SyncStamp" SessionID="1">
<data name="Stamp'>19980201:19:01:30</data>
</GMAPI>

Page 182 of 463

GoldMine ™

Parameters

When the Stamp parameter is exactly 17 characters long, formatted as Date:Time in form of
CCYYMMDD:HH:MM:SS, the return string in the code attribute’s text is in TLog timestamp format, exactly seven
characters long. When the Stamp parameter is seven characters long formatted as a TLog timestamp, the return
string in the code attribute’s text is formatted as CCYYMMDD:HH:MM:SS.

Return Value

The SyncStamp function returns the following example XML:

<GMAPI SessionID="1" call="SyncStamp">
<status code="1">5v1QM50</status>
</GMAPI>

SyncStamp Code Attribute Values

Code Description

0 Failure

1 Success
Notes

An empty return string indicates an error.

Using MSXML to Handle GoldMine API XML

MSXML is just one DOM parser that can be used to format and parse the XML to pass to the GoldMine XML API.
This section will give a brief tutorial of functions that can be used to handle the GoldMine XML document. It does
not comprehensively document MSXML; please refer to Microsoft’s Developer Network (MSDN) for complete
MSXML documentation. Another parser that is available is Xerces.

Getting Started

The examples in this section will use functions and syntax from Microsoft XML 4.0 and Visual Basic 6.0. Include a
reference to Microsoft XML, v. 4.0 in your development project. To create a document reference, use the
following code:

Dim doc As DOMDocument40
Set doc = New DOMDocument40

The XML document is now ready to be composed.

Defining the Root Element

The root element for the GoldMine XML API is GMAPI. The code below sets this value:
Dim xmlIn As String

Page 183 of 463

GoldMine ™

xmlIn = "<GMAPI/>"
Dim doc As DOMDocument40
Set doc = New DOMDocument40

doc.ToadXML xmlIn

Dim elRoot As IXMLDOMETement
Set elRoot = doc.documentElement

Creating an IXMLDOMElement object and setting it to doc.documentElement provides a reference to the root
element of the document. This allows for easy updating to that element later on.

Setting Attributes

The attributes of an element define a specific setting or provide additional information to an element. Attributes
appear in an element’s start tag and are in a name/value pair format. The GoldMine XML API typically expects two
attributes for the root element: call and sessionid.

To set an attribute, use the SetAttribute method in the documentElement object. The following code assumes the
elRoot object defined above.

elRoot.setAttribute "call", "DB_Open"
elRoot.setAttribute "SessionID", sSessioniID

Referencing an Attribute

The call attribute for the GMAPI root element will likely need to be changed many times in the course of your
application. A reference to this attribute can be obtained by calling the following code:

Dim att As IXMLDOMAttribute
Set att = elRoot.selectSingleNode("@call")

Now the GoldMine XML API call can be changed easily.
att.Text = "DB_Append"

IMPORTANT: Be sure to set all references to Nothing (or Null) before exiting your application!

Set elRoot = Nothing
Set doc = Nothing
Set att = Nothing

Creating Child Elements

To specify parameters of the GoldMine XML API function calls, a “data” element needs to be created for each
parameter. Each data element has one attribute titled “name”. The value of the parameter is stored as the text
value of the attribute. Following is a Visual Basic example showing a subroutine that sets a parameter for the
GoldMine XML API:

Public Sub SetParameter(doc As DOMDocument40, root As IXMLDOMElement,
sParamName As String, Byval svalue As String)

Page 184 of 463

GoldMine ™

Dim tempEL As IXMLDOMElement

‘Create the element and assign to a reference
Set tempEL = doc.createElement("data")

‘Set the attribute with the sParamName value being the name of the
‘parameter
tempEL.setAttribute "name", sParamName

‘Specify the value of the parameter
tempEL.Text = svalue

‘Append the child element to the root
root.appendChild tempEL
Set tempEL = Nothing

End Sub

The above subroutine can now be called to set many parameters for a function. The example below assumes the
document, root element and attribute objects created in the previous section.

att.Text = "DB_Replace"
SetParameter doc, elRoot, "Field", "Contact"

SetParameter doc, elRoot, "Newvalue", "XML Contact"
SetParameter doc, elRoot, "Append", "0O"

Executing the XML Document

The GoldMine XML API exposes a single method to execute the XML document: ExecuteCommand. The following
subroutine wraps the calls necessary to execute the API’s XML:

Public Sub ExecuteCommand(doc As DOMDocument40)

Dim strout As String

Dim GMAPI As GMXMLAPI.GoldMineData

Set GMAPI = New GMXMLAPI.GoldMineData
strout = GMAPI.ExecuteCommand(doc.xml)

‘xmlout is a global string variable. This can be changed to be ‘returned
by the function call.

xmlout = strout

Set GMAPI = Nothing

End Sub

Page 185 of 463

GoldMine ™

Reading the Results

The GoldMine XML API returns the results of the function calls by adding an element called status with an
attribute called “code”. In addition, data returned by the call, such as contact information, is returned as child
elements.

Reading the Code Attribute

After executing an XML APl command, the resulting XML document contains a status element with a code
attribute. The value of this attribute represents the return value of the function executed. The text value of the
code attribute is a description of the return value, typically providing a meaningful explanation of an error code.
The following subroutine returns the code as the return value and the textual description as an optional output
parameter:

Public Function GetReturnval(Optional sDescription As String) As Integer
Dim DomDoc As DOMDocument40
Set DomDoc = New DOMDocument40

‘xmlout is a global variable that contains the returned XML from
‘the ExecuteCommand subroutine defined in the above section
DomDoc.loadXML xmlout

Dim root As IXMLDOME]lement

Set root = DomDoc.documentElement

If root.Attributes.Tength > 0 Then

Dim status As IXMLDOMNode

Set status = root.childNodes(0)

If status.Attributes(0).baseName = "code" Then
sDescription = status.Text

GetReturnval = status.Attributes(0).Text

End If

End If

Set DomDoc = Nothing

Set root = Nothing
Set status = Nothing

End Function

Reading the Returned Data

The GoldMine XML API returns an element titled “Return” containing the data elements returned by the executed
command. The best way to access the individual elements using MSXML is to call selectsingleNode and specify an
XPath expression to designate the desired element. SelectsingleNode returns a reference to the element
requested. To access a further-nested element, call selectsingleNode again from the originally returned element.
The following code loads an XML document returned from executing the ReadRecord command. It then obtains a
reference to the “Return” element, followed by requesting the “CONTACT” element from the “Return” element.

Dim elReturnData As IXMLDOMElement

Page 186 of 463

GoldMine ™

Dim elFieldvalue As IXMLDOMElement
Dim docReturned As DOMDocument40
Dim elRootReturned As IXMLDOMElement

Set docReturned = New DOMDocument40

docReturned.loadXxML xmlReturned
Set elRootReturned = docReturned.documentElement

Set elReturnData = elRootReturned.selectSingleNode("data[@name="'Return']")
If Not elReturnData Is Nothing Then

Set elFieldvalue = elReturnData.selectSingleNode("data[@name="CONTACT']")
If Not elFieldvalue Is Nothing Then _

txtContactName = elFieldvalue.Text

End If

Set elReturnData = Nothing
Set elFieldvalue = Nothing
Set elRootReturned = Nothing
Set docReturned = Nothing

The XPath expression is case sensitive. Typically, all field name elements will be in ALL CAPS. Other element names
may not be formatted in that manner. The case format of the element name can be checked by inspecting the
returned XML during the design phase of your application.

Page 187 of 463

GoldMine™

Accessing the Current GoldMine Instance
with COM

Overview

With the release of GoldMine 6.7, GoldMine acts as a COM Server. This new functionality enables an application
to interact with GoldMine without using DDE or loading a dll. In addition, integrating your application with
GoldMine using the COM Server ability does not require a separate instance of Borland Database Engine (BDE)
to be loaded. Furthermore, utilization of the COM server in GoldMine allows the integrating application to
control GoldMine’s user interface to a much greater extent than the legacy DDE server allowed.

NOTE: As of GoldMine Version 7.0, the Borland Database Engine is no longer used. References to BDE in
this chapter apply to integrations developed in GoldMine Version 6.7.

All COM server class methods are executed via XML. For information on using Microsoft XML for creating XML
documents to use with the GoldMine COM Server, please see .

There are 3 classes exposed by the COM server:

1. GoldMine.GoldMineData — This class has methods that are exactly as in the GoldMine XML API described in
Chapter 4, Working with the XML API. However, this class does not contain any functions for loading BDE or
logging in, as they are unnecessary with a running instance of GoldMine. Using the
GoldMine.GoldMineData class of the COM Server will alleviate the SharedMemLocation BDE setting issues
with loading a second BDE instance.

NOTE: Since these commands are an exact duplicate to the GoldMine XML APl commands, they will not
be documented in this chapter. For information on using the commands accepted in this class, please see

2. GoldMine.Ul - This class has methods and events that replace all current DDE functionality and to control
the GoldMine user interface.

3. GoldMine.RecObj— This class has events for notifying client applications of Record object changes.

Getting Started

To access the GoldMine COM Server, add a reference to the GoldMine 6.7 Type Library to your project. Objects
for each of the classes can now be created.

Dim withEvents GMUI As GoldMine.UI
Dim withEvents RcOb As GoldMine.RecObj
Dim GMData As GoldMine.GoldMineData

Page 188 of 463

GoldMine ™

In addition, your application needs to be COM Exception aware.

For instance if a login fails, then a COM Exception of type AccessDenied is passed to your application.

Executing Commands

The GoldMine.Ul and GoldMine.GoldMineData classes only have one exposed method:
ExecuteCommand([in]BSTR xmlIn, [out, retval] BSTR* xmlout)
To use this method, build your XML document using a DOM parser, such as MSXML, then pass the resulting
document to the ExecuteCommand method.
strout = GMUI.ExecuteCommand (txtXMLIn.Text)
= If your application is developed in VB, C#, VB.NET, or Delphi the call will have the same format as above.

StringVar = GMUI.ExecuteCommand(xmlIN)

m If your application is developed in C++, or another lower-level programming language, the call will have the
format of:

ExecuteCommand(xmlin, xmlOut)

Logging In to GoldMine

Using the GoldMine COM Server requires that GoldMine is running on the computer the client application is also
running on. If GoldMine is not running, it will be launched the first time a call is made to the GoldMine COM
Server. However, this will only bring GoldMine to the login screen. The GoldMine.Ul and GoldMine.GoldMineData
classes both have a command to handle this, Login. Following is example code for calling the Login command:

GMObj . ExecuteCommand (""'<GMAPI call=""Login""><data
name=""User"">MASTER</data><data name=""Pass"">ACCESS</data></GMAPI>")

= If GoldMine is already running, the COM server will return:

<GMAPI call="Login">
<status code="-31703">The call passed was not recognised as

valid.</status>
</GMAPI>

m If the Login attempt was successful, the COM server will return:

<GMAPI call="Login">
<status code="1">Succeeded.</status>
</GMAPI>

m If invalid login information is passed, a COM Exception of type AccessDenied is returned to the client
application.

Page 189 of 463

GoldMine ™

GoldMine.Ul Class

The Ul class of the GoldMine COM Server provides identical functionality to the legacy DDE Server. If you are
familiar with using the DDE commands, porting to the COM Server will be natural. There is additional functionality
in the COM Server that allows control of the GoldMine user-interface with commands such as launching menu
items, being notified when a window is being launched, and manipulating controls.

Accessing Data Files

GoldMine.Ul provides a complete set of commands that allow low-level access to the data files. These functions
allow you to:

O Open particular data files,

O Query the values of the fields in the records in the data files,
O Add records to the files, and

O Replace data in the records.

This suite of functions is usually used for database applications that need varied access to GoldMine data.

Adding an Empty Record

Syntax <GMAPI call="Append”>
<data name="Area”’>1l</data>
</GMAPI>

The Append function is used to add an empty record to a GoldMine data file. Before using Append, you must open
a data file using the Open function. After executing the Append function, the record pointer is positioned at the
new empty record, and the record is locked and ready to accept field replacements.

When a CONTACT1 record is appended, GoldMine automatically propagates the new record with the appropriate
ACCOUNTNO and CREATEBY values. For all other records, you must replace the ACCOUNTNO field with the value
from the CONTACT1 record with which the new record is to be linked. For records that require remote
synchronization initialization, GoldMine will automatically propagate the value of the RECID field when these
records are appended.

Parameters
The Append function accepts one parameter, the work area handle of the file to Append. The work area handle is
returned by the Open file when the file is opened.

Return Value

Xbase: The Append function returns the record number of the new record, or 0 if the file could not be locked.

5SQL: The Append function returns the record ID.

Returned XML

<GMAPI call="Append">
<status code="1">72</status>

Page 190 of 463

GoldMine ™

</GMAPI>

Closing an Opened File

Syntax <GMAPI call="Close”>
<data name="Area”> 1l</data>
</GMAPI>

<GMAPI call="Close”>
<data name="Area”’> 1l</data>
</GMAPI>

The Close function is used to release a previously OPENed file when processing is complete. When access is
complete, a file must be CLOSEd to release memory used by GoldMine to maintain database work areas.
Parameters
The Close function accepts one parameter, Area—the work area handle of the file to close. The Open file returns
the work area handle when the file is opened.
Return Value
The Close value returns 1 if the function was able to successfully close the work area, 0 if an invalid work area
handle was passed.
Returned XML

<GMAPI call="Close"><status code="1">Success</status></GMAPI>

Deleting the Current Record

Syntax <GMAPI call="Delete”>
<data name="Area”’>1l</data>
</GMAPI>

The Delete function deletes the current record in the specified work area. The record pointer is not advanced to
the next record.
Parameters

The Delete function takes one parameter, Area—the work area value obtained from the Open function.

Returned XML

<GMAPI call="Delete">
<status code="1">Success</status>
</GMAPI>

Creating a Subset of Records

Syntax <GMAPI call="Filter>
<data name="Area”’>1l</data>
<data name="Expression”’>Xbase Expression</data>
</GMAPI>

Page 191 of 463

GoldMine ™

The Filter function limits access to data in a GoldMine database by creating a subset of records based on
expression criteria.

Parameters
The Filter function takes two parameters.

Area: the work area handle of the file that you want to read. The Open function provides this value when the data
file is opened.

Expression: a valid Xbase expression. Referencing a table and field in an Xbase expression requires the use of the
“>” character. Since this is an XML entity, be sure to build this XML document through a DOM parser to XML
encode the elements. See for more information.

To remove the filter from the database, use a Filter function with an empty string, such as:

<GMAPI call="Filter”>
<data name="Area”>1</data>
<data name="Expression”/>
</GMAPI>

Checking for an Xbase or SQL Table

Syntax <GMAPI call="IssQL”>
<data name="Area”’>1l</data>
</GMAPI>

The IsSQL function returns the table type (Xbase or SQL) that is open in a work area. Using this command, you can
determine the most appropriate method to retrieve information when working with DataStream. For example,
when your routine starts, you can open Contactl and Cal, issue an I1sSQL command to determine the GoldDir and
CommonDir database types, and then close both work areas. You can then send the appropriate DataStream calls.

Parameters

The IsSQL function takes work area as the only parameter, Area.

Return Value

IsSQL returns 1 for an SQL database table, or 0 for an Xbase file.

Returned XML

<GMAPI call="1Issql">
<status code="0">The open file is xBase.</status>
</GMAPI>

Moving to a Specified Record

Syntax <GMAPI call="Move”’>
<data name="Area”’> 87494472</data>
<data name="Command”>COMMAND</data>
<data name="Parameter”>PARAMETER</data>
</GMAPI>

Page 192 of 463

GoldMine ™

The Move function will position the record pointer to a particular record in a data file. Before using Move, you
must open a data file using the Open function.

Parameters
The Move function requires either two or three parameters.

Area: the work area handle of the file whose record pointer you want to position. The Open function provides this
value when the data file is opened.

Command: the name of the Move subfunction that you want to perform.
Parameter: Depending on the subfunction, a third parameter can be required.
The following table lists the Move subfunctions and the requirements for the third parameter:

Valid Move Subfunctions

Subfunction Description 3rd Parameter

TOP Move to first logical record Not required

BOTTOM Move to last logical record Not required

SKIP Skip records Optional, records to skip

GOTO Go to a specific record Record number (Xbase), Record ID (SQL)

SEEK Seek a specific record by key Search key value

SETORDER Select an index Index name

Top Positions the record pointer at the first logical record according to the current index order. For

example, if the data file open in the selected work area is CONTACT1.DBF, and the index order
is set to Company, a call to TOP will result in the record pointer being positioned at a record
with a company name, such as AAA Cleaners.

Bottom Positions the record pointer at the last logical record according to the current index order. For
example, if the data file open in the selected work area is CONTACT1.DBF, and the index order
is set to Company, a call to BOTTOM will result in the record pointer being positioned at a
record with a company name, such as Z-best Bakery.

Moves the record pointer record by record. If SKIP is called without the third parameter, it will
move the record pointer to the next logical record according to the current index order. If SKIP

Skip is called with a string numeric as the third parameter, the record pointer will be moved
forward by the indicated number if the value is positive, or backward if the value is negative.
Negative numbers must be passed in quotation marks, for example “-1”.

Positions the record pointer at the record number (Xbase) or record ID (SQL) specified by a

Goto . . ;
string numeric passed as the third parameter.

Page 193 of 463

GoldMine ™

Seek Attempts to locate a record in the data file with an index key that matches the string passed as
the third parameter. Partial key searches are allowed; GoldMine will position the record
pointer at the record with the key that most closely matches the passed value.

Setorder Selects an active index for ordering and SEEKing the data file. See for the appropriate values
and collating sequence for each data file index.

TIP: If an invalid index is selected for the data file, none of the MOVE subfunctions will operate
properly.

Return Value

The Move function can return several values.

Move Return Values

Return Description

0 Error occurred

1 Record pointer successfully moved, or index selected

2 Exact match not found, pointer positioned at closest match
3 Record pointer positioned at end-of-file (EOF)

4 Record pointer positioned at beginning-of-file (BOF)

An error can be returned under any of the following conditions:

O Invalid work area handle is passed to the function.

O Invalid subfunction is passed.

O Out-of-range record number is passed.

O Nonnumeric value is passed as a third parameter when a numeric value is expected.

Returned XML

<GMAPI call="MOVE">
<status code="1">1</status>
</GMAPI>

Opening a Data File

Syntax <GMAPI call="Open”>
<data name="Filename”>CONTACT1</data>
</GMAPI>

The Open function is used to open a GoldMine data file for processing by another application. This function must
be called before calling any GoldMine.Ul data functions that work with an individual data file. It is not necessary to
use this function when calling the RecordObj function or user-interface control functions.

Page 194 of 463

GoldMine ™

Parameters

The Open function takes one parameter, Filename. The following values are valid for this parameter:

Open Valid Parameters

File Description

CAL Calendar activities file
CONTACT1 Primary contact information file
CONTACT2 Primary contact information file
CONTGRPS Groups file

CONTHIST History records file

CONTSUPP Supplementary records file
INFOMINE InfoCenter file

LOOKUP Lookup file

MAILBOX E-mail Center mailbox file
OPMGR Opportunity Manager file
PERPHONE Personal Rolodex file
RESOURCE Resources file

SPFILES Contact files directory

Return Value

The Open function returns an integer value representing the handle to the file’s work area. This value is required
for all subsequent access to the file. If the file could not be opened, or an invalid parameter is passed, the function
will return 0.

Returned XML
<GMAPI call="open"><status code="1">87732928</status></GMAPI>

Limiting GoldMine Search Range

<GMAPI call="Range"> <data name="Area'">87732928</data> <data
Syntax name="Min">Mark Durrant</data> <data name="Max">Paul
Redstone</data> <data name="Tag">CONTNAME</data></GMAPI>

The Range function activates the index in a table and sets a range of values to limit the scope of data that
GoldMine will search.

Page 195 of 463

GoldMine ™

Parameters
The Range function requires four parameters.

Area: the work area handle of the file that you want to read. The Open function provides this value when the data
file is opened.

Min: the minimum value of the range.
Max: the maximum value of the range.

Tag: the tag that corresponds to the index file. For details about tags, see .

Returned XML

<GMAPI call="Range">
<status code="1">Success</status>
</GMAPI>

Syntax <GMAPI call="qQuery">
<data name="Area''>87732928</data>
<data name="sQL">select recid from contactl where
state="MI"</data>
</GMAPI>

The Query function limits the set of records that can be accessed to the result set from the specified SQL query.
After calling the Query command, issue a MOVE command to move the record pointer into the result set from the
Query (by calling TOP for example).

Parameters
Area: the area value returned by the Open command.

5SQL: the SQL query to send to the server.

Returned XML

<GMAPI call="Query'"><status code="1">Success</status></GMAPI>

Reading a Field Value

Syntax <GMAPI call="Read">
<data name="Area''>87624560</data>
<data name="Field">Keyl</data>
</GMAPI>

The Read function is used to query a data file for the value of a field. Before using Read, you must open a data file
using the Open function. In addition, you will probably want to position the record pointer to the record you want
to query by using the Move function.

Parameters

The Read function requires two parameters.

Page 196 of 463

GoldMine ™

Area: The first parameter is the work area handle of the file that you want to read. The Open function provides
this value when the data file is opened.

Field: The second parameter is the name of the field in the data file whose value you want to query. You will
normally pass only a single field name, such as CONTACT as the second parameter. However, if you pass a field

expression, such as “COMPANY + CONTACT” GoldMine will attempt to evaluate the expression and return the
value of the expression.

Return Value

The Read function returns a character string containing the value in the specified field, or the value of the

specified expression. An invalid work area handle, an invalid field being passed, or an expression that GoldMine
could not evaluate can cause errors.

Returned XML

<GMAPI call="Read">

<status code="1">Client Prospect</status>
</GMAPI>

Checking the Current Record Number or Record ID

Syntax <GMAPI call="Recno">
<data name="Area'>87624560</data>
</GMAPI>

Xbase: RecNo function is used to determine current record number position.
SQL: RecNo function is used to determine the record ID.
Parameters

The RecNo function accepts one parameter, Area—the work area handle of the file. The Open function returns the
workarea.

Return Value
The RecNo function returns the current record number position, 0 if an invalid work area handle was passed.

Returned XML

<GMAPI call="Recno">
<status code="1">21</status>
</GMAPI>

Page 197 of 463

GoldMine ™

Changing a Field Value

Syntax <GMAPI call="Replace">
<data name="Area''>87637440</data>
<data name="Field">contact</data>
<data name="Newvalue'">Reuben Corazza</data>
<data name="Append">0</data>
</GMAPI>

The Replace function is used to change the value in a particular field in one GoldMine data file. Before using
Replace, you must open a data file using the Open function. In addition, you will probably want to position the
record pointer to the record you want to change either by using the Move function, or by adding a new record
with the Append function.

After executing the Replace function, GoldMine will update the specified field with the new value, and update the
appropriate remote synchronization data structures to indicate that the field was changed.

In a network environment, GoldMine automatically locks the record before performing the replacement. The
record is not automatically unlocked, allowing for fast multiple field replacements. The record is automatically
unlocked when a Close, Move, or Unlock command is issued on the work area.

Parameters

The Replace function requires three parameters and has an optional fourth parameter.

Area: The first parameter is the work area handle of the file in which you want to perform the replacement. The
Open function provides this value when the data file is opened.

Field: The second parameter is the name of the field to be replaced. See for information on the name of fields in
each GoldMine data files. If you attempt to replace a field that does not exist in the file open in the specified work
area, the Replace function will fail.

NewValue: The third parameter is the value to replace. The replace value must be a string value. If the
replacement field is a date or numeric field, GoldMine will convert the string data to the appropriate data type
prior to performing the replacement.

Append: The fourth parameter will add data instead of replacing data. Using this parameter, you can insert large
amount of text into a notes field. To append instead of replace incoming data from the third parameter, pass 1 as
the fourth parameter. You can set up a loop to feed notes in 256-byte segments to override the 256-byte limit for
inbound DDE requests.
Return Value
If the file was replaced, the Replace function returns 1.
<GMAPI call="Replace"><status code="1">Success</status></GMAPI>

If the field could not be replaced, 0 is returned. The failure can be caused under any of the following conditions:

O Invalid parameter, such as an invalid work area handle.
O Invalid field name.
O Record already locked by another user.

Page 198 of 463

GoldMine ™

Performing a Sequential Search

Syntax <GMAPI call="search">
<data name="area'">87675752</data>
<data name="expression">contact="Paul Redstone'</data>
</GMAPI>

The Search function is used to perform a sequential search on a file. Unlike Move, Search scans the table, one
record at a time, looking for a record that satisfies the search condition. The search condition can be any Xbase
expression that GoldMine understands, but is usually an expression that tests the value of one or more fields in
the file. When a match is found, the record pointer is located at the matching record.

Search starts with the record that immediately follows the current record (the next logical record according to the
selected index order) and continues until a match is found or the end of file is encountered. Because of this,
Search can be called repeatedly to return a list of records that satisfy the search condition.

Parameters

The Search function takes three parameters.

Area: the work area handle of the file you want to search. The Open function provides this value when the data
file is opened.

Expression: the search expression, such as “CITY="Los Angeles’”

Return Value
The Search function can return several values.

Search Return Values

Return Description

0 Error occurred or match could not be found

Match found; return value indicated current physical record number (Xbase) or

>0 record ID (SQL)

An error can be returned if an invalid work area handle is passed to the function, or if an invalid search condition
is passed.

Returned XML

<GMAPI call="search">
<status code="1">1</status>
</GMAPI>

Unlocking a Record

Syntax <GMAPI call="unlock">
<data name="Area'">87675752</data>
</GMAPI>

Page 199 of 463

GoldMine ™

The Unlock function unlocks a record previously locked by a call to either Append or Replace. GoldMine does not
specifically release a lock on a record until you call Unlock, allowing you to perform multiple field replacements
quickly. Before using Unlock, you must open a data file using the Open function.

After calling Unlock, GoldMine will also update the remote synchronization data structures to indicate the date
and time that the record was modified.

Parameters

The Unlock function accepts one parameter, Area—the work area handle of the file to close. The work area handle
is returned by the Open file when the file is opened.

Return Value

The Unlock function returns 1 if the record was unlocked, or 0 if an invalid work area handle was passed to the
function.

Returned XML

<GMAPI call="unlock">
<status code="1">Success</status>
</GMAPI>

Accessing Contact Records

For specific applications that need access to the GoldMine contact database at the logical level, the RecordObj
function is the preferred access method. Unlike the low-level GoldMine.Ul functions, the RecordObj function
maintains all of the relationships between the various GoldMine files. This access method is most often used for
document merging functions such as word processor mail merges or placing information into a spreadsheet.

Linking GoldMine Fields with an External Application

Syntax <GMAPI call="Recordobj">
<data name="command">skip</data>
<data name="Argument">3</data>
</GMAPI>

The RecordObj function is a specialized function designed to link fields in a document application, such as a word
processor or spreadsheet. Using RecordObj, an application can access the contact record in a high-level fashion,
rather than opening the CONTACT1.DBF and CONTACT2 .DBF files using Open.

Calling RecordObj within a program is equivalent to viewing and manipulating the contact record within
GoldMine. The calling program can control the record pointer in the contact record much the same way a

GoldMine user can move the record pointer. In fact, RecordObj can be called in such a way as to create a
minimized contact record in the GoldMine work area display.

The primary differences between using Open, Move, and Read to access contact information and using RecordObj
are described in the following table.

Page 200 of 463

GoldMine ™

Differences in Accessing Contact Information

Using Open, Move, Read

Using RecordObj

Any filter or group that is active on a contact record
in GoldMine is ignored when files are accessed using

Open and Move

RecordObj can work in conjunction with a filter or group.
Any records that do not match the filter expression, or
are not members of the group, are skipped

The only way to maintain the relationship between
the CONTACT1 and CONTACT?2 files, is to manually
reposition CONTACT2 whenever the record pointer

is moved in CONTACT1.DBF.

Automatically maintains the relationship between
CONTACT1 and CONTACT2, and other contact
information such as history.

RecordObj does not contain a method to read specific
fields from the database. It is expected that the
application will use the Macro or Expr functions to query
information from the current contact record, and use
RecordObj function calls only to position the record
pointer.

When RecordObj is used to move the record pointer, the
contact record screen in GoldMine is updated. To receive
notification that the screen has changed, use the
GoldMine.RecordObj class to receive events notifying of
a record change, a tab clicked, or a contactl or contact2
field being changed.

Parameters

The RecordObj function requires either one or two parameters.

Command: the name of the RecordObj subfunction that you want to perform.

Argument: Depending on the subfunction, a second parameter can be required. The following table lists the
RecordObj subfunctions and the requirements of the second parameter.

Valid RecordObj Functions

Subfunction Description Argument

SETOBJECT Create or select contact record Optional object pointer
TOP Move to first logical record Not required

BOTTOM Move to last logical record Not required

SKIP Skip records Optional, recs to skip
SEEK Seek a specific record by key Search key value

Page 201 of 463

GoldMine ™

SETORDER Select an index Index tag number
GETORDER Return the currently active index name Not required
SETTITLE Set the contact record title Text of title
CLOSEWINDOW Close the contact record None

Change the behavior of SKIP, TOP, and

SETRECORD Name of data structure to be queried
bottom

REFRESH Repaint the contact record Not required

GETRP Return the point to the current contact Not required

record (Xbase) or the record ID (SQL)

GETFILTEREXPR

Get the activated filter’s expression Not required

GETGROUPNO

Get the GroupNo of the activated group Not required

GOTO

The ReclID to seek

Additionally, accepts a third optional
parameter, SetPrimary, indicating if only
primary contacts should be searched (1) or
(0) to include additional contacts in the
search scope.

Seeks a specific record by RecordID

Setobject

If SetObject is called without a second parameter, subsequent calls to RecordObj will
manipulate the currently active contact record. If SetObject is called with a second
parameter of 0, GoldMine will create a minimized contact record in the work area display,
and subsequent calls to RecordObj will manipulate that contact record. If SetObject is
called with a second parameter of 1, GoldMine will create a minimized contact record in
the work area display and copy any filter or group active on the last used contact record
into the newly minimized contact record.

If RecordObj is called with a specific pointer number, GoldMine will attempt to establish a
link with that contact record.

Top

Positions the record pointer at the first logical record according to the current index order.
For example, if the contact record index order is set to Company, a call to Top will result in
the record pointer being positioned at a record with a company name such as “AAA
Cleaners.” GoldMine will also update the contact record to display the new record.

Bottom

Positions the record pointer at the last logical record according to the current index order.
For example, if the contact record index order is set to Company, a call to Bottom will
result in the record pointer being positioned at a record with a company name such as “Z-
best Bakery.” GoldMine will also display the new record.

Page 202 of 463

GoldMine ™

Skip

The Skip subfunction moves the record pointer on a record-by-record basis.

If Skip is called without the second parameter, it will move the record pointer to the next
logical record according to the current index order.

If Skip is called with a string numeric as the second parameter, the record pointer will be
moved forward by the indicated number of records if the value is positive, or backwards if
the value is negative. GoldMine will also update the display to show the new record.

The Skip subfunction is sensitive to any filter or group that can be active on the contact
record in GoldMine. For example, if the user applies a filter to the contact record in
GoldMine, the Skip subfunction will skip over any records that do not match the filter
expression.

Goto

The Goto subfunction positions the record pointer at the record number specified by a
string numeric passed as the second parameter. Additionally, accepts a third optional
parameter, SetPrimary, indicating if only primary contacts should be searched (1) or (0 -
default) to include additional contacts in the search scope.

<GMAPI call="Recordobj">

<data name="Command">skip</data>

<data name="Argument'>3</data>
<data name="SetPrimary”’>1l</data>
</GMAPI>

Seek

Attempts to locate a record in the data file with an index key that matches the string
passed as the second parameter. Partial key searches are allowed, and GoldMine will
position the record pointer at the record with the key that most closely matches the
passed value. GoldMine will update the display to show the new record.

Setorder

Selects an active index for ordering and SEEKing the contact database. Only the twelve
CONTACT1 indexes can be used for this subfunction. See for the appropriate values and
collating sequence for each data file’s indexes.

Getorder

Returns the active index being used to sort the contact records. See for the appropriate
values and collating sequence for each data file’s indexes.

Settitle

Changes both the text in the title bar of the contact record’s window and the text
displayed below a minimized contact record. For example, an application that merges
contact records within a document can modify the contact record title to indicate the
number of records that have been merged. Any text that is passed as the second
parameter will be used as the new title’s text.

Closewindow

Closes the contact record when processing is complete. Issuing this call is equivalent to
selecting Close from the contact record’s system menu.

Page 203 of 463

GoldMine ™

Setrecord

Changes the behavior of the Skip, Top, and Bottom subfunctions to allow ancillary contact
information (such as additional contacts) to be queried using the RecordObj function.
Normally, GoldMine assumes the CONTACT1 data file to be the parent data file, and when
the Skip, Top, or Bottom subfunction is called, the record pointer is repositioned in this
data file. When accessing information in GoldMine tabs, however, the Skip, Top, and
Bottom subfunctions must be able to reposition the record pointer in the data file that
stores these items (CONTSUPP).

The SetRecord subfunction accepts the name of the data structure being queried as the
second parameter. Valid data structure names are listed in the following table.

Data Structure Name Description

O CONTACTS Additional contacts

QO PROFILE Profile records

O REFERRALS Referral records

QO LINKS Linked documents

O PRIMARY Primary contacts

Setrecord Valid Structure Names
Using SetRecord changes the behavior of the Skip, Top, and Bottom subfunctions.

The first parameter is the name of the RecordObj subfunction that you want to perform.
When Top is called, GoldMine will position the record pointer in the supplementary data
file so that the first record containing the selected information is the current record. For
example, if SetRecord is used to select CONTACTS, Top will position the record pointer on
the first additional contact record for the current contact. The record pointer in the
primary information data file (CONTACT1) will not be moved, so the name of the current
company will remain the same. Bottom behaves in a similar manner.

Skip will position the record pointer in the supplementary file on the next record of the
selected type. For example, if SetRecord is used to select CONTACTS, Skip will position the
record pointer in the supplementary file on the next additional contact record for the
current contact. The record pointer in the primary information data file (CONTACT1) will
not be moved, unless the record pointer in the supplementary file was already positioned
at the last record of the selected type; then GoldMine will reposition the record pointer in
the primary information data file (CONTACT1) to the next contact record and reset the
record pointer in the supplementary file to the first supplemental record of the selected
type. Macro expressions are also sensitive to the setting of the SetRecord subfunction.

Refresh

Repaints the contact record

GetRP

Obtains a pointer of the currently selected contact record

GetGroupNo

Returns the group number (if a group is activated)

Page 204 of 463

GoldMine ™

GetFilterExpr Returns the filter expression (if a filter is activated)

Return Value

All RecordObj subfunctions return 1 if the function was completed successfully, or 0 if an internal error occurred.

Returned XML

<GMAPI call="Recordobj">
<status code="1">Skip Success</status>
</GMAPI>

Accessing Specialized GoldMine.Ul Functions

GoldMine provides a set of specialized functions for performing specific tasks, such as retrieving a list of plug-ins,
adding document links to the contact database, or sending GoldMine a CallerID message.

Retrieving a List of Active Plug-Ins (GoldMine 7.0 or higher)

Syntax <GMAPI call="GetActivatedPlugins"/>

The GetActivatedPlugins function is used to retrieve a list of active (trusted) plug-ins for the current user’s session.
For more information about GoldMine Plug-ins, see the Working with GoldMine Plug-ins chapter.

Each Pluglin node in the list is an encoded representation of the item. These are dynamically created and will not
be the same starting number on individual systems. For example, 3013__ GMAIL may be 3001__ GMAIL on another
system. The text after the number will be the same.

Each plug-in list item contains the following information:

XXXX__InternalName__MethodMenuEntry

Returned XML

<GMAPI call="GetActivatedPlugIns'>

<status code="1">Success</status>

<data name="PlugInList">

<data name="PlugIn'">3007__FrontRangeCTestControl</data>
<data name="PlugIn">3002__FrontRangeoutlookwebAccess</data>
<data name="PlugIn'">3250__FrontRangeMovieVviewerlO__
LaunchMovieviewerlO</data>

<data name="PlugIn'">3251__FrontRangeMovieVviewerlO__
ConfigureMovieviewerlO</data>

<data name="PlugIn'">3001__FrontRangeTestCalendar</data>
<data name="PlugIn'">3003__FrontRangeHelpAbout</data>

<data name="PlugIn'>3008__GamesKittenGame</data>

<data name="PlugIn">3013__GMAIL</data>

<data name="PlugIn'">3005__GoogleGoogleMaps</data>

<data name="PlugIn">3000__JCSFlashandGMviaVBNET</data>
<data name="PlugIn'">3009__JCcsofficebocument</data>

<data name="PlugIn">3004__SolutionSellingSolutionselling</data>
</data>

Page 205 of 463

GoldMine ™

</GMAPI>

Running a Plug-In (GoldMine 7.0 or higher)

Syntax <GMAPI call="RunP] ugIn">30l3_GMAI L</GMAPI>
Or
<GMAPI call="RunPlugIn">3013</GMAPI>
Or
<GMAPI call="RunPlugIn">
<data name="PlugIn”>3013__GMAIL</data>
</GMAPI>
Or

<GMAPI call="RunPlugIn">
<data name="PlugIn”>3013</data>
</GMAPI>

The RunPlugln function attempts to start the designated plug-in. For more information about GoldMine Plug-ins,
see.
Returned XML

<GMAPI call="RunPTugIn">

<status code="1">The plug-in call was successful.</status>
</GMAPI>

Or

<GMAPI call="RunPTugIn">
<status code="0"> The Plug-in ID is invalid</status>
</GMAPI>

Retrieving Login Credentials for Use with the GMXS32.DLL

Syntax <GMAPI call="GetLoginCredentials"/>

The GetlLoginCredentials function is used to retrieve a string containing login credentials to be used for logging
into the GMXS32.DLL through the GMW_LoadAPI, GMW_LoadBDE or GMW_Login functions. Using this option, it
is not necessary to prompt the integration user for login information if GoldMine is running. The login credentials
received are only valid for 30 seconds, so do not store them and attempt to use them at a later time. The string
returned by this command should be used as the password to the appropriate login function, where the username
is “*DDE_LOGIN_CREDENTIALS*”.

Returned XML

<GMAPI call="GetLoginCredentials">

<status code="1">KEVIN
01Cc4D24F7051B9B04F882C36294F1F4AB4E4D20FCF3C1682</status>
</GMAPI>

Page 206 of 463

GoldMine ™

Retrieving the ReclD of the Current Opportunity

Syntax <GMAPI call="GetActiveOppty"/>

The GetActiveOppty function is used to retrieve the ReclD of the currently selected Opportunity in the
Opportunity Manager.

Return Value
The GetActiveOppty function returns the record ID of the currently selected opportunity. If no opportunity is
available, an empty string is returned.

Returned XML
No opportunity or project selected in GoldMine:

<GMAPI call="GetActiveOppty">
<status code="1"></status>
</GMAPI>

An opportunity or project is selected in GoldMine:

<GMAPI call="GetActiveOppty">
<status code="1">A0A73CU%Y/HD3\T</status>
</GMAPI>

Completing a Calendar Activity

Syntax <GMAPI call="calComplete">
<data name="Recno'">ASSAG6C(+.E%3\T</data>
<data name="Activity">BIL</data>
<data name="Ref">Called Angel re Support</data>
<data name="ResultCode">DON</data>
<data name="Notes">Agreed on terms</data>
<data name="User">KEVIN</data>
<data name="RetainDate”>1l</data>
</GMAPI>

The CalComplete function is used to complete an activity from the Calendar.

Parameters
The CalComplete function takes up to seven parameters.
Recno: the record number of the calendar activity to be completed.
Activity: the Activity Code. This parameter is optional.
ResultCode: the Result Code. This parameter is optional.
User: the User. If this parameter is not specified, the User field defaults to the currently logged user.

Ref: the history Reference. This parameter is optional.

Page 207 of 463

GoldMine ™

Notes: the Notes for the history record. This parameter is optional.
RetainDate: a Boolean (1=true, O= false) that if true, retains the original date of the calendar entry, otherwise uses
today. Defaults to 0, false.

Return Value

The CalComplete function returns the record number (Xbase) or record ID (SQL) of the new history record created.

Returned XML

<GMAPI call="calcComplete">
<status code="1">1980</status>
</GMAPI>

Displaying Edit Windows for Calendar and History Items

Syntax <GMAPI call="PopCalHistItem">
<data name="recID”>BNPKDFZ$0F9-]wv</data>
</GMAPI>

Use the PopCalHistltem function to display the edit window for calendar or history items, including email. When
you pass it a valid cal table or conthist recID, the correct edit window will open.

The Calendar Item edit window is a modal dialog: the return value will not be sent until the user closes the edit
window.

For history items, the record object will align to the owner of the history automatically. This will not occur for
calendar items.

General Messages

<GMAPI call="PopCalHistItem"><status code="-33001">

PopCalItem has failed because the passed record could not be found.
</status></GMAPI>

<GMAPI call="PopCalHistItem"><status code="-33002">

PopCalItem opens a calendar or contact history record for editing.
Parameters

RecID: the record id of the cal or conthist table entry. </status></GMAPI>

Return Value

m Calendar Item Return Values

<GMAPI call="PopCalHistItem"><status code="0">User pressed cancel
button.</status></GMAPI>
<GMAPI call="PopCalHistItem"><status code="1">User pressed OK
button.</status></GMAPI>

m History Item Return Values

<GMAPI call="PopCalHistItem"><status code="0">Failure</status></GMAPI>
<GMAPI call="PopCalHistItem"><status code="1">Success</status></GMAPI>

m Email Item Return Values
<GMAPI call="PopCalHistItem"><status code="0">Failure</status></GMAPI>

Page 208 of 463

GoldMine ™

<GMAPI call="PopCalHistItem"><status code="1">Success</status></GMAPI>
<GMAPI call="PopCalHistItem"><status code="1">Already
Open</status></GMAPI>

Displaying the Contact Record of an Incoming Caller

Syntax <GMAPI call="calleriD">
<data name="Phone">(800)776-7889</data>
<data name="Description">Incoming caller:</data>
<data name="DisplayDialog">6</data>
<data name="Al11">1</data>
<data name="UPhone”>1</data>
</GMAPI>

The CallerID function is used to inform the GoldMine user that an incoming call has been identified by Automatic
Number Identification (ANI) equipment attached to the telephone system. By using CallerID, GoldMine can
perform a lookup on the contact database, and attempt to locate a contact record with a telephone number that
matches the telephone number extracted by the ANI device.

With the CallerID function, GoldMine can automatically display the contact record of the caller. A dialog box is
displayed, allowing the user to select an action. A CallerID function parameter is used to specify the message in
the dialog box.

Parameters

The CallerID function accepts five parameters:

Phone: the telephone number of the caller as captured by the ANI device. The calling application is responsible for
formatting the telephone number that appears in the Phonel field in GoldMine.

Description: the optional message to be displayed in the dialog box in GoldMine.

All: Indicates for GoldMine to search all of the phone fields on the contact record (except FAX). Set to 1 to search
all phone fields, 0 to indicate to search only Phonel.

UPhone: Indicates for GoldMine to search the UPhone fields in contact2. This parameter is ignored if the All
parameter is set to 0.

DisplayDialog: specifies whether the dialog box is displayed. This parameter is the sum of the required options.
For example, to display the caller’s contact record in the current window if the record is found, or to display the
contact listing if the caller’s phone number is not found, specify 6 (2+4) as the <display dialog> parameter. The
following table lists valid parameter values.

CallerID Parameters

Value Description

0 Dialog box is displayed (default when third parameter is not passed)

1 Dialog box is not displayed, and contact record is displayed in a new contact record

2 Dialog box is not displayed, and contact record is displayed in the current contact record

Page 209 of 463

GoldMine ™

4 Contact Listing is displayed when GoldMine cannot find the contact’s telephone number. To
activate this option, add this value to the third parameter value.

8 Restores input focus to the window that had input focus just before CALLERID is called—used by
applications that control the entire interface.

Return Value

CallerID Return Values

Return Description

0 Error occurred

1 Contact record found

2 Contact record not found

Returned XML

<GMAPI call="callerID">
<status code="1">Passed caller was found</status>
</GMAPI>

Running a Counter

Syntax <GMAPI call="F2Counter">
<data name="Name'">My counter</data>
<data name="1Inc">1l</data>
<data name="start">0</data>
<data name="Action">0</data>
</GMAPI>

The F2Counter function returns a sequence of consecutive numbers each time the expression is evaluated. The
DDE equivalent to this function was called “Counter”.

Parameters

The counter name must be unique, and can be a maximum of 10 characters. Each evaluation of the Counter
function increments the counter by the Inc value.

The Start and Action parameters are optional. When Action is 1, the start value resets the counter. When Action is
2, the counter is deleted. F2Counter stores the count value between GoldMine sessions, and it is shared by all
GoldMine users.

GoldMine can track an unlimited number of uniquely named counters. The counter values are stored in the
LOOKUP table.

Return Value

The F2Counter function returns a number incremented by Inc.

Page 210 of 463

GoldMine ™

Example
The following sets up the counter:

<GMAPI call="F2Counter">

<data name="Name'>Num Iterations</data>
<data name="Inc">1l</data>

<data name="Start">0</data>

<data name="Action">0</data>

</GMAPI>

Returns:

<GMAPI call="F2Counter">
<status code="1">0</status>
</GMAPI>

To increment the “Num lterations” counter:

<GMAPI call="F2Counter">

<data name="Name'>Num Iterations</data>
<data name="Include">1</data>

</GMAPI>

Returns:

<GMAPI call="F2Counter">
<status code="1">1</status>
</GMAPI>

Returning GoldMine Record Data

Syntax
Range <GMAPI call="DataStream”>
<data name="Command”>Range</data>
<data name="Table”>Contactl</data>
<data name="Tag”>CONTNAME</data>
<data name="BotLimit”>A</data>
<data name="TopLimit”>zz</data>
<data name="Fields”>contact;company</data>
<data name="Filter”>EXPRESSION</data><! -NOT REQUIRED- >
</GMAPI>
<GMAPI call="DataStream”>
<data name="Command”>Query</data>
Query <data name="sqQL”>select recid from contactl</data>
<data name="Filter”>EXPRESSION</data><! -NOT REQUIRED- >
</GMAPI>

Page 211 of 463

GoldMine ™

<GMAPI call="DataStream”>
<data name="Command”>Fetch</data>
<data name="Area”’>1l</data>
<data name="FetchCount”>55</data>

Fetch <data name="Raw”>0</data><! -NOT REQUIRED- >
<data name="FieldDelimiter”>|</data><! -NOT REQUIRED- >
<data name="RowDelimiter”>\-/</data><! -NOT REQUIRED- >
</GMAPI>

Close <GMAPI call="DataStream”>

<data name="Command”>Close</data>
<data name="Area”’>1l</data>
</GMAPI>

DataStream returns the data of requested records from any GoldMine table using the most efficient method
possible. The caller can specify the fields and expressions to return, as well as the range of records to return. A
filter can optionally be applied to the data set.

The DataStream method allows for many useful applications. One example would be to publish the contents of
GoldMine data on the Internet by using XSL templates with the data returned by DataStream. Web pages can be
created to display GoldMine data requested by a visitor. Based on the visitor’s selections, a company could
dynamically present a variety of HTML pages, such as:

O Addresses of product dealers in a particular city
O Financial numbers stored in Contact?2
O Seating availability of upcoming conferences

With a fast Internet connection and a strong SQL server, the GoldMine client could simultaneously respond to
dozens of requests.

Record Selection
The DataStream command consists of four subcommands. Each subcommand takes different parameters.

The “range” or “query” subcommands must be called first to request the data. The “range” and “query”
subcommands return an integer handle, which must be passed to the “fetch” and “close” subcommands. You
must use either “range” or “query”—not both.

Datastream Range Parameters

The Table, Tag, TopLimit, and BotLimit parameters determine the range of records to scan. The Fields parameter
specifies the requested fields and expression to return.

The Field parameter passed to the “range” subcommand should consist of the field names and Xbase expressions
to evaluate against each record in the data set. Each field must be terminated with the semicolon (;) character.
Xbase expressions must be prefixed with the ampersand (&) character and terminated with a semicolon.

The other “range” parameters are optional.

Datastream Query Parameters

The “query” subcommand sends the SQL query for evaluation on the server.

Page 212 of 463

GoldMine ™

The SQL query can join multiple tables and return any number of fields. The optional Filter parameter can specify
a Boolean Xbase filter expression to apply to the data set (even on SQL tables).

Datastream Fetch Parameters

The “fetch” subcommand returns a single packet string that contains the requested data from all records
processed by the current “fetch” command, as specified by the second Records parameter. Optionally, Fetch can
return the requested data formatted in XML, making it easy to retrieve specific data without having to parse a
large string. To receive the Fetch results formatted for XML, set the “Raw” parameter to 0. Area must be the value
returned from “range” or “query.” The “fetch” command can be issued multiple times. The optional FieldDelimiter
and RowDelimiter can override the return packet’s default field and record delimiters of CR and LF. These
parameters are not used when retrieving the return packet in XML format. See “Return Packet” below.

Datastream Close Parameters

The “close” subcommand must be called when the operation is complete. Unclosed data streams will leak
memory and leave the database connections needlessly open. Passing an Area of O closes all open DataStream
objects.

The XML Return Packet

DS_Fetch has an option in the GoldMine XML API to return the data in an XML format that is easier to process
than the traditional datastream return packet. Consider the following DS_Query XML call:

<GMAPI call="DS_Query" SessionID="1">

<data name="SQL">select contact, company, keyl from contactl where
contact="Rafael zimberoff’</data>

<data name="Filter"/>

</GMAPI>

Returns

<GMAPI SessioniID="1" call="DS_Query'"><status code="1">1</status></GMAPI>

The DS_Fetch call to retrieve the requested data is:

<GMAPI call="DS_Fetch" SessionID="1">
<data name="Area''>1l</data>

<data name="Raw">0</data>

<data name="RecordCount'>25</data>
</GMAPI>

The resulting XML datastream return packet is:

<GMAPI call="DS_Fetch">

<status code="1">Success</status>
<data name="Return'>

<data name="Header">

<data name="field">

<data name="Field_Name">CONTACT</data>
<data name="Field_Type">C</data>

Page 213 of 463

GoldMine ™

<data name="Field_Length">40</data>
<data name="Field_becimal">0</data>
</data>

<data name="field">

<data name="Field_Name">COMPANY</data>
<data name="Field_Type">C</data>

<data name="Field_Length">40</data>
<data name="Field_becimal">0</data>
</data>

<data name="field">

<data name="Field_Name">KEYl</data>
<data name="Field_Type">C</data>

<data name="Field_Length">20</data>
<data name="Field_becimal">0</data>
</data>

</data>

<data name="CountbData">3000-0001</data>
<data name="Rows">

<data Name="Row">

<data name="CONTACT">Rafael Zimberoff</data>
<data name="COMPANY">Z-Firm LLC</data>
<data name="KEY1l">Partner</data>
</data>

</data>

</data>

</GMAPI>

The Header node contains child nodes for each field included in the SQL query, describing the fields’ properties.
The CountData node’s text corresponds with the old fetch return packet’s header data:

The first digit can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another DS_Fetch call
3 indicates the end-of-file (EOF)

4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in the packet.

The Rows node contains a child node for each data record returned by the query.

Return Packet

The “fetch” command returns a single packet string containing the data from all requested records. The packet
includes a header record, followed by one record for each record evaluated by “fetch.” Within each record in the
packet, the fields are separated by a Field Delimiter, the carriage return character by default (13 or 0x0D). The
records in the packet are separated by the Record Delimiter, the line feed character by default (10 or Ox0A). These
delimiters are convenient when the requested data does not contain notes from blob fields. Otherwise, you must
override the default delimiters by passing other delimiter values to the “fetch” command. The characters 1 and 2
would probably make good delimiters for packets with notes.

An example of a packet of data:

3000-0004
Boston|23

Page 214 of 463

GoldMine ™

London| 393
Los Angeles|633
New York|29

The packet header record consists of two sections. The first byte can be 0, 3 or 4. Zero indicates that more records
are available, which could be fetched with another “fetch” command. A value of 3 indicates the end-of-file (EOF),
and 4 indicates the beginning-of-file (BOF). The number following the dash indicates the total number of data
records contained in the packet.

Packets should be designed to be 8K to 32K. DataStream takes about as much time to read three records as it
does to read 30. For best performance, adjust the number to records requested by the “fetch” command to return
packets of 8K to 32K.

Performance

DataStream is the fastest way to read data from GoldMine tables. Used correctly, the GoldMine DataStream will
return the data faster than most development environments would directly. DataStream offers the following
advantages:

1. DataStream issues a single, efficient SQL query or Xbase seek to retrieve the records from the back-end
database to the local client. On SQL databases, requests of a few hundred records could be sent from the
server to the client with a single network transaction, thereby minimizing network traffic.

2. Allfields and expressions are parsed initially by the “range” and “query” commands, then quickly evaluated
against each record in the “fetch” command. Other lower level GoldMine.Ul methods (and development
environments) require that each field be parsed and evaluated each time the field’s data is read. This can
save a significant amount of time when reading hundreds or thousands of records.

3. Only three calls are required to read all the data. Using traditional record-by-record querying would require
one call for each field of each record (reading 10 fields from 50 records would require 500 calls).

The “range” and “query” commands execute equally fast on SQL databases. The “range” command executes much
faster on Xbase tables than the “query” command.

Processing a Web Import Instruction File

Syntax <GMAPI call="ExecIniImp”>c:\theimport.ini</GMAPI>
OR
<GMAPI call="ExecIniImp”’>
<data name="1IniFile”>c:\theimport.ini</data>
</GMAPI>

An application can send GoldMine a command to process a Web import instruction file. To start processing an
instruction file, send the Execlnilmp command.

TIP: For details about setting up and working with the GoldMine Web Import Gateway, see
“Capturing Web Data” in Maintaining GoldMine.

Page 215 of 463

GoldMine ™

Reading an Xbase Expression Without Opening a File

Syntax <GMAPI call="Expr”>Accountno</GMAPI>
OR

<GMAPI call="Expr”’>
<data name="Expression”>Accountno</data>
</GMAPI>

The Expr function is similar to the Read function in that it attempts to evaluate an Xbase expression and return the
result. The Expr function, however, does not require you to open a specific data file using the Open function. The
expression passed to the Expr function is evaluated against the current operating state of GoldMine (usually, the
currently displayed record), rather than the state of a specific work area. For this reason, you should be aware
that differences between the return values could exist for the same expression passed to Read and Expr.

Parameters

The Expr function takes one parameter, Expression—the Xbase expression to be evaluated. GoldMine supports a
subset of the Xbase dialect, so there is substantial flexibility in the application of this function.

When referencing field names within an expression, you should always use an alias; otherwise, GoldMine assumes
CONTACT1 to be the default alias.
Return Value

The Expr function returns a character string containing the value of the specified expression. If an error occurs, or
the expression could not be evaluated, the Expr function will return a null string.

The following XML:

<GMAPI call="Expr'>
<data name="Expression'">&CityStatezip</data>
</GMAPI>

Returns:

<GMAPI call="Expr'>
<status code="1">Colorado Springs, CO 80920</status>
</GMAPI>

Adding Merge Fields to a Form

Syntax <GMAPI call="FormAddFields”>
<data name="FormNo”’>1l</data>
<data name="FieldList”>contact;company</data>
</GMAPI>

The FormAddFields function adds merge fields to a form profile.

Parameters

The FormAddFields function takes two parameters.

Page 216 of 463

GoldMine ™

FormNo: the number of the form.

FieldList: a string that lists fields, macros, and expressions; each item in the string is separated by a semicolon (;).
GoldMine parses the string, checks for duplication, assigns names to the fields, and then stores the items.

Deleting Fields from a Form

Syntax <GMAPI call="FormClearFields”>
<data name="FormNo”>1l</data>
</GMAPI>

The FormClearFields function opens an existing form profile and deletes all associated fields.

Parameters

The FormClearFields function takes one parameter, FormNo—the number of the form.

Return Value

The FormClearFields function returns 1 if the profile is open, or 0 if an error occurs.

Closing a Form Profile

Syntax <GMAPI call="FormCloseForm”/>

The FormCloseForm function closes an open form profile.

Parameters

The FormCloseForm function does not accept any parameters.

Creating an Xbase File with Registered Fields

Syntax <GMAPI call="FormCreateFile”>
<data name="FormNo”’>1l</data>
<data name="File”>c:\XXXX.dbf</data>
<data name="MergeCode”>Mergecode</data>
<data name="whichRec”>1</data>
</GMAPI>

The FormCreateFile function creates an Xbase (DBF) file with all registered fields. Any active filter or group that

applies to the contact record is taken into account. FormCreateFile can be used to export data via the COM Server.
Parameters

The FormCreateFile function takes four parameters.

FormNo: the number of the form.

File: the name of the .DBF file to be created.

MergeCode: the merge code. If any merge code value(s) are included in the function, only records with the
matching merge code(s) will be included. To include multiple merge codes, place a space between each individual
merge code. If the MergeCode parameter is empty, all records are included.

Page 217 of 463

GoldMine ™

WhichRec: indicates which records are to be exported. The WhichRec value is the sum of values for each available
listed below.

WhichRec Values

Value Description

1 Primary

2 Secondary

4 All records

8 Forward to last

16 Return control to the calling program immediately after export has started

Examples of WhichRec Parameter

Current contact 1
All primary contacts 5(1+4)
Forward to last of primary and additional contacts 11 (1+2+8)

Return Value

The FORMCREATEFILE function returns the total number of records in the output .DBF file.

Returning a Field Name for an Expression

Syntax <GMAPI call="FormGetFieldName”>
<data name="FormNo”’>1l</data>
<data name="Field”>contact</data>
</GMAPI>

The FormGetFieldName function returns the field name for an expression, a macro, or a field.

Parameters
The FormGetFieldName function takes two parameters.
FormNo: the number of the form.

Field: the name of the field, macro, or expression to be associated with the file name.

Returning a Value for Unattached Fields

Syntax <GMAPI call="FormNewFormNo”/>

Page 218 of 463

GoldMine ™

Return Value

The FormNewFormNo function returns a new, unique FormNo value that can be used to register fields not
attached to a GoldMine form.

Counting the Number of Exported Records

Syntax <GMAPI call="FormQueryCreate”>
<data name="Flags”>0</data>
</GMAPI

The FormQueryCreate function provides status information during an export by returning the number of records
exported during the export process.

Parameters
The FormQueryCreate function takes one optional parameter, Flags.

The following table lists values of FormQueryCreate parameters.

FormQueryCreate Parameters

Value Description

0 Export in progress (default)
1 Start process

2 Abort process

Return Value

The FormQueryCreate function returns the number of records created while an export is in progress, or -1 when
the record export process is completed.

FormPrintedDoc

Syntax <GMAPI call="FormPrintedboc”>
<data name="RecordID”> 9NDJIRIN(CEQ[)IW:</data>
</GMAPI

The FormPrintedDoc function is used to complete a pending literature fulfillment request. Call this function after
printing the merge form to remove the pending literature fulfilment and create a history record.

Parameters

RecordID: the ReclD of the pending literature fulfillment request.

Page 219 of 463

GoldMine ™

Creating a History Record

Syntax

<GMAPI call="InsHist">
name="AccNo">A3042474804 wB9!JCat</data>
name="Activity">SLS</data>
name="Duration">00:35:00</data>
name="0pRecID”>VvalidOpRecid</data>
name="RecType'">C</data>

name="Ref">Informed Paul of sale terms</data>

<data
<data
<data
<data
<data

name="Notes'">Ready to proceed to next step</data>

<data

<data name="ResultCode">DON</data>
<data

<data name="User">KEVIN</data>
<data name="Private'">1l</data>
</GMAPI>

The InsHistory function is used to create a history record in GoldMine. The InsHistory function provides a higher
level interface for creating these records than using Open, Append, and Replace.

Parameters

AccNo: the account number of the contact record to which the new history record will be linked.

Rectype: the record type to create. The following values are available:

InsHistory Activity Valid Values

Value Record Type Value Record Type

A Appointment u Unknown

C Phone call cc Call back

D To-do cl Incoming call

E Event CM Returned message

L Form co Outgoing call

M Sent message MG E-mail message
Other M Received e-mail

S Sale MO Sent e-mail

T Next action

Duration: the length of time spent on the activity. Format as HH:MM:SS. (optional)

OpRecid: the Recid of the opportunity or project record to link the history activity.
Omit if not linking to a project or opportunity (optional).

Ref: the history reference.

Page 220 of 463

GoldMine ™

Notes: the Notes for the history record (optional).

Activity: the Activity Code (optional).

ResultCode: the Result Code (optional).

User: the User (optional). If this parameter is not specified, the User field defaults to the currently logged user.

Private: flag to specify if the history activity should be marked private. Set to 1 for private, or 0 to public.

Return Value

The InsHistory function returns the record number (Xbase) or record ID (SQL) of the new history record if the
function was completed successfully. The function returns O if a new record could not be appended to the data
file.

Returned XML

<GMAPI call="InsHist">
<status code="1">1982</status>
</GMAPI>

Creating or Updating a Document Link

Syntax <GMAPI call="LinkDoc">
<data name="RecNo">0</data>
<data name="File">C:\Documents and Settings\Kevin\My
Documents\GMAPI\TLog_Mechanics.pdf</data>
<data name="Desc">Help File</data>
<data name="User'">KEVIN</data>
<data name="Notes'">Read this</data>
<data name="Sync'">1l</data>
</GMAPI>

The LinkDoc function is used to create or update a document link in GoldMine. Document links allow you to
launch directly into an application and load the application with a document by clicking on the desired document
listed in the contact’s Links tab. GoldMine maintains these links as records in the supplementary data file. The
LinkDoc function provides a higher level interface to these records than can be obtained by using Open, Append,
and Replace.

Parameters

RecNo: the record number of the link record to be updated. If a new link record is to be created, pass 0 as the first
parameter.

File: the fully qualified path and filename of the file to link. Keep in mind that a valid association must exist for the
file’s extension if GoldMine is to automatically launch the file’s application.

Desc: the document title.

User: the optional document owner. If this field is not passed, the document owner defaults to the name of the
currently logged GoldMine user.

Notes: optional notes for the linked document record in the Links tab.

Page 221 of 463

GoldMine ™

Sync: defines the remote synchronization status for the linked document from the values shown in the following
table.

Sync Valid Values

Value Action

1 Uses the GoldMine default as defined by Allow new documents to sync by default in the Sync
tab of the Preferences window.

0 Does not synchronize the newly linked document.

1 Allows the newly linked document to synchronize.

Return Value

The LinkDoc function returns the new record number (Xbase) or record ID (SQL) if the function was completed
successfully. The function returns any empty string if a new record could not be appended to the data file, or an
existing record could not be locked for update.

Returned XML

<GMAPI call="LinkDoc">
<status code="1">482</status>
</GMAPI>

Displaying a Message Dialog Box

Syntax <GMAPI call="MsgBox”’>
<data name="Message”>Are you sure?</data>
<data name="Style”>4</data>
</GMAPI>

The MsgBox function displays a standard Windows message dialog box.

Parameters
The MsgBox function accepts two parameters.
MsgBox: the message to display within the dialog box.

Style: the optional style of the message box. This value is the sum of the following options:

MsgBox Style Values

Value Meaning
0 Display OK button only
1 Display OK and Cancel buttons

Page 222 of 463

GoldMine ™

2 Display Abort, Retry, and Ignore buttons
3 Display Yes, No, and Cancel buttons
4 Display Yes and No buttons

5 Display Retry and Cancel buttons
16 Display Stop icon

32 Display Question Mark icon

48 Display Exclamation Mark icon

64 Display Information icon

128 First button is default

256 Second button is default

512 Third button is default

Return Value
The MsgBox function returns the following values:

MsgBox Return Values

Return Description

1 OK button selected

2 Cancel button selected
3 Abort button selected
4 Retry button selected
5 Ignore button selected
6 Yes button selected

7 No button selected

Returned XML

<GMAPI call=""MsgBox'>
<status code="1">6</status>
</GMAPI>

Page 223 of 463

GoldMine ™

Adding a Merge Form

Syntax <GMAPI call="NewForm”>
<data name="AppType”’>Microsoft.word.10</data>
<data name="Template”>c:\Program
Files\GoldMine\Templates\Proposal.doc</data>
<data name="Title”>Business Proposal</data>
<data name="Macro”>[MsgBox(“Form Added”,”0”)]</data>
<data name="FormType”>0</data>
<data name="Flags”>3</data>
</GMAPI>

The NewForm function adds a merge template record into the Merge Forms window in GoldMine. This function’s
DDE counterpart is used primarily by the document merge link installation macro; however, the function can also
be used to add additional merge templates from a user-written application.

Parameters

The NewForm function takes up to six parameters; the first three parameters are required, and the last three
parameters are optional.

AppType: the type of document to which the new form record will point. This value must be a valid Application
Identifier, such as Word.Document.6, that corresponds to an entry in the Registration Database.

Template: the fully qualified path and filename of the template file.
Title: the title of the document as it should appear in the Merge Forms browse window.

Macro: the name of an optional DDE function to be called after the template is loaded by the linked application. If
this parameter is not specified, the default function is MAINMENU. This parameter must be passed in DDE call
format.

FormType: the optional type of template. If this parameter is not specified, the template type is assumed to be
Document. GoldMine accepts the following values for this parameter:

Document Types

Type Description

0 Document
1 Spreadsheet
2 Other

Flags: a three-character field corresponding to the values of the Link To Doc, Save History and Allow Hot Link
options on the Form Setup dialog box. To set (check) one of these options, 1 is passed; to reset (uncheck), 0 is
passed.

Page 224 of 463

GoldMine ™

Flag Values

Position Description

0 Link To Doc check box

1 Save History check box

2 Allow Hot Link check box

Return Value

The NewForm function returns a form number.

Playing a Toolbar Macro

Syntax <GMAPI call="PlayMacro”>
<data name="Macro”>800</data>
<data name="wait”>0</data>
</GMAPI>

A macro groups together a series of commands, keystrokes, and/or mouse clicks into a one-step operation. You
can create a macro to automate a sequence of tasks that you perform frequently in GoldMine. This function plays
a macro previously created in GoldMine.

Parameters
The PlayMacro function takes two parameters that identify the macro and assign a wait state.
Macro: The first parameter identifies the macro. Either the number for the currently logged user or a valid macro
filename can be used to identify a macro.

Identifying a Macro by Number

Each user can create up to 100 macros from the GoldMine toolbar. Each macro can be assigned an optional
numeric identification from 800 to 899. For example, you can assign 800 to identify your first macro, 801 to
identify your second macro, and so on.

TIP: For details about creating a macro from the GoldMine toolbar, see “About Macros” in the
online Help.
Identifying a Macro by File Name
You can assign a file name to identify the macro, such as C:\GOLDMINE\MACROS\JOHN.801.

Wait: The second parameter assigns a wait state that determines GoldMine availability to process another macro
or task while the current macro executes. To set GoldMine to wait for the currently executing macro to finish
before starting another task, set the parameter to 1. For example, if you are setting up a sequence of macros to
run tutorial lessons, you want GoldMine to wait for each lesson to finish before executing the next macro that will
run the following lesson.

Page 225 of 463

GoldMine ™

To allow GoldMine to perform background processing, such as indexing, while the macro(s) execute, set the
parameter to 0.

Return Value

The PlayMacro function returns an integer value based on the wait parameter; that is, GoldMine availability to
process a task in addition to the currently running macro. If the wait parameter is 0 (GoldMine does not wait for
the macro to finish to process another task), the PlayMacro function will always return 1. If the wait parameter is
1 (GoldMine will wait for the current macro to finish before processing another macro or task), the PlayMacro
function will return either 0 or 1 under the following conditions:

PlayMacro Return Values

Return Description
0 Error occurred during macro playback
1 Macro played successfully

You can also play a macro from the command line (DOS prompt). Executing a macro from the command line can
be useful in running functions at night, such as indexing, running an Automated Process, or synchronizing with
remote sites with a transfer set created via macro. You can either identify a macro by an identification number,
like GMW4 /m:801, or by file name like GMW4 /m:c: \index.801. If necessary, the command line statement can
start GoldMine and then, once started, run the macro.

Optional switches include:
/m: Logs in automatically to GoldMine
/u:[username] Provides the username entry to log in to GoldMine
/p:[password] Provides the password entry to log in to GoldMine

If running the Plus! Pack with Windows, you can run a macro from the System Agent by placing a command line
switch for GoldMine in the Program field of the Schedule a New Program dialog box that will run a macro. For
example, to log in John with his username and password, then run John’s first macro, place the following macro in
the System Agent:

GMWS5 Ju:john /p:pswd /m:800
Where GMWS5/ starts Goldmine, u:john/ is login user John, p:pswd/ enters the password password, and m:800

runs first macro.

Creating and Sending a Pager Message

Syntax <GMAPI call="SendPage”>
<data name="Message”>Your 3:00pm appointment s
cancelled</data>
<data name="To”>PAULR</data>
<data name="From”>Trish</data>
</GMAPI>

Page 226 of 463

GoldMine ™

The SendPage function allows you to create and send a message to the pager of a GoldMine user. The function

consists of the following components:

Message can consist of any text message that you create with this function to send to a pager; most pages can

accept messages of 70—100 characters.

From includes the sender’s name as an optional “signature.”

To identifies an optional GoldMine user who will receive the pager message. Information about the pager must be
entered in the Edit|Preferences|Pager tab, such as ID code or PIN number, telephone number of the pager, and

maximum message size in characters that the pager can accept.

Return Value
The SendPage function can return one of two values.

SendPage Return Values

Return Description
0 Error occurred during the attempt to send the message to the pager
1 Pager message was transmitted successfully

Displaying a Message in the GoldMine Status Bar

Syntax <GMAPI call="StatusMsg”’>
<data name="Message”>Waiting for command</data>
<data name="Delay”/>
</GMAPI>

The StatusMsg function displays a message in the GoldMine status bar.

Parameters
Message: the message to be displayed in the status bar.

Delay: an optional delay, after which time the message is removed from the status bar.

Returned XML

<GMAPI call="StatusMsg">
<status code="1">Success</status>
</GMAPI>

Converting TLog Timestamps

<GMAPI call="SyncStamp”>
Syntax <data name="Stamp”>20040120:10:36:52</data>
</GMAPI>

The SyncStamp function converts a TLog timestamp to a date and time representation, and from a date and time

representation back to the TLog time stamp format.

Page 227 of 463

GoldMine ™

Parameter

The SyncStamp function takes one parameter, Stamp.

Return Value

When the Stamp parameter is exactly 17 characters long, formatted as Date:Time in form of
CCYYMMDD:HH:MM:SS, the return string is in TLog time stamp format, exactly seven characters long. When the
Stamp parameter is seven characters long, and formatted as a TLog timestamp, the return string is formatted as
CCYYMMDD:HH:MM:SS. An empty return string indicates an error.

Returned XML

<GMAPI call="SyncStamp">
<status code="1">A6P9FC8</status>
</GMAPI>

Updating the Sync Log File

Syntax
XML <GMAPI call="updateSyncLog" >

<data name="Table">Contactl</data>
<data name="RecID">9NDIRIN(EQ[)IW:</data>
<data name="Field">Key3</data>
<data name="Action">U</data>
</GMAPI>

Parameters

Table specifies the table name (such as “Contact1”) or the table ID.

ReclD specifies the ReclD of the updated record: the correct RecID must be passed, and the RecID value must be
exactly 15 characters long.

Field specifies the name of the field that has changed. This parameter is only relevant when the Action parameter
is U. Field is ignored when Action is N or D.

Action should be N when a new record has been appended, D when a record has been deleted, or U when a field
in a record has been updated.

Return Value
The UpdateSynclLog function returns the following XML:

<GMAPI call="updateSyncLog">
<status code="4">Field TLog entry created.</status>
</GMAPI>

UpdateSyncLog Code Attribute Values

1. Return 2. Description

Page 228 of 463

GoldMine ™

0 Error

1 New TLog entry created

2 New TLog entry updated

4 Field TLog entry created

8 Field TLog entry updated

16 Deleted record TLog entry created
32 New TLog Entry removed

Importing a Prepared TLog Import File

ReadlmpTLog reads the status of a TLog import file, then deletes the import file when the process is completed.

Syntax
XML <GMAPI call="ReadImpTLog" >
<data name="File">c:\tlogs\mytlog.dbf</data>
<data name="Delete">1</data>
</GMAPI>
Parameters

File specifies the import file name—see below for the import file structure.

Delete specifies to delete the import file when the process has completed.

Return Value

ReadImpTLog function returns the following values in the code attribute:

ReadlmpTLog Code Attribute Values

Code Description

0 Failure

1 Success -- Text is total number of imported TLog records
Notes

Your application can determine when the imported process completes by setting the Delete parameter to 1, and
noting when the import file is deleted. The TLog import must have the structure shown in the following table.

TLog Import Structure

Field Name Type Length

Page 229 of 463

GoldMine ™

Table ID char 10
ReclD char 15
Field ID char 10
Action ID char 1

Forcing Logout

Syntax

XML <GMAPI call="ForceLogout" >
<data name="LogoutSelf">1</data>
<data name="Relogin">1l</data>
<data name="InMinutes”’>1l</data>
</GMAPI>

The ForceLogout command forces all users to logout of GoldMine.

Parameters
LogoutSelf: specifies if the currently logged in user should also be logged out. 1 for rue, 0 for false.
Relogin: Set to 1 to indicate for GoldMine to relogin after the users are logged out.

InMinutes: Specifies the number of minutes to wait before forcing the logout.

Reading Security and Rights

Retrieving User Permissions

The UserAccess function retrieves specific permission information for the logged-in user.

Syntax

XML <GMAPI call="UserAccess"/>

This command returns a data element for each of the following permissions for the logged in user. The text value
of the data element will be either 0 or 1, indicating if the permission is granted for the user.

Permissions Returned by UserAccess

Rights

O Master Rights

O Other User Calendar Access

O Other User History Access

O Other User Sales Access

Page 230 of 463

GoldMine ™

Other User Report Access

Other User Merge Form Acccess

Other User Filter Access

Other User Groups Access

Other User Links Access

Create Records

Edit Records

Delete Records

Change Owner

Field Views

Schedule APs

SQL Queries

NetUpdate

O O0O|o|o|o|o|o|o|yo|,o0|o|oOo)|oOo,)|0d

Build Groups

Returned XML

<GMAPI call="UserAccess">

<status code="1">Success.</status>

<data name="return">

<data name="Master Rights'>1</data>

<data name="Other User Calendar Access'>1l</data>
<data name="Other User History Access'">1l</data>
<data name="Other User Sales Access'>l</data>
<data name="Other User Report Access'>l</data>
<data name="Other User Merge Form Access">1l</data>
<data name="Other User Filter Access'">l</data>
<data name="Other User Groups Access'>l</data>
<data name="Other User Links Access">l</data>
<data name="Create Records">1l</data>

<data name="Edit Records'>1l</data>

<data name="Delete Records">1l</data>

<data name='"Change Owner'">1l</data>

<data name="Field views">1</data>

<data name="Schedule APs'>1l</data>

<data name="SQL Queries'>1l</data>

<data name="NetUpdate">1l</data>

<data name="Build Groups'>1l</data>

</data>

</GMAPI>

Page 231 of 463

GoldMine ™

Retrieving Calendar Permissions

Using CalAccess, you can query whether the user logged in to GoldMine has permissions to read/write a particular
CAL record.

Syntax
XML <GMAPI call="calAccess”>
<data name="RecordType”>C</data>
<data name="User”>KEVIN</data>
<data name="Numberl”>22</data>
</GMAPI>
Parameters

Pass this command the record type and numberl value from the calendar record in question. Also pass the user
you wish to query if they have permission to this record or not.

RecordType is the RecType of the record.
User is the UserID of the record.

Numberl is the Number1 value of the record.

Return Value

The CalAccess function returns 1 if the user has rights to read/write.

Retrieving History Access

Using HistAccess, you can query if the user logged has rights to read/write a CONTHIST record.

Syntax
XML <GMAPI call="HistAccess”>
<data name="RecordType”>C</data>
<data name="User”>KEVIN</data>
</GMAPI>
Parameters

Pass this command the record type value from the calendar record in question. Also pass the user you wish to
query if they have permission to this record or not.

RecordType is the RecType of the record.

User is the UserlD of the record.

Return Value

The HistAccess function returns 1 if the user has rights to read/write.

Page 232 of 463

GoldMine ™

Macros

To facilitate the use of DDEAUTO fields, GoldMine allows you to select a macro as the service item. Upon
encountering a DDE service item that starts with an ampersand (&), GoldMine searches an internal table of macro
names. If a match is found, the macro is processed and the result is returned, as if a DDE function or expression
had been used. The GoldMine COM Server recognizes these same macros for use in such methods as Expr and
Macro.

Most macros are sensitive to the setting of the RECORDOBJ function’s SETRECORD subfunction. This function is
used primarily to gain access to additional contacts and other supplementary information. When the SETRECORD
type is set to PRIMARY, the following macros will return the value from the corresponding fields in the primary
information portion of the contact record. When the SETRECORD type is set to CONTACTS (additional contacts), or
another supplementary record type, the macros will return the value from the corresponding field in the
supplementary file (CONTSUPP.DBF).

Executing Macros

To evaluate any of the macros described in this section, use the Macro command for the GoldMine COM Server.

Syntax <GMAPI call="Macro”>
<data name="Macro”>&FullAddress</data>
</GMAPI>
Returned XML

The XML returned will of course vary based on the Macro requested.
For the example in the Syntax table above, the XML returned is:

<GMAPI call="Macro">

<status code="1">1150 Kelly Johnson Blvd. Colorado Springs, CO 80920
</status>

</GMAPI>

Available Data-Related Macros

&Address Returns a string containing the values of both &Address1 and &Address2,
separated by a carriage return and line feed character. If either &Addressl or
&Address2 does not contain any data, a single line of data is returned, without the
carriage return and line feed character.
This macro can be used to perform rudimentary blank line suppression within
linked applications that do not support blank address line suppression internally.
The action of this macro string is similar to the action of the &Address macro. The
&Address2 macro can be used to return an additional contact address by using the
RECORDOBJ SETRECORD subfunction.

Page 233 of 463

GoldMine ™

&Address1

Returns the first Address field from the active contact record. Typically, this value
will be extracted from the Address1 field in the primary display portion of the
contact record; however, when the RECORDOBJ SETRECORD subfunction has been
used to change the returned record type to CONTACTS, then GoldMine returns the
value from the Address1 field on the additional contact record, if a value is
entered. When the Address1 field on the additional contact record is blank, then
the &Address1 macro returns the value in the Address1 field in the primary display
portion of the contact record. When the RECORDOBJ SETRECORD type is set to
return a record type other than CONTACTS, the &Address1 macro returns the value
in Address1 field in the primary display portion of the contact record.

&Address2

Returns the second Address field from the active contact record. Typically, this
value will be extracted from the Address2 field in the primary display portion of the
contact record; however, when the RECORDOBJ SETRECORD subfunction has been
used to change the returned record type to ADDITIONAL, then GoldMine returns
the value from the Address2 field on the additional contact record, if an entry
exists in the Address2 field on the additional contact record. When the Address2
field on the additional contact record is blank, then the &Address2 macro returns
the value in the Address2 field in the primary display portion of the contact record.
When the RECORDOBJ SETRECORD type is set to return a record type other than
PRIMARY or ADDITIONAL, the &Address2 macro returns the value in the Address2
field of the primary display portion of the contact record.

&BrowseRecNo

Xbase: Returns the record number of the last selected record in a browse window.
SQL: Returns the record ID of the last selected record in a browse window.

&CalRefresh

Refreshes the graphical calendar display.

&City

Returns the City field from the active contact record. The action of this macro
string is similar to the action of &Address1. The &City macro can be used to return
an additional contact city by using the RECORDOBJ SETRECORD subfunction.

&CityStateZip

Returns a format string of text containing the City, State, and Zip fields from the
active contact record. This string is returned in the following format:

City, State Zip

The action of this macro string is similar to the action of &Address1. The
&CityStateZip macro can be used to return an additional contact city, state, and ZIP
Code by using the RECORDOBJ SETRECORD subfunction.

&CommonDir

Xbase: Returns the path information for the directory where the contact sets are
located.
SQL: Returns the BDE alias where the contact sets are located.

Page 234 of 463

GoldMine ™

&Contact

Returns a Contact name from the active contact record. Normally, this value will be
extracted from the Contact field in the primary display portion of the contact
record; however, the RECORDOBJ SETRECORD subfunction can be used to change
the returned record type to additional contact, or another type of supplementary
record. When the RECORDOBJ SETRECORD type is set to return record types other
than PRIMARY, the &Contact macro returns the value in Contact field in CONTSUPP
for the current supplementary record.

&Country

Returns the Country field from the active contact record. The action of this macro
string is similar to the action of &Addressl1. The &Country macro can be used to
return an additional contact country by using the RECORDOBJ SETRECORD
subfunction.

&Diall

Returns the Phonel entry from the active contact record. The returned phone
number is formatted for dialing. GoldMine applies the same rules used to dial the
phone via TAPI. If selected, PREDIAL.INI settings are applied to phone number
selection.

&Dial2

Returns the Phone2 entry from the active contact record. For details, see &Diall
above.

&Dial3

Returns the Phone3 entry from the active contact record. For details, see &Diall
above.

&DialFax

Returns the FAX entry from the active contact record. For details, see &Diall
above.

&EmailAddress

Returns the primary e-mail address for the currently selected contact.

&Fax

Returns the fax number as it should be sent to an auto-dialer for automatic fax
transmission.

&Filter

Returns the activated filter expression.

&FirstName

Returns the first name of the current contact.

&FullAddress

Returns a string containing the complete address for the contact record, composed
of values of &Addressl1, &Address2, &City, &State, and &ZIP.

The action of this macro string is similar to the action of &Addressl. The
&FullAddress macro can be used to return an additional contact address by using
the RECORDOBJ SETRECORD subfunction.

Page 235 of 463

GoldMine ™

Returns the ID of the currently selected tab. Typically, this value will verify that the
correct tab is selected when a user starts a custom application.

The following values are valid:

0 = Summary

1 = Fields

2 = GM+View

3 = Notes

4 = Contacts

5 = Details

6 = Referral

7 = Pending

8 = History

9 = Links

10 = Members
&GetRoTabID 11 = APs/Tracks

12 = Opportunities

13 = Projects

14 = Relationships/Org tree

15 = Cases

16 = HEAT View if installed, else it will go to the first tab
17+ = custom if installed, otherwise the first tab

The following example tests the selection of the Details tab:

<GMAPI call="Macro">&GetROTabID</GMAPI>

Returns:
<GMAPI call="Macro"><status
code="1">1</status></GMAPI>
&GetRoTabPos Returns the currently selected tab position. Since the tabs can be rearranged, this

method is not always reliable for determining the currently selected tab. For
details, see &GetRoTablD.

&GoldDir Xbase: Returns path information for the directory in which GoldMine is installed.
SQL: Returns path information for BDE alias in which GoldMine is installed.

Returns the name of the current contact in the format:

&LastFirstName .
last name, first name

Returns the number of concurrent users allowed to log in to the installed copy of

&LicU
fcusers GoldMine.

Page 236 of 463

GoldMine ™

&LicUsersAvailable

Returns the number of users allowed to log in to the installed copy of GoldMine
license.

&NameAddress

Returns a string containing the contact’s name, company, and complete address of
the current contact record. Each address line is separated by a carriage return and
line feed, and the entire string is formatted so that the string can be inserted
directly into a merge template. If any of the address lines on the contact record is
empty, that address line will be suppressed. This macro can be used to perform
rudimentary blank line suppression within linked applications that do not support
blank address line suppression internally.

The action of this macro string is similar to the action of the &ADDRESS macros,
and the &NAMEADDRESS macro can be used to return an additional contact
address by using the RECORDOBJ SETRECORD subfunction.

&NameTitleAddress

Returns a string containing the contact’s name, title, department, company, and
complete address of the current contact record. Each line is separated by a
carriage return and line feed, and the entire string is formatted so that the string
can be inserted directly into a merge template. If any of the lines on the contact
record is empty, that line will be suppressed. This macro can be used to perform
rudimentary blank line suppression within linked applications that do not support
blank address line suppression internally.

The action of this macro string is similar to the action of the &ADDRESS macros,
and the &NAMETITLEADDRESS macro can be used to return an additional contact
address by using the RECORDOBJ SETRECORD subfunction.

&NewReclD

Returns a unique record ID, which can be used when creating new records.

&Notes

Returns the Notes from the active contact record. Typically, this value will be
extracted from the Notes field in the primary display portion of the contact record;
however, the RECORDOBJ SETRECORD subfunction can be used to change the
returned record type to additional contact, or another type of supplementary
record. When the RECORDOBJ SETRECORD type is set to other than PRIMARY, the
&TITLE macro returns the value in Notes field in CONTSUPP for the current
supplementary record.

&Phone

Returns a telephone number from the selected contact record.

The action of this macro string is similar to the action of the &ADDRESS1. The
&PHONE macro can be used to return an additional contact telephone number by
using the RECORDOBJ SETRECORD subfunction.

Page 237 of 463

GoldMine ™

Two related macros:

O &Profile: Returns the first matching profile record for the selected contact.

O &Profiles: Returns all profile records for the selected contact.

Both of these macros take optional parameters. Each parameter must be
separated by a period (.). The following examples show the syntax for the &Profile
and &Profiles macros:

&Profile Example 1

&Profile.ProfileName.Reference.Flags

Retrieves the first profile that matches the ProfileName and Reference.

The Reference parameter is optional. If passed, the Reference parameter acts
as a “begin with” condition on the profile reference. If the Reference
parameter is not passed, all ProfileName profiles are evaluated.

The optional Flags parameter has the following values:

2 Returns the extended profile fields

4 Returns the ProfileName and Reference

The &Profile(s) macro can easily fill in a Word table with the selected contact’s
profile information because tabs separate each field value, and a CR/LF
separates each profile record.

&Profile Example 2

&Profile(s)

The following example returns the first e-mail address of the contact:

&Profile.E-mail Address

&Profiles Example 1

The following example returns all the computer profiles that begin with the
word notebook:

&Profiles.Computer.Notebook

&Profiles Example 2

The following examples use the Flags parameter to specify the profile fields to

return:

&Profiles.Computer.Notebook

Notebook ThinkPad 770]|

Notebook Compaq Elite|

Notebook Del1 1200]
&Profiles.Computer.Notebook.?2

Computer |Notebook ThinkPad 770]|

Computer |Notebook Compaq Elite]|
Computer|Notebook Dell 1200] |
&Profiles.Computer.Notebook.4
Computer|Notebook ThinkPad 770|IBM|233Mz|
Computer |Notebook Compaq Elite|Compaq]|200mz|
Computer |Notebook Dell 1200|Del1|166mz|

Page 238 of 463

GoldMine ™

&ProgramDataDir

Returns the place where the GM.ini, user.ini, and anything that needs to have
read/write access in GoldMine can be found. It is very similar to the split path
installs that GoldMine had when Windows XP was released. For non-split paths, it
will return the SysDir.

Example:

<GMAPI call="Macro">Programdatadir</GMAPI>

Returns :

<GMAPI call="Macro"><status
code="1">c:\code\GMDev8.0_
Main\bin\debug\</status></GMAPI>

&RoTabPage

Returns the currently selected tab. Typically, this value will verify that the correct
tab is selected when a user starts a custom application. Values between 1 and 9
represent tabs in the first row of tabs; for example, 1 represents the Summary tab.
Values between 10 and 18 represent tabs in the second row, and 19-27 represent
tabs in the third row.

&SerialNo

Returns the serial number of the installed GoldMine program.

Page 239 of 463

GoldMine ™

Selects the tab that corresponds to the number (represented by #) in the active
contact record.

The following values are valid:

1 =Summary

2 = Fields

3 = GM+View

4 = Notes

5 = Contacts

6 = Details

7 = Referral

8 = Pending

9 = History
&SetRoTab# 10 = Links

11 = Members

12 = APs/Tracks

13 = Opportunities

14 = Projects

15 = Relationships/Org tree

16 = Cases

17 = HEAT View if installed, else it will go to the first tab
18+ = custom if installed, otherwise the first tab

Example:
<GMAPI call="Macro">&SetROTab4</GMAPI>

Displays the Notes tab in the contact record.

&ShutDown Logs out the currently logged user, and quits GoldMine.

&State Returns the State field from the active contact record. The action of this macro
string is similar to the action of the &ADDRESS1. The &STATE macro can be used to
return an additional contact state by using the RECORDOBJ SETRECORD
subfunction.

&SysDir Returns the GoldMine system directory.

&Sysinfo Displays system information as returned by Help > About GoldMine > System Info.

Returns the Title from the active contact record. Normally, this value will be
extracted from the Title field in the primary display portion of the contact record;
however, the RECORDOBJ SETRECORD subfunction can be used to change the

&Title returned record type to additional contact, or another type of supplementary
record. When the RECORDOBJ SETRECORD type is set to other than PRIMARY, the
&TITLE macro returns the value in Title field in CONTSUPP for the current
supplementary record.

Page 240 of 463

GoldMine ™

&User_Var Returns the defined field value from all users, a specified user, or the currently
logged user. For details on defining values, see “Defining Field Values for use with
External Applications” in Maintaining GoldMine.
The &User_Var macro allows GoldMine users to store specific data that can be
retrieved later into applications that are linked with GoldMine. This macro can be
defined in the [user_var] section of both the GM.INI and the username.INI of
GoldMine.
Usage Syntax:

&User_var.<variable name>.<GoldMine username>
Example:
&User_var.Territory.Dan

(Where <variable name> is a descriptive name of the macro and
<GoldMine username> assigns a defined value to a specific GoldMine user.)
<GoldMine username> is optional, as GoldMine will assign these values to the
current GoldMine user.

&UserFullName Returns the full name of the currently logged GoldMine user as the name appears
in the FullName field in the Users Master File for the user.

&UserName Returns the login name of the currently logged GoldMine user.

&Version Returns the version number of the installed GoldMine program.

&WebSite Returns http://<Web site> for the active contact.

&ZIP Returns the Zip field from the currently active contact record. The action of this

macro string is similar to the action of the &ADDRESS1. The &ZIP macro can be
used to return an additional contact ZIP Code by using the RECORDOBJ SETRECORD
subfunction.

Macros for Merge Forms

The following macros are used primarily for creating links to GoldMine through the Merge Forms function. The
values returned by each of these macros are updated by GoldMine when a Merge Form is launched by selecting
Edit, Link, Print or Fax from the Merge Forms dialog box.

&PARAM1 Returns the path and filename of the document template associated with the merge form
(filename) selected when Edit, Link, Print, or Fax was selected. This value is obtained from the Template
File field in the merge form’s Form Setting dialog box.

&PARAM?2 Returns a value indicating whether the Edit, Link, Print, or Fax button was selected to launch
(action) linked application.
&PARAM2 Parameters
Value Description
1 Edit selected

Page 241 of 463

GoldMine ™

2 Link selected

3 Print selected

4 Fax selected

&PARAM3 Returns a value corresponding to the setting of the Record Range options on the Merge

(range) Forms dialog box when the Edit, Link, Print, or Fax button was selected.
&PARAMS3 Parameters

Value Description

1 This contact selected

2 All contacts selected

3 Forward to last selected

&PARAMA4 Returns a value corresponding to the setting of the Primary and Additional check boxes on

(scope) the Merge Forms dialog box when the Edit, Link, Print, or Fax button was selected.
&PARAM4 Parameters

Value Description

1 Primary checked

2 Additional checked

3 Both Primary and Additional checked

&PARAMS5 Returns a value corresponding to the status of the Link to Doc, Save History, and/or Allow

(flags) Hot Link check boxes on the Merge Forms dialog box. In addition, the returned value

determines whether the form was merged as the result of an Automated Processes action.
Returns a seven-character string. Each position of the string can contain either 0, indicating
the item was not checked (or Automated Processes is not active), or 1, indicating the item
was checked (or Automated Processes is active).

Page 242 of 463

GoldMine ™

(merge code
value)

&PARAMS5 Parameters

Position Description

1 Link to Doc

2 Save History

3 Allow Hot Link

4 Unused

5 Unused

6 Unused

7 Automated Processes status

&PARAMG6 Returns a value containing the record number of the last Linked Document supplementary

(LinkDoc record record created as a result of launching a Merge Form. When you launch a merge form with

number) Link to Doc selected, GoldMine creates a linked document record to hold the saved
document. This value can be saved and used to update the linked document record by
passing the record number to the LinkDoc function.

&PARAM7 Returns a pointer to a minimized contact record that is created when Print or Fax is selected

(contactrecord on the Merge Forms dialog box, and the Record Range is All Contacts or Forward to Last.

pointer) This value can then be passed to the RecordObj function to further control a document
merge from the linked application.

&PARAMS

Returns the merge code entered in the Merge code field of the Merge Forms dialog box.

&PARAMY
(history record)

Returns the RecNo or ReclD of the history record created by GoldMine. This macro is useful
for updating the history record.

Macros for the GoldMine License

The following macros return data for the current GoldMine license. The descriptions for each macro include the
corresponding field name from the form that appears in the Registration tab of the GoldMine Net-Update

window. For details on the Net-Update process, see “Using Net-Update” in the online Help.

&LicinfolicTo

Returns the Organization entry from the registration form.

&LicInfo_Contact

Returns the Contact Name entry from the registration form.

&Llicinfo_LicEmail

Returns the E-mail address entry from the registration form.

Page 243 of 463

GoldMine ™

&LicInfo_Phone Returns the telephone number entry from the first Phone/Fax field.
&Licinfo_Fax Returns the fax number entry from the second Phone/Fax field.
&Llicinfo_Address1 Returns the Address1 entry from the registration form.
&Licinfo_Address2 Returns the Address2 entry from the registration form.
&Liclnfo_City Returns the city entry from the first City/State field.

&Llicinfo_State Returns the state or province entry from the second City/State field.
&licinfo_Zip Returns the ZIP Code entry from the first Zip/Country field.
&LicInfo_Country Returns the country entry from the second Zip/Country field.

Controlling the GoldMine User Interface

There are a number of commands that allow the programmatic control of the GoldMine user interface. For
example, menu commands can be executed; controls can be populated, enabled, or disabled; and windows can be
allowed to launch or vetoed.

There are three general groups of commands to accomplish these tasks. The first group of commands provides
information as to the windows and dialogs available to be controlled and the methods to subscribe to events
concerning those windows. The second group of commands manipulates the controls on GoldMine’s windows and
dialog boxes. The final group is event methods that are implemented in the intregration to handle events that are
raised based on the events subscribed to.

NOTE: The events in the GoldMine.Ul class require a command to be called to subscribe to the desired
event. The events in the GoldMine.RecObj class and the GoldMine.GMSystemEvents class do not require
subscription.

Getting Window Information

The GetAvailableWindowsList and GetActiveWindowsList commands return information about the available and
active windows in GoldMine. This information is needed to supply data to the event subscription commands and
control manipulation commands.

GetAvailableWindowsList

GetAvailableWindowsList returns all of the available GoldMine windows in XML format.

Syntax

XML <GMAPI call="GetAvailablewindowsList"/>

Page 244 of 463

GoldMine ™

Returned XML

The XML returned is a long list of available windows for GoldMine. It has the following format. This represents a
truncated list of available windows. The actual list is too extensive to list in this document. All window names are
descriptive and self-explanatory as to which window they represent. Send the GetAvailableWindowList command
for a complete list of windows.

<GMAPI call="GetAvailablewindowsList">
<status code="1">Success</status>

<data
<data
<data

name="wWindowsList">
name="window">DIALOGFILEDFOLDERPROPERTIES</data>
name="window">DIALOGMAILSEARCH</data>

<data name="window">DIALOGEMAILACCNTPROPS</data>

<data name="window">DIALOGEMAILAUTOFILEMONTH</data>
<data name="window">DIALOGDIGITALIDEXPORTPRIVATE</data>
<data name="window'">DIALOGSOFTPHONE</data>

<data name="window">DIALOGSIP_SP_SETTINGS</data>
</data>

</GMAPI>

GetActiveWindowsList

The GetActiveWindowsList supplies detailed information regarding the windows and dialog boxes currently active

in GoldMine.

Syntax

XML

<GMAPI call="GetActivewindowsList"/>

Returned XML

Below is an example XML document describing one active window, the current contact screen. For an accurate
representation of the window you wish to control, call GetActiveWindowsList with that window active. Doing so
will provide a reference for programming your integration.

All window elements are stored in the WindowsList element. Each Window has child elements providing detailed
information about the window. Some child elements store additional child elements when further nesting is
required to provide all properties of the windows and the controls they contain. Commands that manipulate the
controls on a window expect the handle the parent window (hwnd) and the control’s id, along with the properties
of the control that are being changed. Retrieve the hwnd and the control id from the GetActiveWindowslList

command.

<GMAPI call="GetActivewindowsList">
<status code="1">Success</status>

<data
<data
<data
<data
<data
<data
<data
<data

Page 245 of 463

name="wWindowsList">

name="window">

name="hwnd">197868</data>
name="w1indowName">0BJECTCURRENTGMRECORD</data>
name="windowInternalName">0BJECT: GMRECORD</data>
name="Caption">GoldMine, Inc.</data>
name="winType">Window</data>

name="w1indowRect'">

GoldMine ™

<data name="Left">140</data>
<data name="Right">722</data>
<data name="Bottom'">484</data>
<data name="Top">81l</data>
</data>

<data name="ClientRect">

<data

name="Left">144</data>

<data name="Right">718</data>
<data name="Bottom'">480</data>
<data name="Top">11ll</data>
</data>

<data name="Controls'">

<data name="msctls_updown32">
<data name="Enabled">1</data>
<data name="visible">1</data>
<data name="ParentID'">197868</data>
<data name="hwnd">1770672</data>
<data name="ID">700</data>
</data>

<data name="msctls_updown32">
<data name="Enabled">1</data>
<data name="visible">1</data>

<data

name="ParentID">197868</data>

<data name="hwnd">66798</data>
<data name="ID">704</data>

</data>

<data name="gmwndBrowse">

<data name="Enabled">1</data>
<data name="visible">1</data>
<data name="ParentID'">197868</data>
<data name="hwnd">66812</data>
<data name="1ID">1003</data>

<data name="Text">History of GoldMine, Inc.</data>
<data name="Controls'">

<data name="ScrollBar'">

<data name="Enabled">1</data>
<data name="visible">1</data>
<data name="ParentID">66812</data>
<data name="hwnd">66814</data>
<data name="ID">100</data>

</data>

</data>

</data>

</data>

</data>

</GMAPI>

Registering for Events
Before you can receive events from the GoldMine.UI class, you need to
subscribe to the specific events you wish to receive for the desired

Page 246 of 463

GoldMine ™

windows.

NOTE: When using Visual Basic 6.0, be sure to declare your GoldMine objects using the WithEvents
qualifier.

NOTE: Dim WithEvents GMObj as GoldMine.Ul

RegisterVetoWindowLaunch

RegisterVetoWindowLaunch subscribes to an event for the specified window giving the integration the
opportunity to either veto or allow the window launch.

Syntax
XML <GMAPI call="RegistervetowindowLaunch" >
<data name="window”> DIALOGSCHEDULEDEFAULT</data>
<data name="Monitor”>1l</data>
</GMAPI>
Parameters

Window: the name of the window to monitor. The GetAvailableWindowsList command provides valid window
names.

NOTE: Only dialog boxes can be vetoed. For example, the schedule and complete windows are dialog
boxes. Core GoldMine windows cannot be vetoed (the record object, the email center, etc)

Monitor: specifies to either begin monitoring for the event (1) or to unsubscribe from the event (0).

Returned XML
The following XML is returned:

<GMAPI call="RegistervetowindowLaunch">
<status code="1">Success</status>
</GMAPI>

For information on handling the event, see .

RegisterWindowUpDown

RegisterWindowUpDown subscribes to an event for the specified window notifying the integration when the
desired window is launching or closing.

Syntax

XML <GMAPI call="RegisterwindowUpDown" >
<data name="window”> DIALOGSCHEDULEDEFAULT</data>
<data name="Monitor”’>1l</data>
</GMAPI>

Page 247 of 463

GoldMine ™

Parameters

Window: the name of the window to monitor. The GetAvailableWindowsList command provides valid window
names.

Monitor: specifies to either begin monitoring for the event (1) or to unsubscribe from the event (0).

REturned XML
The following XML is returned:

<GMAPI call="RegisterwindowUpDown">
<status code="1">Success</status>
</GMAPI>

For information on handling the event, see .

RegisterCommandExec

RegisterCommandExec is used to subscribe to events raised when a particular control is manipulated on the
specified window. For example, your application can receive notification when the user combo (dropdown) box is
changed on the Schedule a Call dialog.

Syntax
XML <GMAPI call="RegisterCommandexec">

<data name="window'">DialogSchedulebefault</data>
<data name="ControlID">1l</data>
<data name="CommandID'">0</data>
<data name="Monitor">1l</data>
</GMAPI>

Parameters

Window: The name of the window to monitor. The GetAvailableWindowsList command provides valid window
names.

ControlID: The ID of the control to monitor. This ID is provided in the child elements for the specified window
provided by the GetAvailableWindowsList.

CommandID: The type of event to monitor (i.e. button clicked). The possible values for the CommandID are
enumerated within the GoldMine object. Provided notification command ID’s include ButtonStates,
ComboBoxStates, EditControlNotifications, and ListBoxNotifications.

NOTE: The CommandID enumerations can be viewed in the Object Browser in Visual Basic 6.0

Monitor: Specifies to either begin monitoring for the event (1) or to unsubscribe from the event (0).

Returned XML
The following XML is returned:

<GMAPI call="RegisterCommandExec">
<status code="1">Success</status>
</GMAPI>

Page 248 of 463

GoldMine ™

For information on handling the event, see .

RegisterTabDetailsEvent

RegisterTabDetailsEvents is used to subscribe to events raised when a particular Record Object Tab is
manipulated. For example, your application can receive notification when the user clicks on an item in a tab, but
without the item being zoomed or opened.

Syntax
XML <GMAPI call="RegisterTabDetailsEvents'>
<data name="Monitor">1l</data>
</GMAPI>
Parameters

Monitor: Specifies to either begin monitoring for the event (1) or to unsubscribe from the event (0).

The following tab events are monitored:

Event Data Passed

AdditionalContactClick RecID,AccountNo,Reference,Phone,Contact
AdditionalContactEditClick (7.5 or higher) ReclD,AccountNo,Reference,Phone,Contact
AdditionalContactNewClick (7.5 or higher) AccountNo (of the contact it will be attached to)
DetailsClick ReclID,AccountNo,Type,Reference

DetailsEditClick (7.5 or higher) ReclID,AccountNo,Type,Reference

DetailsNewClick (7.5 or higher) AccountNo

ReferralClick ReclD,LinkedRecID,LinkedAccountNo,Referral,Reference
ReferralAddClick ReclD (the recid of the referrer,not the referree)
ReferralEditClick (7.5 or higher) ReclID,LinkedReclID,LinkedAccountNo,Referral,Reference
LinkedDocClick ReclD,FileName,Sync,UserName

LinkedDocAddClick Returns Account No of current contact
LinkedDocEditClick (7.5 or higher) ReclID,FileName,Sync,UserName

PendingEditClick (7.5 or higher) ReclID,AccountNo,RecType,UserName

PendingClick RecID,AccountNo,RecType,UserName

ScheduleNew (7.5 or higher) AccountNo,RecType,UserName

HistoryEditClick (7.5 or higher) ReclID,AccountNo,RecType,UserName

Page 249 of 463

GoldMine ™

HistoryClick ReclID,AccountNo,RecType,UserName

The following Case tab events are also monitored. Each event returns the ReclD of the selected case:

Event (All are 8.0 or higher only) User Action Returns
CaseReassign Reassign the case ReclID
CaseEscalate Escalate the case RecID
CaseResolve Resolve the case ReclD
CaseAbandon Abandon the case RecID
CaseGoto Open the case ReclID
CaseSaveAsTemplate Save the case as a template ReclD
CaseDelete Delete the case RecID

AdditionalContactClick
AdditionalContactClick

Returned XML
The following XML is returned for AdditionalContactClick:

<GMAPI event="AdditionalContactClick">
<RecID>99UZA30%R*0%H?$</RecID>
<AccountNo>A1121345737 (> ; C9AHBob</AccountNo>
<Reference/>

<Phone/>

<Contact>Frances</Contact>

</GMAPI>

Parameters
ReclD: The record ID for the additional contact.
AccountNo: The account number of the parent contact.
Reference: The reference field value.

Phone: The phone field value.
DetailsClick

Returned XML
The following XML is returned for DetailsClick:

<GMAPI event="DetailsClick'">
<RecID>99UzC5R(*2!12H?$</RecID>

Page 250 of 463

GoldMine ™

<AccountNo>A1121345737 (> ; C9AHBob</AccountNo>
<Type>E-mail Address</Type>
<Reference>some.email@domain.com</Reference>
</GMAPI>

Parameters
RecID: The record ID for the detail.
AccountNo: The account number of the contact.
Type: The type of the detail.

Reference: The reference field value.
PendingClick

Returned XML
The following XML is returned for PendingClick:

<GMAPI event="PendingClick">
<RecID>BA50XQT%Z09K]WV</RecID>
<AccountNo>A1121345737 (> ; C9AHBob</AccountNo>
<RecType>C</RecType>

<UserName>GUY</UserName>

</GMAPI>

Parameters
ReclID: The record ID for the pending item.
AccountNo: The account number of the contact.
RecType: The record type of the pending item.

UserName: The owner name.

HistoryClick

Returned XML
The following XML is returned for HistoryClick:

<GMAPI event="HistoryClick">
<RecID>BA4U3BK%BK!J]wv</RecID>
<AccountNo>A1121345737 (> ; C9AHBob</AccountNo>
<RecType>L</RecType>

<UserName>GUY</UserName>

</GMAPI>

Parameters

ReclD: The record ID for the history item.

AccountNo: The account number of the contact.

Page 251 of 463

GoldMine ™

RecType: The record type of the history item.

UserName: The owner name.
LinkedDocClick

Returned XML
The following XML is returned for LinkedDocClick:

<GMAPI event="LinkedDocCTlick">
<RecID>BAAVH43 (C?LC]WV</RecID>
<FiTleName>C:\documents and settings\john stillman\my documents\visual

studio projects\gmdev\bin\debug\MailBox\Attach\There ya go2.doc</FileName>
<Sync>1</Sync>

<UserName>GUY</UserName>

</GMAPI>

Parameters
ReclD: The record ID for the linked document.
FileName: The path to the linked document.
Sync: 1 or O for is the doc synced.
UserName: The last user to use the document (not the owner).

For information on handling these events, see .

Handling GoldMine.Ul Events

There are four events in the GoldMine.UI class that can be utilized. In order to be notified of the events, the
integrating application must register with GoldMine via the above commands.

This section will show examples of handling these events in VB and VB.NET. The method to handle the events may
vary depending on the development environment being used.
NotifyControlCommand
NotifyControlCommand is the event that notifies a client application that a button has been pressed, a checkbox
marked, or any other control change/activation event. Register for this event by calling RegisterCommandExec.
Parameters
sWindowName: This is a string (BSTR) that contains the nam of the window being called.
ControlID: a long that contains the ID of the control that is notifying.
CmdID: a long that contains the command that is being triggered

HWnd: a long that represents the hWnd of the Parent to the control.

Page 252 of 463

GoldMine ™

VetoWindow

The VetoWindow event is used to notify a client application that a window or dialog is requesting to be launched.
The client application returns a Boolean answer as to whether or not to allow the window/dialog to launch.
Subscribe to this event by calling RegisterVetoWindowLaunch.

Parameters
sWindowName: a string (BSTR) that contains the name of the window being called.

NOTE: Delphi does not support functions (a sub that returns a value) in its COM handler. Within the
VetoWindow event handler, Delphi users need to set a special property within the GoldMine.Ul class to
indicate whether or not to veto the window. For Example: GMObj.VetoWindowDelphi:=true

Example

The following example uses Visual Basic 6.0. After declaring your object using the WithEvents keyword, Visual
Basic will place the name of the object in the drop down on the upper left of your code window. Select your object
from that drop down to view the list of event handling subs/functions available for that object. For the
VetoWindow event the function will be called Objectname_VetoWindow. For an example handling an event in
VB.NET using delegate functions, see the GoldMineShutdown event for the GoldMine.GMSystemEvents class.

Private Function GMObj_vetowindow(Byval swindowName As String) As Boolean
If swindowName = "DIALOGSCHEDULEDEFAULT" Then

Dim sResult As String

Dim iRes As Integer

sResult = GMObj.ExecuteCommand("<GMAPI call=""MsgBox"">

<data name="'"Message"">Do you want to bring up the GoldMine schedule
window?

</data><data name=""Style"">4</data></GMAPI>")

Dim docResult As DOMDocument40
Set docResult = New DOMDocument40

docResult.loadXML sResult

Dim eTRoot As IXMLDOME]ement

Set elRoot = docResult.documentElement

Dim att As IXMLDOMNode

Set att = elRoot.childNodes(0)

If att.Attributes(0).baseName = "code" Then
iRes = att.Text

End If

If iRes = 6 Then

GMObj_vetowindow = False
Else

GMObj_vetowindow = True
End If

Set docResult = Nothing
Set elRoot = Nothing

Page 253 of 463

GoldMine ™

Set att = Nothing
End If
End Function

WindowUpDown

The purpose of the WindowUpDown event is to notify the client application that a particular window is coming up
or shutting down. This does not apply to the main GoldMine application window. To be notified that GoldMine is
shutting down, use the GoldMineShutdown event in the GoldMine.GMSystemEvents class.

This event is useful for a client application to perform additional processing of record data after the user has
submitted it by pressing OK on a dialog box. For example, data can be linked to other third party applications in
real time.

Parameters

sName: a string (BSTR) that contains the name of the window being called.

bUp: a Boolean which represents True=Up and False=Down

GMEvent

GMEvent is an omni-event holder that can provide information about what is happening in the GoldMine
application, and in some cases it can affect an action in GoldMine.

VARIANT_BOOL GMEvent(VARIANT_BSTR SXML)
sXML is XML that describes the event - possible events are Ul events:
VetoWindow - same as the 6.7 event - looks like

<GMAPI event="Vetowindow">
<WindowName>NAME_OF_WINDOW_HERE</WindowName>
</GMAPI>

If event returns TRUE to GM then the window will not be launched
WindowUpDown - same as the 6.7 event - returns

<GMAPI event="windowUpDown">
<WindowName>NAME_OF_WINDOW_HERE</WindowName>
<Up/>

<windowhwnd>399692</windowhwnd>

</GMAPI>

If the window is being closed, then a Down node will appear instead of the Up node
NotifyControlCommand - same as the 6.7 event - returns

<GMAPI event="'NAME_OF_WINDOW_HERE">
<WindowName>DIALOGSCHEDULEDEFAULT</WindowName>
<ID>1</ID>

<Command>0</Command>
<Windowhwnd>97256300</windowhwnd>

</GMAPI>

Page 254 of 463

GoldMine ™

The following are the new events specific to 7.0 and only can be used with the GMEvent structure

CalendarMonthView_DaySelectedWithActivities - event to show when a user has clicked a day with activities in
the month view.

Returns

<GMAPI event="CalendarMonthview_DaySelectedwithActivities">
<Date>20150624</Date>

<Timed>0</Timed>

<Timeless>1</Timeless>

<Events>0</Events>

</GMAPI>

Date - is the date clicled in YYYYMMDD format
Timed - the number of timed activities on that day
Timeless - the number of timeless activities
Events - the number of events on that day

CalendarDayActivityHighlighted - for week and day views, shows the details of an activity that a user has clicked
on

<GMAPI event="CalendarbayActivityHighTighted">
<ActvAccNo>A4032327210%z7/!'R </ActvAccNo>
<CaTRecID>B6AANWA#Y> ;N(Jwv</CalRecID>
<Contact>Dan Gorentz</Contact>

<CreatedBy>GUY </CreatedBy>

<User>GUY </User>

</GMAPI>

ActvAccNo - the contact AccountNo that this cal entry belongs to
CalReclD the record id of the calendar entry

Contact - the contact field for the record

CreatedBy - the user that created the record

User - the user its assigned to
VetoCalendarChangeView - can block the view from changing tabs

<GMAPI event="VetoCalendarcChangeview">
<Prvview>1</PrvVview>
<NewView>2</NewView>

</GMAPI>

View are enumerated as follows
0 - Day View
1- Week View
2 - Month
3 -Year

4 - Planner

Page 255 of 463

GoldMine ™

5 - Outline
6 - PegBoard

PrvView - the view it is changing from
NewView - the view it is changing to
Returning TRUE to this event blocks the view change

CalendarUserSelectionChanged - tells the consumer that the user selection of visible user events has changed.
<GMAPI event="CalendarUserSelectionChanged">
<Users>GUY,MASTER</Users>
<CurrentView>0</CurrentView>
</GMAPI>

Users - a comma delimited list of users that are shown in the calendar.

CurrentView - the current view

VetoCalendarNextClick - can block the user from hitting the next button

Returns

<GMAPI event="vetoCalendarNextClick"/>
returning TRUE to this event keeps the user on the current selection
VetoCalendarPreviousClick - can block the user from hitting the previous button

<GMAPI event='"VetoCalendarPreviousClick"/>

returning TRUE to this event keeps the user on the current selection

Manipulating Controls Programatically

The GoldMine.Ul class responds to various commands to programmatically manipulate the controls on
GoldMine’s dialog boxes.

To specify the control to change or activate, read the parent window’s handle (hwnd) and the control’s ID from
the GetActiveWindowsList command. The control ID’s will always stay the same and will be unique only to the
scope of the dialog they exist on. In other words, the GoldMine user drop down box on the Schedule a Call dialog
will always have the same control ID. This control ID can be discovered during the design phase of your
application. Use the control ID as the identifier for checking the state of the control when reading the control
properties from the GetActiveWindowsList command.

PressButton

Use PressButton to press a button on a known form.

Page 256 of 463

GoldMine ™

Syntax
XML GetActiveWindowsList returned a window with the following control:
<data name="Button”’>
<data name="Enabled”’>1</data>

<data
<data
<data
<data
<data

name="Vvisible”’>1</data>
name="ParentID”>2232874</data>
name="hwnd”>987600</data>
name="1D">2060</data>
hame="Text”>&Activate</data>

</data>

To press this button, the following XML should be sent:
<GMAPI call="PressButton”’>

<data
<data

name="hwndParent”>2232874</data>
name="ID">2060</data>

</GMAPI>

NOTE: The hWndParent parameter of the PressButton command corresponds to the ParentID returned for
the control from GetActiveWindowsList, not hWnd, which is the hWnd of the control. Also, the ID
parameter corresponds to the ID parameter of the control returned by the GetActiveWindowsList, not the

hwnd.

Parameters

hWhndParent: the handle to the parent window containing the control. Corresponds to the ParentID element
returned for the control by the GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by the GetActiveWindowsList

command.

SetControlText

SetControlText sets the text property of the specified control.

Page 257 of 463

GoldMine ™

Syntax
XML The Filters and Groups dialog contains the following control, the SQL field:
<data name="Edit”>
<data name="Enabled”’>1</data>
<data name="Vvisible”’>1</data>
<data name="ParentID”>398370</data>
<data name="hwnd”’>726100</data>
<data name="1ID">104</data>
</data>
To set the text for this control, the following XML should be sent:

<GMAPI call="SetControlText”>
<data name="hwndParent”>398370</data>
<data name="ID">104</data>
<data name="Text”>SELECT * FROM contactl</data>
</GMAPI>

Parameters

hWhndParent: the handle to the parent window containing the control. Corresponds to the ParentID element
returned for the control by the GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by the GetActiveWindowsList
command.

Text: the text desired for the control.

SetCheckBox

SetCheckBox sets the value of a check box control.

Syntax

XML A dialog has the following control:
<data name="Button”’>
<data name="Enabled”’>1</data>
<data name="Vvisible”’>1</data>
<data name="ParentID”>199202</data>
<data name="hwnd”>199212</data>
<data name="ID">111</data>
<data name="Text”>&Master rights</data>
</data>

To set the checkbox, the following XML should be sent:
<GMAPI call="SetCheckBox”>
<data name="hwndParent”>199202</data>
<data name="1ID">11l</data>
<data name="Checked”>1</data>
</GMAPI>

Page 258 of 463

GoldMine ™

Parameters

hWhndParent: the handle to the parent window containing the control. Corresponds to the ParentID element
returned for the control by the GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by the GetActiveWindowsList
command.

Checked: 1 to check the checkbox, 0 to uncheck

SelectRadio

The SelectRadio command allows an application to set a radio button array, or a single item. While the command
allows a single radio button to be set, this is not the best practice. Doing so results in more than one radio button
selected in a group or radio buttons.

Syntax

XML A dialog has the following two controls:
<data name="Button”’>
<data name="Enabled”>1</data>
<data name="Vvisible”>1</data>
<data name="ParentID”>330708</data>
<data name="hwnd”’>134108</data>
<data name="ID">532</data>
<data name="Text”>&Dark Background</data>
</data>
<data name="Button”’>
<data name="Enabled”>1</data>
<data name="Vvisible”>1</data>
<data name="ParentID”>330708</data>
<data name="hwnd”’>134106</data>
<data name="ID">533</data>
<data name="Text”>&Bright Background</data>
</data>

To select the Dark Background radio and unselect the Bright Background, the following
XML should be sent:

<GMAPI call="SelectRadio”>

<data name="RadioButton”’>

<data name="hwndParent”>199516</data>

<data name="1ID">532</data>

<data name="value”>1</data>

</data>

<data name="RadioButton”’>

<data name="hwndParent”>199516</data>

<data name="1ID">533</data>

<data name="value”>0</data>

</data>

</GMAPI>

Page 259 of 463

GoldMine ™

Parameters

hWhndParent: the handle to the parent window containing the control. Corresponds to the ParentID element
returned for the control by the GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by the GetActiveWindowsList

command.

Value: 1 to select the radio button, 0 to unselect

SetListBox/SetComboBox

Use the SetListBox/SetComboBox command(s) to select an item in a listbox on a GoldMine dialog box. The client
application can specify either a text value or an index. If a text value is used, the value must already exist within

the list.
Syntax
XML A dialog has the following control:
<data name="ComboBox”’>
<data name="Enabled”>1</data>
<data name="visible”>1</data>
<data name="ParentID”>330654</data>

<data
<data
<data

name="hwnd”>68972</data>
name="ID">537</data>
nhame="Text”>MMM d, yy </data>

</data>

To select a different item in this combobox, use the following XML:

Using an Index:

<GMAPI call="SetComboBox”>

<data
<data
<data

name="hwndParent”>330654</data>
name="1ID">537</data>
name="Index”>0</data>

</GMAPI>
Using a Text value:
<GMAPI call="SetComboBox”>

<data
<data
<data

name="hwndParent”> 330654</data>
name="ID">537</data>
nhame="value”>MMMM dd, yyyy</data>

</GMAPI>

NOTE: SetComboBox and SetListBox have been grouped together in this document because they share the
same parameters and functionality for their respective control. However, SetComboBox should only be
used for comboboxes and SetListBox for listboxes.

Parameters

hWhndParent: the handle to the parent window containing the control. Corresponds to the ParentID element
returned for the control by the GetActiveWindowsList command.

Page 260 of 463

GoldMine ™

ID: the ID of the control. Corresponds to the ID element returned for the control by the GetActiveWindowsList
command.

Value: the TEXT value to select in the combobox or listbox. The value must already exist in the list of the control.
OR

Index: the index number of the item to be selected in the combo box or list box.

SelectTab

Use SelectTab to select a particular tab on a dialog box. This command does not select the tabs on the contact
record. Use the SetRoTabX command for that purpose.

Syntax

XML A dialog has the following control:
<data name="SysTabControl132”>
<data name="Enabled”>1</data>
<data name="visible”>1</data>
<data name="ParentID”>789580</data>
<data name="hwnd”>330824</data>
<data name="1ID">12320</data>
</data>

To select the tab with index of 1:
<GMAPI call="sSelectTab”>
<data name="hwndParent”>789580</data>
<data name="ID">12320</data>
<data name="Index”>1</data>
</GMAPI>

NOTE: The SelectTab command may not function as expected on all tabs within GoldMine. Due to the way
some dialog boxes were developed, changing the tab with the SelectTab command may not cause the
correct controls to be displayed on the desired tab. Always test the SelectTab command on the dialog box
you wish to execute it for during development of your application to verify it correctly switches the tab.

Parameters

hWhndParent: the handle to the parent window containing the control. Corresponds to the ParentID element
returned for the control by the GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by the GetActiveWindowsList
command.

Index: the index number of the tab to be selected.

EnableCtrl

The EnableCtrl command allows the programmer to enable or disable any control.

Page 261 of 463

GoldMine ™

Syntax
XML A dialog has the following control:
<data name="Button”’>
<data name="Enabled”’>1</data>
<data name="Vvisible”’>1</data>
<data name="ParentID”>789580</data>
<data name="hwnd”>1117262</data>
<data name="ID">1</data>
<data name="Text”>0K</data>
</data>
To disable the button:

<GMAPI call="EnablecCtrl”>
<data name="hwndParent”> 789580</data>
<data name="1ID">1</data>\
<data name="Enable”>0</data>
</GMAPI>

Parameters

hWhndParent: the handle to the parent window containing the control. Corresponds to the ParentID element
returned for the control by the GetActiveWindowsList command.

ID: the ID of the control. Corresponds to the ID element returned for the control by the GetActiveWindowsList
command.

Enable: set to 1 to enable the control, 0 to disable.

Executing a Menu Command

The MenuCommand function allows the programmatic execution of a menu item, as if the user has clicked the
item in the GoldMine menu.

Syntax

XML <GMAPI call="MenuCommand" >FileNewRecord</GMAPI>
OR

<GMAPI call="MenuCommand”>
<data name="MenuCommand”>F1ileNewRecord</data>
</GMAPI>

MenuCommand accepts one parameter, MenuCommand. This parameter can be any of the following menu
commands. The command name is descriptive and indicates which menu item it corresponds to:

FileNewRecord FileNewRecordToExistingCompany FileNewRecordAndOrgChart
FileNewRecordToExistingOrgChart FileNewRecordByType FileOpenDatabase
FilePrint1Report FileNewDatabase FileMaintainDatabases

Page 262 of 463

GoldMine ™

FileBackupDatabases FileRestoreDatabases FilePrintReports

FileSetupPrinter SynchronizationOneButtonSync SynchronizationWizard

GoldSyncAdministrationCenter SynchronizeWithOutlook SynchronizeWithPilot

SynchronizeWithWindowsCEPDA FileCopyMoveRecords ConfigureUsersSettings
ConfigureUserGroups ConfigureResources ConfigureRecordType
ConfigureCustomScreens ConfigureCustomFields ConfigureHTMLTab

ConfigureSyncSettings ConfigurelLicenseManager ConfigureMyGoldMine

LogAway LogInAnotherUser LogInServiceSupport
Exit EditUndo EditCut
EditCopy EditPaste EditCopyContactDetails

EditContact

DeleteContact

Record-related Settings

Contact Details

RecordDetailsOrganization

RecordDetailsSummary

RecordDetailsFields

RecordDetailsHTMLTab

RecordDetailsNotes

RecordDetailsContacts

RecordDetailsDetails

RecordDetailsReferrals

RecordDetailsPending

RecordDetailsHistory

RecordDetailsLinks

RecordDetailsMembers

RecordDetailsTracks

RecordDetailsOpptys

RecordDetailsProjects

RecordDetailsTickets

RecordDetailsResize

TimerStart

TimerStop

TimerReset

TimerRestart

EditToolbars

EditCustomTemplates

EditPreferences

ViewMyGoldMine

ViewNewContactWindow

ViewContactGroups

ViewCalendar

ViewActivityList

ViewEmailCenter

ViewEmailWaitingOnline

ViewlInfoCenter

ViewProjects

ViewPersonalRolodex

ViewlLiteratureFulfillment

SalesToolsOpportunities

SalesToolsScripts

AnalysisSales

AnalysisStatistical

AnalysisForecast

AnalysisGraphical

AnalysisLeads

AnalysisQuota

ViewGoldMinelogs

ViewSyncRetrievallLogs

LookupCompany

LookupContact

LookupLastName

LookupPhone

LookupZIPCode

Page 263 of 463

GoldMine ™

LookupCity LookupState LookupCountry
LoookupAccountNo LookupKeyl LookupKey2
LookupKey3 LookupKey4 LookupKey5

LookupDetailRecords

LookupEmailAddress

LookupAdditionalContName

LookupfFilters

LookupSQLQueries

TextSearchPrimaryFields

TextSearchNotes TextSearchAllFields TextSearchFieldsBelowTabs
GotoNextRecord GotoPreviousRecord GotoCycleLastViewedRecords
GotolastRecord GotoRecordNumber GotoFirstRecord

DialPhonel DialPhone2 GotolnternetSearch

DialFax RedialLastNumber DialPhone3

IncomingCall ContactlnsertNote ManualDial
WriteMemoToContact WriteFAXtoContact WriteLetterToContact

ContactWriteCustomizeTemplates

WriteCustomizeTemplates

WriteMailMerge

EmailOutlookMessageToContact

EmailPagerMessageToContact

EmalMessageToContact

EmailCustomizeTemplates

ContactTakePhoneMessage

EmailMerge

ContactBrowseWebStie

LinkFile

ContactAssignProcess

ScheduleCall

ScheduleNextAction

AddDetail

ScheduleliteratureRequest

ScheduleForecastedSale

ScheduleAppointment

ScheduleEvent

ScheduleTodo

ScheduleOtherAction

CompleteScheduledCall

CompleteUnscheduledOutgoingCall

ScheduleGoldMineEmail

CompleteMessage

CompleteNextAction

CompleteUnscheduledIincomingCall

CompleteSale

CompleteOtherAction

CompleteAppointment

CompleteToDo

CompletelLetterMemo

CompleteEvent

CompletePendingActivities

AutomatedProcessesExecute

CompleteliteratureRequest

AutomatedProcessesSetup

ServerAgenstStart

AutomatedProcessesRemoveTrack

Actlmport Outlooklmport ServerAgentsAdministrator
ExportContactRecords ImportZIPCodes ImportContactRecords
XMLImport XMLExport RunQSW

Page 264 of 463

GoldMine ™

ICALExport

CalPublish

ICALImport

ToolsCleanupDOSNotes

ToolsOptimizeOrgChartAccess

PublishBusyTime

ToolsTerritoryRealignment

MergePurgeWizard

ToolsGlobalReplaceWizard

MergeTaggedRecords

ToolsDeleteRecordsWizard

MergeVisibleRecords

ToolsStrategicSolutions

ToolsBDEAdministrator

ToolsSyncSpy

WindowTile

WindowTileWide

ToolsSystemPerformance

WindowArrangelcons

WindowCloseAll

WindowCascade

WindowStatusBar

WindowTaskBar

WindowToolBar

HelpHelpTopics

HelpReleaseNotes

WindowBackgroundSettings

HelpNewsgroups

HelpUpdateGoldMine

HelpGoldMineWebSite

CampaignManager LeadCenter HelpAbout

WeblmportAdmin

Returned XML

The MenuCommand function returns after the menu command is executed. It does not wait for any events on the
resulting window before returning. The returned XML for a successful call will be:

<GMAPI call="MenuCommand'"><status code="1">The command was
executed.</status></GMAPI>

In the event that there is a modal window active in the GoldMine user-interface, the COM Server cannot launch
another window (as would be the case if attempting to launch a menu item within the interface). When that
occurs, the following XML is returned to indicate a failure:

<GMAPI call="MenuCommand">
<status code="0">Access is denied.</status>
</GMAPI>

Opening a Mail Record

The OpenMailRecord function opens a mail record in the mail center when the ReclD of the mail item is passed.

Syntax
XML To open a mail record:
<GMAPI call="0OpenMailRecord”>
<data name="RecID”> 789580</data>
</GMAPI>
Parameters

ReclID: the record ID of the mail item.

Page 265 of 463

GoldMine ™

Returned XML

The OpenMailRecord function returns after the command is executed. The returned XML for a successful call will
be:

<GMAPI call="openMailRecord"><status code="1">The command was
executed.</status></GMAPI>

In the event that the mail record is already open, the following XML is returned to indicate a failure:

<GMAPI call="openMailRecord">
<status code="-1">Already open.</status>
</GMAPI>

In the event that the system cannot open the mail record, the following XML is returned to indicate a failure:

<GMAPI call="0penMailRecord">
<status code="0">Failure.</status>
</GMAPI>

Setting a Selected Record in a GoldMine Grid (GoldMine 8.0 or higher)
SetGridRecID allows you to set the selected record in a given GoldMine grid.
In the following example, you can set the Linked Document tab to a certain row:

1. We call SetROTab with a value of 10 to set the Link tab to focus
Perform GetActiveWindowList
Look for the gmWndBrowse object to retain it's hWnd value.

Call the SetGridReclID function (see example)

vk wN

If you had registered for Tab events, then you would also get the event
<GMAPI event="LinkedbocClick">
<RecID>CHNHXID(2AAS]WV</RecID>
<FileName></FileName>
<Sync>1</Sync>
<UserName>GUY</UserName>
</GMAPI>

Syntax (Example)

XML To set a selected record in a grid:
<GMAPI call="SetGridRecID">
<data name="hwnd">1057444</data>
<data name="RECID">CHNHXID(2AAS]WV</data>
</GMAPI>

Parameters
hWhnd: The hWnd of the gmWndBrowse you wish to set.

RecID: The recid of the value in the list you wish to select. You must pass a valid recid that is represented in the
grid.

Page 266 of 463

GoldMine ™

Returned XML

The returned XML for a successful call will be:

<GMAPI call="SetGridRecID”>
<status code="1">Success</status>
</GMAPI>

Returning Selected Records in a GoldMine Grid (8.0.1 or higher)

GetGridReclID returns the selected records in a given GoldMine grid.

Syntax (Example)

XML To get selected records in a grid:
<GMAPI call="GetGridRecID">
<data name="HWND'">337700</data>
</GMAPI>
or
<GMAPI call="GetGridRecID">468730</GMAPI>
Parameters

hWhnd: The hWnd of the gmWndBrowse from which you wish to get selected recids.

Returned XML

The returned XML for a successful call will be:

GMAPI

call="GetGridrecID">

<status code="1">Success</status>

<data name="Return'>

<data name="RecID">CGNPHUE)DOTV W&It;</data>
</data>

</GMAPI>

Or if there are multiple items selected:

<GMAPI call="GetGridRecID">
<status code="1">Success</status>

<data name="Return'>

<data name="RecID">A06RI9GO$/XA1$M&Tt;</data>
<data name="RecID">ANWYLNL%XV]& W&It;</data>
<data name="RecID">AOCJI5LF)>EDO W&It;</data>
<data name="RecID">AOCIS5LF+Y-(8 w<</data>
<data name="RecID">AOCJI5PO#E,5/ wW<</data>
<data name="RecID">AWUX7WW :U3Z W&1t;</data>
</data>

</GMAPI>

Page 267 of 463

GoldMine ™

GoldMine.RecObj Class

The GoldMine.RecObj class contains only events. These events notify the client application when the record object
has changed, when a field has changed on the contact record, or when the tab selected on the record object has
changed. It is not necessary to subscribe to these events, just implement the event handlers.
RecordObjectHasChanged
The RecordObjectHasChanged event indicates when the contact displayed in GoldMine has changed to a different
contact. This does not indicate data changes. This event is the equivalent of setting the LinkMode in Visual Basic to
vbLinkNotify.
Parameters

sCurrentRecord: a string that contains the AccountNo of the current record.

RecordFieldHasUpdated
The RecordFieldHasUpdated event indicates when the value of a field in contactl or contact2 for the current
contact has been updated. This event does NOT notify when an Email Address or Web Site has changed.
Parameters
sField: a string that contains the fieldname of the updated field.
sLabel: the local label (or global if no local label is specified) of the field.

ContactTablelD: the ID number of the contact table. Will be 1 for contactl and 2 for contact2.

RecordTabHasChanged
The RecordTabHasChanged event indicates when the user in GoldMine has selected a different tab at the bottom
of the contact record screen.

Parameters

sCurrentTab: the numeric representation of the tab selected.

GoldMine.GMSystemEvents Class

The GoldMine.GMSystemEvents class contains one event, GoldMineShutDown, indicating when the GoldMine
application is shutting down. This gives the client application an opportunity to clean up and shut down as well.

GoldMineshutDown

The GoldMineShutDown event indicates when the GoldMine application is shutting down. It has no parameters.
Following is an example of implementing the GoldMineShutDown event in VB.NET using a delegate function. For
an example implementing an event handler in Visual Basic 6.0, see the VetoWindow event for the .

Private Sub GMShutdown()
MsgBox("GoldMine has closed", MsgBoxStyle.Information, "XML API")
End Sub

Page 268 of 463

GoldMine ™

Private Function CreateGMEventHandler() As Boolean

Try

'Here we try to setup an eventhandler for goldmine shutdown
'if we set this up before we're logged in it Taunches the api
'and mucks things up, here we create the varriable, and
'assign it an event

Dim GMEvent As New GoldMine.GMSystemEvents

AddHandTer GMEvent.GoldMineShutDown, Addressof GMShutdown
Catch ex As Exception

Return False

End Try

Return True

End Function

Page 269 of 463

GoldMine™

Business Logic Methods

Overview

GoldMine introduces Business Logic, a concept to simplify and streamline product integration with GoldMine.
Business Logic transactions wrap commonly used procedures into a single call. For example, to attach a new
detail to a record, you simply execute the WriteDetail function.

Business Logic Functions and Name/Value Pairs

To make these Business Logic methods useful, developers need a mechanism for passing multiple parameters to
the various methods. GoldMine provides a set of functions to control Name/Value containers in the GMXS32.DLL,
described in . Alternatively, all of the business logic functions are accessible via the GoldMine XML API. The XML
API uses all of the same business logic function names and data names (Name/Value pairs).

This chapter describes the Business Logic methods available. These methods may be called from the GMW_
Execute function (GMXs32.DLL) or via the GoldMine XML API (GMXMLAPI .DLL).

Controlling Database Session Handling

The SetSessionHandling function controls the way GoldMine handles database sessions. The default, the safest
method, is to open and close sessions for each request. This can be changed to increase performance to keep
sessions open. The function accepts one name/value pair, KeepOpen. Its possible values are 1 or 0. The function
returns one name/value pair, OldState, with possible values of 1 or 0, so you know what was previously set prior
to your change. Finally, the function returns a status of either 0 on failure, or 1 on success. This function applies
only to the GMXS32.DLL.

Creating or Updating a Contact Record

WriteContact creates or updates a contact record. If ReclD is passed as null, then a record will be created.
Otherwise, the record will be updated. You may also create a new contact record with a ReclD you provide. This
function will respect record curtaining and will not update areas of the contact record that the logged-in user
does not have permission to change. Contacts created through this function will have the Automated Process
marked to be attached to new records.

Page 270 of 463

GoldMine ™

GoldMine API Version: 5.00.041

Required Name/Value Pairs

ReclID is the record ID of the record to update. If null, a record will be created, unless the ExternReclD or
ExternAccNo name/value pairs are included.

Optional Name/Value Pairs

Any valid Contactl or Contact?2 field.

Special Name/Value Pairs

WriteContact Special NV Pairs

Name Description

Email E-mail address profile value. Additional e-mail addresses may be added to the contact
record by including this name/value pair with an existing RecID. Cannot update any e-mail
addresses with this function. See UpdateEmailAddress. Only one address will be marked as
primary. If additional addresses are added through this function, they will not be primary
unless the next name/value pair is set.

PrimaryEmail Indicates to mark the specified e-mail address as primary. Set to 1 to mark primary.
Web site detail value. Additional Web sites may be added to the contact record by

WebSite including this name/value pair with an existing RecID. Cannot update any Web sites with
this function. See UpdateWebSite.

NonUSAPhone International phone format is used if NonUSAPhone = 1, Default is 0.

WebUserName Web username to assign to this contact. For details, see “ContactLogin.”

WebPassword Web password to assign to this contact. For details, see “ContactLogin.”

ExternReclD

User-supplied ReclID to be used for a new record. ReclD name/value pair must be empty to
use this functionality.

ExternAccNo

User-supplied AccountNo to be used for a new record. RecID name/value pair must be
empty to use this functionality.

Output Name/Value Pairs

WriteContact Output NV
Record Description
RecID If new record created.

AccountNo

AccountNo of the record

WriteCONTACT Error Codes

WriteContact Error Codes

Page 271 of 463

GoldMine ™

Code Description
Success
General Failure
-1 Incomplete request to create based on external ReclD
-2 Could not create a new record
-3 Could not create a new record based on external RecID.
-4 Could not commit to disk
-5 No access or could not lock record
-6 Record does not exist.
-7 External ReclD already exists on this system.

Updating an E-mail Address

UpdateEmailAddress is used to update the value of an existing e-mail address detail record.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

UpdateEmailAddress Required NV Pairs

Name Description
RecID ReclID of the e-mail record to be modified
NewAddress New address to write

Optional Name/Value Pairs

UpdateEmailAddress Optional NV Pairs

Name Description

Accountno Accountno of the contact the e-mail address is associated with.
MIME Set to “1” to use MIME when sending to this address.

RTF Set to “1” to use RTF when sending to this address.

Primary Set to “1” to mark this updated e-mail address as primary.
Wrap Set to “1” to wrap lines when sending to this address.

Page 272 of 463

GoldMine ™

Updating a Web Site Record

The UpdateWebSite function is used to update the value of a Web Site detail record.
GoldMine API Version: 5.50.10111

Name/Value Pairs

UpdateWebSite NV Pairs
Name Description
RecID Web site record RecID—required
NewSite New Web site value to write—required
Primary Set to “1” to mark this Web site as the primary Web site for the contact record

Updating Notes of a Primary Contact Record

WriteContactNotes updates the Notes of a primary contact record and appends the proper header information to
the top of the Note. If both AccountNo and ReclID are passed, only AccountNo will be used. The Note header will
use the current date/time and default to the logged-in user name.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

WriteContactNotes Required NV Pairs

Name Description

Notes Note text to add

AccountNo AccountNo of the Contactl record to which to add notes. Not required if RecID is used.
AccountNo AccountNo of the Contactl record to which to add notes. Not required if RecID is used.
RecID ReclD of the contactl record to which to add notes. Not required if AccountNo is used.

Optional Name/Value Pairs

UserlD is the UserID used in the note header.

Output Name/Value Pairs

None.

Creating or Updating a Note in a Table

WriteNote creates or updates a note in the table provided by the parameter. The Note header uses the current
date/time and defaults to the logged-in user name.

Page 273 of 463

GoldMine ™

GoldMine API Version:

Required Name/Value Pa

5.00.041

irs

WriteNote Required NV Pairs

Name Description
Note Note text to write.
AccountNo of the contact associated with the note. Required for a new contact. For
AccountNo ry . - . -
updates, if it is passed and different than the existing AccountNo, it is checked for validity.
NotesRecID The Notes table RecID. Required for updates; returned on new notes.

Optional Name/Value Pairs

WriteNote Optional NV Pairs

Name Description

Table Table the note is associated with. Values can be OPMGR, CASES, CASE_RESOLUTION, or
CONTACTL1. Defaults to CONTACT1. Can also pass Notes table abbreviated versions OP, CS,
CR, or C1.

LOPRECID ReclD for the associated table's row. Required for all new contacts except for contact
notes, because CONTACT1 > ReclID is read when checking if the user has access.

UserlD User to attach the note to.
Record type in case the table parameter is OPMGR or OP. Can be O for Opportunity or P

OPPROJTYPE for Project.

Output Name/Value Pairs

None.

WriteNote Error Codes
WriteNote Error Codes

Code Description

1 Success

0 No PNV passed.

-1 No note passed to write.

-2 Could not find the Notes table. RecID passed.

-3 Contact is new, yet no AccountNo was passed, or bad LOPRECID.

Page 274 of 463

GoldMine ™

-4 User doesn't have access rights to the contact, or AccountNo is invalid.
-5 Could not initialize a new record in the Notes table.
-6 Unable to open the Notes table.

Creating or Updating an Additional Contact Record

WriteOtherContact creates or updates an additional contact record. If RecID is null, then a record will be created;
otherwise, the record will be updated. When ReclD is passed as null, an AccountNo should be passed; otherwise,
an unlinked record will be created. In addition, a new additional contact may be created using a unique, user-
supplied ReclD. If the logged-in user does not have master rights and the contact record associated with the
additional contact record is curtained, then no new additional contact records or modifications will be allowed.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

None.

Optional Name/Value Pairs

WriteOther ContactNotes Optional NV Pairs

Name Description

RecID ReclD of the record to update. If null, a record will be created.

User-supplied ReclD to be used for a new additional contact. The RecID and ExternReclD

ExternRecID name/value pairs are mutually exclusive. If the RecID pair is supplied, this pair will be
ignored.

AccountNo AccountNo of linked Contactl record

Contact Contact name

Title Title

Ref Reference

Dear Salutation

Phone Phone number

Fax Fax number

Ext Extension

Address1 Address Line 1

Address2 Address Line 2

Page 275 of 463

GoldMine ™

Address3 Address Line 3

City City

State State

Zip ZIP Code

Country Country

Notes Notes

LinkAcct Link Account RecID

Special Name/Value Pairs

WriteOtherContact Special Name/Value Pairs

Name Description

Email E-mail address of the additional contact
NonUSAPhone Set to 1 for a nonUSA phone format

UseMergeCodes Set to 1 if you want to set the Use Merge Codes option
MergeCodes Merge codes

Error Codes

WriteContact Error Codes

Code Description

1 Success

0 General Failure

-1 It will be a duplicate

-2 Couldn’t create external record

-3 Couldn’t find or lock the record

-4 Couldn’t write to the database

-5 No access to the contact linked to this record

Output Name/Value Pairs

ReclD returns the new RecNo or ReclD if a new record was created.

Page 276 of 463

GoldMine ™

Creating or Updating a Detail Record

WriteDetail creates or updates a detail record. If RecID is null, then a record will be created; otherwise, the record
will be updated. When a ReclD is passed as null to create a record, an AccountNo should be passed; otherwise, an
unlinked record will be created. In addition, a new detail record may be created using a unique, user-supplied
ReclID. If the logged-in user does not have master rights and the contact record associated with the detail record is
curtained, then no new detail records or modifications will be allowed.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

Detail is the name of the detail.

Optional Name/Value Pairs

WriteDetail Optional NV Pairs

Name Description

RecID ReclD of the record to update. If null, a record will be created.

A user-supplied RecID to be used for a new detail record. The RecID and ExternRecID

ExternRecID name/value pairs are mutually exclusive. If the ReclID pair is supplied, this pair will be
ignored.

AccountNo AccountNo of linked Contactl record.

Ref Value of the detail being created or updated.

Notes Notes for the detail record.

Special Name/Value Pairs

UField 1-Ufield 8 correspond to the extended detail fields; that is:

UField1 UField5
UField2 UField6
UField3 UField7
UField4 UField8

Output Name/Value Pairs

ReclD returns the new RecNo if a record was created.

Error Codes

WriteDetailError Codes

Page 277 of 463

GoldMine ™

Name Description

Success

General Failure

-1 It will be a duplicate

-2 Couldn’t create external record

-3 Couldn’t find or lock the record

-4 Couldn’t write to the database

-5 No access to the contact linked to this record

Creating or Updating a Linked Document

WriteLinkedDoc creates or updates a linked document record. If ReclD is null, then a record will be created;
otherwise, the record will be updated. When ReclD is passed as null, an AccountNo should be passed; otherwise,
an unlinked record will be created.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

ReclD is the ReclD of the record to update. If null, a record will be created.

Optional Name/Value Pairs

Optional NV Pairs
Name Description
AccountNo AccountNo of linked Contactl record.
FileName Full path and filename.
Ref Title of the document.
Notes Notes

Special Name/Value Pairs

SyncFile synchronizes the file with remote sites if set to 1.

Output Name/Value Pairs

ReclD returns the new RecNo if a record was created.

Error Codes
These error codes were added in GoldMine API Version: 5.70.20222
WriteLinkedDoc Error Codes

Page 278 of 463

GoldMine ™

Name Description

Success

General Failure

-1 Contact not found

-2 Access denied

-3 Could not add the linked document

-4 Requested linked document does not exist

-5 Could not write the linked document

-6 The given accountno does not match the existing one

Creating or Updating a Referral

WriteReferral creates or updates a referral from one contact record to another.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

ReclD is the ReclD of the record to update. If null, a record will be created.

Optional Name/Value Pairs

WriteReferral Optional NV Pairs

Name Description

FromAccNo AccountNo of the ‘From’ referral.

ToAccNo AccountNo of the ‘To’ referral.

FromRef Reference line for the ‘From’ record.

ToRef Reference line for the ‘To’ record.

Notes Notes

AppendNotes Appends Notes with a time stamp. You must pass a valid RecID.

Special Name/Value Pairs

OppSummary is a 12-bit flag of opportunity summary check boxes in the Referrals properties. This is a sequence of
twelve 1s or Os.

Output Name/Value Pairs

ReclD returns the new RecNo if a Record was created.

Page 279 of 463

GoldMine ™

Creating or Updating Activities

WriteSchedule creates or updates a scheduled activity record. If ReclD is null, then a record will be created;
otherwise, the record will be updated. When ReclID is passed as null, an AccountNo should be passed; otherwise,
an unlinked record will be created.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

ReclD is the ReclD of the record to update. If null, a record will be created.

Name Description

AccountNo AccountNo of linked Contactl record

RecType RecType. For a list of valid RecTypes, see the table structures for CAL.

CaseReclD The Case record ID to link to the calendar event. You cannot attach a case and an
opportunity/project to the same event.

LOPRECID The opportunity or project to attach the event to. It cannot be used with a case recid.

UserID User name of activity

Contact Contact name

Ref Reference: line

Notes Notes

ActvCode Activity code

OnDate Date of activity (Required for scheduling recurring activities when using gm6s32.d11 —
GoldMine 6.0)

OnTime Time of activity (Required for scheduling recurring activities when using gm6s32.d11 -
GoldMine 6.0)

Duration Duration of activity

Alarm If set to 1, an alarm will set for the specified user. Default is 0.

AlarmDate Date of alarm. Must set Alarm to 1 to use.

AlarmTime Time of alarm. Must set Alarm to 1 to use.

RSVP If set to 1, the activity will be sent with an RSVP. Default is 0.

Private If set to 1, the activity will be marked as private. Default is 0.

Notify If set to 1, the scheduled user will receive a notification. Default is 0.

Page 280 of 463

GoldMine ™

Amount Sale amount. Only used when RecType =S

ProbSale Probability of sale. Only used when RecType =S

UnitsSale Number of units in sale. Only used when RecType =S

ccUsers List of additional users to schedule the activity for

bccUsers List of users to inform about the activity througha GoldMine e-mail.

Resources List of resources to reserve for this activity.

RecurType Use only for versions of GoldMine earlier than 6.0. For recurring activities. Specify one

of the following to indicate how the activity should be repeated:
Value Description
1070 Daily
1071 Weekly
1072 Bi-weekly
1073 Monthly
1074 Quarterly
1075 Yearly
1076 Every n days. Also use RecurNDays nv pair.

1080 First. Also use RecurOnDays nv pair. Ex. Schedule on the first
Monday of every month.

1081 Second. Also use RecurOnDays nv pair.
1082 Third. Also use RecurOnDays nv pair.
1083 Fourth. Also use RecurOnDays nv pair.
1084 Last. Also use RecurOnDays nv pair.

Use only for versions of GoldMine earlier than 6.0. Recur every x days. Used when

R ND
ecuriVbays RecurType is set to 1076.

Page 281 of 463

GoldMine ™

Use only for versions of GoldMine earlier than 6.0.

Used when RecurType is set to 1080-1084. For example, you wish the activity to be
schedule for the first Monday of every month, then RecurType would be set to 1080
and RecurOnDay would be set to 1092.

Value Description
1091 Sunday
RecurOnDay 1092 Monday
1093 Tuesday
1094 Wednesday
1095 Thursday
1096 Friday
1097 Saturday

RecurSkipWeekend Use only for versions of GoldMine earlier than 6.0.
Set to 1 (default) if the activities should not be scheduled on weekends, should the
scheduling pattern call for it to land on one. Otherwise 0.

RecurFromDate Use only for versions of GoldMine earlier than 6.0.
The date to begin scheduling the activities.

Use only for versions of GoldMine earlier than 6.0.

RecurToDate The date to end the scheduled activities.

GoldMine 6.0 NV Pairs

The following WriteSchedule NV pairs are specific to GoldMine versions 6.0 and greater. They apply to scheduling
recurring activities. The NV pairs for the previous versions of GoldMine are still valid, though in order to
implement extended recurrence patterns, these new pairs need to be used in lieu of the previous pairs. If your
application will only be used on GoldMine 6.0 systems, it is recommended to use the newer recurrence NV pairs
listed below.

Optional WriteSchedule NV Pairs

Name Description

RecurType For recurring activities. Specify one of the following to indicate how the activity
should be repeated:

Value Description
1 Hourly

2 Daily

3 Weekly

4 Monthly

5 Yearly

Page 282 of 463

GoldMine ™

Set to 1 (default) to specify an UNTIL recurrence rule (defined by a start date/time
and end date/time) and is used in conjunction with RecurToDate.

RecurFormat . . .
Set to 2 to specify a COUNT recurrence rule (defined by a start date/time and an
integer representing the number of occurrences) and is used with RecurCount.
Represents the number of occurrences at which to bound the range (Used when
RecurCount

RecurFormat = 2, omit if RecurFormat = 1).

RecurToDate &
RecurToTime

Use to specify the end of the date and time range for scheduling recurring
activities. (Used when RecurFormat = 1, omit if RecurFormat = 2)

Recurlinterval

Represents how often the recurrence rule repeats

RecurOnDay

The day(s) when the recurrence occurs:
The following seven values can be used when RecurType equals 3 through 5. The
values can be combined using the bitwise AND operator.

Value Description
1 Sunday

2 Monday

4 Tuesday

8 Wednesday

16 Thursday

32 Friday

64 Saturday

The following values should only be used when RecurType is equal to monthly (4)
or yearly (5).

Value Description
200 Weekday

201 Weekend Day
202 Day

RecurMonthDay

The day of the month the activity should occur. Values 1 through 31 are valid.
Should only be used if RecurType is monthly (4) or yearly (5). If RecurMonthDay is
used, then RecurPos is ignored.

RecurPos

Specifies if the activity should be scheduled on the first, second, third, fourth or
fifth day specified in RecurOnDay (as in, first Monday of each month, etc). Used
only when RecurType is monthly (4) or yearly (5). If RecurMonthDay is set also, this
value will be ignored.

RecurMonth

Specifies which month the recurring activity is to be scheduled in when the
RecurType is set to monthly (5). Valid values are 1 through 12 and correspond to
months respectively (1 = January).

Page 283 of 463

GoldMine ™

Skip weekends when scheduling recurring activities. Valid values or 1 (default) or 0.

R SkipWeekend
ecurskipiveeken Use when RecurType is daily (2), monthly (4), or yearly (5).

RecurSkipNon Skip hours that are not designated as part of the workday (ex: 5pm through 8 am).
WorkdayHours Valid values are 1 (default) or 0. Use when RecurType is set to hourly (1).

Output Name/Value Pairs

ReclD returns the new ReclID if a record was created.

Error Codes
These WriteSchedule error codes were added in GoldMine API Version: 6.0.21021
WriteSchedule Error Codes

Name Description

Success

General Failure

-10 Ondate > RecurEndDate

-11 No Ondate specified

-12 No RecurToTime (or RecurCount)

-13 No weekdays selected in the weekly pattern
-14 Not enough NV Pairs specified

Creating or Updating a History Record

WriteHistory creates or updates a history record, or completes a scheduled activity record. If RecID is null, then a
record will be created; otherwise, the record will be updated. When ReclD is passed as null, an AccountNo should
be passed; otherwise, an unlinked record will be created. To complete a scheduled activity, you must pass
CalReclD.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

ReclD is the ReclD of the record to update. If null, a record will be created.

WriteHistory Optional Name/Value Pairs
WriteHistory Optional NV Pairs

Name Description

AccountNo AccountNo of linked Contactl record.

Page 284 of 463

GoldMine ™

RecType RecType. For a list of valid RecTypes, see the table structures for CONTHIST.
UserlID User name of activity

Contact Contact name

Ref Reference line

Notes Notes

ActvCode Activity code

ResultCode Result code

OnDate Date of activity

OnTime Time of activity

Duration Duration of activity

WRITE HISTORY Special Name/Value Pairs
WriteHistory Special NV Pairs

Name Description
CalRecID ReclD of the scheduled activity (Cal table).
Success If set to 1, the activity was successful. Default is 1.

. If set to 1, the activity is marked as private.
Private

Default is 0.
RSVP If set to 1, an RSVP is scheduled. Default is 0.
Link If Set to 1 indicates that it is linked to the contact record specified in AccountNo.
Amount Sales amount. Used where RecType =S
ProbSale Probability of sale. Used where RecType =S
UnitsSale Number of units in sale. Used where RecType =S

Output Name/Value Pairs

ReclD returns the new RecNo if a record was created.

Creating or Updating a Case Record (GoldMine 8.0 or higher)

WriteCase creates or updates a Case for the GoldMine 8.0 service module.

Required Name/Value Pairs

The following fields are required for new records.

Page 285 of 463

GoldMine ™

Name Description
Accountno Accountno of the contact to link with the Case
Number The case number - required for new - alpha numeric 40 chars

Optional Name/Value Pairs

WriteCase Optional NV Pairs

Name Description

Recid A valid Case record ID to modify, passed only on a modify call. Required for updates.

Accountno Accountno of the contact to link with the Case

Number The case number - required for new - alpha numeric 40 chars

User The GoldMine user name to assign the case to. If not passed, assumed to be the logged in
user.

IsTemplate Use this case as a template - 1 = template, 0 = not

IsRead Has been read 1= true, 0 = false

Status A numeric representation of the status. 0 = <unknown>, 1 = assigned, 2 = reassigned, 3 =
escalated, 4 = resolved, 5= abandoned, 6 = open, 7 = closed

Priority A priority code created by the users. Alpha numeric 40 chars

Source The source of the case - alpha numeric 40 chars

Category A category code created by the user - Alpha numeric 40 chars

Type Type code created by the user - Alpha numeric 40 chars

Offering A data field mainly used to list what you've offered to the case subject 200 chars

Subject A short description reference 200 chars

Description A long description of the case issues and steps

Notes This field is deprecated for adding notes to a case. Please use WriteNote.

ResolutionType

A user defined resolution code - alpha numeric 40 chars

ResolutionNotes

This field is deprecated for adding notes to a case. Please use WriteNote.

DueDate

The date that resolution is due. The format must be date then time in your locale's format
(3-16-07 10:00 am)

ResolvedBy

The goldmine user that resolves the issue

Page 286 of 463

GoldMine ™

ResolvedDate The date of actual resolution. The format must be date then time in your locale's format
(3-16-07 10:00 am)

HTMLNotes Boolean that determines if the notes passed are pre formatted for HTML. 1=true, 0 =
false, default is 0

Boolean that determines if notes are overwritten or a new note is appended to the end.

A dNot
ppendiiotes 1= append, 0 = overwrite. Default is 1

Error Codes

WriteCase Error Codes

Code Description

1 Success

0 No NV container passed

-1 Required NV pairs not passed

-2 Valid case id not passed

-3 Could not open Cases table

-4 Could not find CaselD

-5 Could not open CaseTeamlLink table
-6 Could not initialize new record

-7 Attempt to append new record failed

Output Name/Value Pairs

ReclID returns the RecID in a name-value container if a new record was created.

Creating or Updating a Case Attachment (GoldMine 8.0 or
higher)

WriteCaseAttachment creates or updates a CaseAttachment.

Required Name/Value Pairs

The following fields are required for new records: CaselD, RecType, Describes, Title and Location. See the
following table for details.

Optional Name/Value Pairs

WriteCaseAttachment Optional NV Pairs

Page 287 of 463

GoldMine ™

Name Description

ReclD A valid CaseAttachment table recid to modify, passed only on a modify call. Required for
updates.

CaselD A valid Case table recid to attach the file or link to. Required if new.

RecType The recType, an integer of 0 or 1. 0 = File, 1 = Link. Required if new.

Describes An integer of 0 or 1. 0 = Problem, 1 = Solution. Required if new.

Title The title for the file - Alpha numeric 100 chars. Required if new.

Location The URI for the file or link. Alpha-numeric 512 chars. Required if new.

Error Codes

WriteCaseAttachment Error Codes

Code Description

1 Success

0 No NV container passed

-1 New with invalid case id

-2 New and missing required values

-3 Could not open Cases table

-4 Could not find CaselD in case table

-5 Couldn't open CaseAttachement table
-6 Could not init new record or find and lock the record to be modified
-7 Invalid rectype passed

-8 Invalid describes value passed

Output Name/Value Pairs

ReclD returns the RecID in a name-value container if a new record was created.

Adding a GoldMine User as a Case Team Member (GoldMine

8.0 or higher)

WriteCaseTeamLink adds a GoldMine user as a Team member for a case.

Required Name/Value Pairs

WriteCaseTeamLink NV Pairs

Page 288 of 463

GoldMine ™

Name Description

CaselD A valid Case table recid to add the user. Required for updates.
UserName The GoldMine User Name to add to the Case Team

Role The role for the user. User defined alpha numeric 40 chars.

Error Codes

WriteCaseTeamlLink Error Codes

Code Description

1 Success

0 No NV container passed

-1 New with invalid case id

-2 New and missing required values

-3 Could not open Cases table

-4 Could not find CaselD in case table

-5 Could not open CaseAttachement table
-6 Could not init new record or find and lock the record to be modified
-7 Invalid rectype passed

-8 Invalid describes value passed

Output Name/Value Pairs

ReclD returns the RecID in a name-value container if a new record was created.

Attaching an Automated Process

AttachTrack attaches an automated process to a contact record.

GoldMine API Version: 5.00.041

ATTACHTRACK Required Name/Value Pairs

Required NV Pairs
Name Description
AccountNo AccountNo of the contact record (Contactl) to which to attach the track.
Track

Page 289 of 463

GoldMine ™

UserID

Output Name/Value Pairs

ReclD returns the new RecNo if a record was created.

Executing an SQL Query

SQLStream executes a SQL query and returns the data in a DataStream. For details, see .

GoldMine API Version: 5.00.041

Required Name/Value Pairs

SQL is the SQL statement to execute.

Optional Name/Value Pairs

SQLStream Optional NV Pairs

Name Description

Filter Xbase filter expression.

FIdDIm Field delimiter. Defaults to CR.

RecDIm Record delimiter. Defaults to LF.

StartRec Starting record. Defaults to 1.

GetRecs Maximum records to return. Defaults to 100.

MaxBufSize Maximum buffer size. Defaults to 32k.

Raw (XML AP| Indicates the format the data should be returned as. The default (“0”) puts the data into XML

format. Setting Raw to “1” returns the data stream in the old return packet format, as

ONLY) described below.

Output Name/Value Pairs
Output is the return DataStream.
The packet header (the first 12 characters of the Output NV pair) record consists of two sections:
First byte can be 0, 3, or 4:

0 indicates that more records are available, which could be fetched with another SQLStream call (be sure to set
the StartRec nv pair to one more than the number of records returned in the first call)

3 indicates the end-of-file (EOF)
4 indicates the beginning-of-file (BOF)

Number following the dash indicates the total number of data records contained in the packet.

Page 290 of 463

GoldMine ™

If the Raw parameter is set to 0 using the GoldMine XML API, the packet will be XML formatted. See the XML
Return Packet for information on interpreting this data format.

NOTE: If the return DataStream is too large for the specified buffer size, SQLStream returns a value of -5.
When the buffer in increased to an adequate size, SQLStream will return the data in a DataStream. The
practical upper limit for buffer size is 2 MB. If your query returns data in excess of 2 MB, we recommend
using DS_Query and DS_Fetch rather than SQLStream for better performance

Creating a Cont act Group

The CreateContactGroup function is used to create an empty contact group. Members are then added through the
AddContactGrpMembers function. For details, see “Adding Contacts to a Contact Group” on page .

GoldMine API Version: 5.70.20222

Required Name/Value Pairs

GroupName is the name of the group to be created.

Optional Name/Value Pairs

CreateContactGroupOptional NV Pairs

Name Description
GroupCode Group code.
UserName Group owner. The currently logged in user will be used if empty.

SyncGroup 1 (default) if the group should be synced. Otherwise 0.

Output Name/Value Pairs

CreateContactGroup Output NV Pairs

Name Description

GroupNo Group number of the created group. Use this to add members through the
AddContactGrpMembers function.

Return Codes

CreateContactGroup Return Codes

Code Description

1 Success

0 General Failure

-1 Missing group name

-2 Could not create the group

Page 291 of 463

GoldMine ™

Adding Contacts to a Contact Group

Once a contact group is created with CreateContactGroup, the AddContactGrpMembers function is used to add
contacts to that group. In addition, this function can be used to add members to existing groups.

GoldMine API Version: 5.70.20222

Required Name/Value Pairs

AddContactGrpMembers Optional NV Pairs

Name Description

GroupNo Group number.

Multi value NV pair containing multiple NV pair containers. Each container stores
Members information for each contact to add to the group. See below for details of the child
containers.

Members NV Pair Child Container Name/Value Pairs

Members NV Pairs
Name Description
Accountno Accountno of the member to add
Reference Reference of the member.
Sort Sort value for the member

Members NV Pair Child Container Output Name/Value Pairs

Members Output NV Pairs
Name Description
MemberNo Recno/recid of the member record

Output Name/Value Pairs (parent container)

AddContactGrpMembers Output NV Pairs

Name Description

MembersAdded Number of members added.

Return Codes

Note that on the first instance the function encounters an error adding a member, it will stop adding members
and not continue through the list of requested members.

AddContactGrpMembers Return Codes

Page 292 of 463

GoldMine ™

Code Description

Success

General Failure

Missing Group Number

Unable to find group

Cannot add member

No members added

Using AddContactGrpMembers

Below are the steps you should take in order to populate the Members Name/Value pair correctly.

1.
2.
3.

Create parent container using GMW_NV_Create.

Populate GroupNo Name/Value pair in parent container.

Create another container using GMW_NV_Create to serve as the child container (assign to a different long
variable).

Populate any common Name/Value pairs in the child container (i.e. Reference).

Loop through the contacts you want to add and do the following:

O Assign Accountno name/value pair in the child container.

O Assign any other optional name/value pairs in the child container (i.e. reference or sort).

Use the GMW_NV_AppendNvValue function to copy the contents of the child container to a new container
within the Members name/value pair of the parent container:

GMW_NV_AppendNvvalue (1ParentGMNV, “Members”, 1ChiTldGMNV)
Execute WriteSchedule.

Reading a Record

ReadRecord reads a record from the specified table, based on RecID. When the TableName=Contact1l, all Contact2
fields will also be returned. Any record that is inaccessible through GoldMine due to record curtaining will not be
returned. Any fields inaccessible through GoldMine due to field-level access restrictions will not be returned.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

ReadRecord Required NV Pairs

Name Description
TableName GoldMine table to read.
RecID ReclD of the Contactl record to return.

Page 293 of 463

GoldMine ™

Optional Name/Value Pairs
Address Block returns the address as one block of text instead of in separate fields for Address1, Address2, City,
State, and so on, when equal to 1.

Special NVs

AccountNo can be used to find the record instead of ReclD if TableName=Contact1.

Output Name/Value Pairs
All field values for the specified record.

ReadRecord Output NV Pairs

Name Description
Email Returns the primary e-mail address if TableName=Contact1.
Website Website profile will return if TableName=Contactl.

Indicates level of curtaining for returned record. 0 — none, 1 — partial, 2- full. Use this to

CurtainingState
g save a call to IsContactCurtained.

Return Codes

ReadRecord Return Codes

Code Description

1 Success

0 General Failure

-1 No access to the record
-2 Record not found

-3 Invalid parameters

Reading a Contact1 or Contact2 Record

ReadContact reads a contact record from Contactl and Contact2. Any record that is inaccessible through
GoldMine due to record curtaining will not be returned. Any fields inaccessible through GoldMine due to field
level access restrictions will not be returned.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

ReclID is the ReclID of the Contactl record to return.

Page 294 of 463

GoldMine ™

Optional Name/Value Pairs
AddressBlock returns the address as one block of text instead of in separate fields for Address1, Address2, City,
State, and so on, when equal to 1.

Special NVs

AccountNo can be used to find the record instead of ReclD if TableName=Contact1.

Output Name/Value Pairs
All Contactl and Contact? field values.

ReadContact Output NV Pairs

Name Description
Email Returns the primary e-mail address if TableName=Contact1.
Website Website profile will return if TableName=Contactl.

Indicates level of curtaining for returned record. 0 = none, 1 = partial, 2 = full. Use this to

CurtainingState
g save a call to IsContactCurtained.

Return Codes

ReadContact Return Codes

Code Description

1 Success

0 General Failure

-1 No access to the record
-2 Record not found

-3 Invalid parameters

Returning Alerts Attached to a Contact Record

GetContactAlerts returns all alerts attached to a contact record.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

GetContactAlerts Required NV Pairs

Name Description

ReclD ReclID of the Contactl record to return. You can optionally use AccountNo.

Page 295 of 463

GoldMine ™

AccountNo AccountNo of the Contactl record. You may optionally use ReclD.

Output Name/Value Pairs

The function returns the number of contact alerts in the AlertsCount Name/Value. For each alert, the function
returns five fields. Each set of alert fields has the alert number appended to the field name (represented by X in
the following table).

GetContact Alerts Output NV Pairs

Name Description

AlertsCount Number of alerts.

CodeX Three-character alert code.

DescX 80-character description.

NotesX 64k of RTF alert message (optional).
CreatorX User that assigned the alert.

Value of 1 indicates that GoldMine will save a history record when the user acknowledges

SaveHist
the alert.

Return Codes

GetContactAlerts Return Codes

Code Description
0 No PNV or no alerts found.
>0 The number of alerts returned.

Attaching an Alert

SetContactAlert attaches an alert to the specified contact record. To generate an alert list, execute the
GetAllAlerts function.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

SetContactAlert Required NV Pairs

Name Description

ReclD ReclD of the Contactl record to which to attach this alert. You can optionally use
AccountNo.

AccountNo AccountNo of the Contactl record. You can optionally use RecID.

Page 296 of 463

GoldMine ™

Code Three-character Alert Code.
Creator Creator of the Alert.
SaveHist A history record is generated each time the Alert is acknowledged if set to 1.

Output Name/Value Pairs
None.
The GMW_Execute function will return the following values:

GMW _ExecuteReturn Values for SetContactAlert

Return Description

0 Contact not found

1 Alert is added

2 Alert is already attached

Returning All Alerts

GetAllAlerts returns all alerts defined within GoldMine.
GoldMine API Version: 5.00.041

Required Name/Value Pairs

None.

Output Name/Value Pairs

The function returns the number of contact alerts in the AlertsCount name value. For each alert, the function
returns five fields. Each set of alert fields has the alert number appended to the field name (represented by X
below):

GetAllAlerts Data Fields Returned

Name Description

AlertsCount Number of alerts.

CodeX Three-character alert code.

DescX 80-character description.

NotesX 64k of RTF alert message (optional).

Returning a User List

GetUsersList returns a list of all GoldMine users.

GoldMine API Version: 5.00.041

Page 297 of 463

GoldMine ™

Required Name/Value Pairs

None.

Output Name/Value Pairs

GetUsersList Required NV Pairs

Name Description

UserList Comma-delimited list of all user names
UserCount Number of users in the list
UserGroupsList Comma-delimited list of user groups
UserGroupsCount Number of user groups

The GMW _Execute function will return the same value as UserCount.

Returning a User Group Member List

GetGroupUsersList returns a list of all members of a GoldMine user group.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

GroupNo is the user group number. See the GetUsersList or GetUserMemberships functions for information on
how to retrieve a UserGroupsList and their numbers.

Output Name/Value Pairs

GetGroupUsers List Output NV Pairs

Name Description
UserlList Comma-delimited list of all user names
UserCount Number of users in the list

The GMW _Execute function will return the same value as UserCount.

Returning Group Memberships for a Specified User

GetUserMemberships returns a list of all user group memberships for the specified UserlID.

GoldMine API Version: 5.00.041

Required Name/Value Pair

UserlD is the GoldMine user name.

Page 298 of 463

GoldMine ™

Output Name/Value Pairs

GetUserMemberships Output NV Pairs

Name Description
UserGroupsList Comma-delimited list of user group numbers of which the user is a member
UseGroupsCount Number of users in the list

The GMW _Execute function will return the same value as UserGroupsCount.

Saving a User Group

WriteGroupUsersList saves the user members to a user group. You must have Master Rights to execute this
function.

GoldMine API Version: 5.00.041

Required Name/Value Pairs

WriteGroup UsersList Required NV Pairs

Name Description

GroupNo User group number. For details on retrieving a UserGroupList name and number,
see the GetUsersList or GetUserMemberships functions.

UserList Comma-separated list of users who are members of the specified group.

Output Name/Value Pair
UserCount is the number of updated user records.

The GMW _Execute function will return the same value as UserCount.

Retrieving the Names of User Groups

GetGroupName returns the descriptive names given for a comma-delimited list of group numbers.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

GetGroupNameRequired NV Pairs

Name Description

Grouplist Comma-delimited list of group number for which to retrieve names (for example: 1,4,5,8)

Return Name/Value Pairs

GetGroupNameReturn NV Pairs

Page 299 of 463

GoldMine ™

Name Description
GroupCount Number of groups actually found
Each Grou
P The corresponding name for the group number specified as the value
Number
Example

GroupCount =4

1 = MyGroup
2 =Techs
3 =Sales

4 = Management

Evaluating an Xbase Expression on a Contact Record

XbaseContactExpr parses a contact- related Xbase expression and return the result and type of the expression. It is
possible to parse multiple expressions in one call.

GoldMine API Version: 5.50.10111

Name/Value Pairs

XbaseContactExprNV Pairs

Name Description

AccountNo Account number of the contact to parse against
XbaseExpr Expression to parse, or

ExprCount Number of expressions to parse, and
XBaseExprl .. Expressions to parse

XBaseExprN

Returned Name/Value Pairs

XbaseContactExpr Returned NV Pairs

Name Description

Result Result of parsing the expression

Page 300 of 463

GoldMine ™

Type of the expression. Possible values:

O0—Error

. 1 — Number

e
P 2 - String

3 —Date
5—Bool, or

Resultl . . ResultN Result of each expression

Typel .. TypeN Type of each expression—see type above for possible values

Return Values
The XbaseContactExpr function returns the following status values:

XbaseContractExpr return values

Value Description

-2 Contact was not found

-1 No accountno given

0 No expression

1..N Number of correctly parsed expressions

Encrypting Text

The EncryptString function encrypts a plain text string to a Base64 ASCIl encoded buffer.
GoldMine API Version: 5.50.10111

Required Name/Value Pairs

EncryptString Required NV Pairs

Name Description
Key Key to use. This can be any value.
ClearText Text to encrypt.

HashK
asniey very simple.

Set to “1” to specify the key to be hashed before use. Provides better security if the key is

Returned Name/Value Pairs

EncryptStringReturned NV Pairs

Page 301 of 463

GoldMine ™

Name Description

CryptText Encrypted string in an ASCIl encoded buffer (Base 64).

Decrypting Encoded Text

The DecryptString function decrypts encoded text.
GoldMine API Version: 5.50.10111

Required Name/Value Pairs

DecryptStringRequired NV Pairs

Name Description
Key Key to use. Must be the same as when encrypting.
CryptText Text to decrypt.

Set to “1” to specify the key to be hashed before use. Provides better security if the key is

HashKe
¥ very simple.

Returned Name/Value Pairs

DecryptString Returned NV Pairs

Name Description

ClearText Decrypted string. The text is padded with spaces to be on a 64-bit (8 bytes) boundary.

Retrieving the Default Contact Automated Process

Within GoldMine, a user can specify a particular Automated Process (AP) to be attached to new contact records.
The GetNewContactAP function returns the ReclD of the Automated Process that is assigned to automatically
attach to new records. The NV Pair in which the Automated Process ReclID is returned is called NewContactAP. The
function returns 1 on success, and 0 on failure.

Deleting Calendar Items
The DeleteSchedule function is used to delete scheduled activities.
GoldMine API Version: 5.50.10111

Required Name/Value Pair

DeleteSchedule Required NV Pair

Name Description

RecID ReclD of the scheduled item to delete (Cal record ReclD)

Page 302 of 463

GoldMine ™

Return Values

Value Description

0 OK

-1 Empty or bad ReclID value

-2 Can’t open database

-3 Cal record not found

-4 Failed to delete

-9999 General exception (unknown error)

Deleting History Items

The DeleteHistory function is used to delete completed activities.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

DeleteHistory Required NV Pairs

Name Description

RecID ReclD of the history item to delete (ContHist record ID)

Return Values

Value Description

0 OK

-1 Empty or bad RecID value

-2 Can’t open database

-3 ContHist record not found

-4 Failed to delete

-9999 General exception (unknown error)

Page 303 of 463

GoldMine ™

Handling GoldMine Security

An important part of your integration considerations should be how you will handle the security of your GoldMine
database. All business logic functions that write and read from the GoldMine database adhere to the security
settings for the user logged in through GMW _LoadAPl or GMW_LoadBDE. Additional functions are provided to aid
in managing GoldMine security.

Creating a New GoldMine Login
WriteGMUser enables you to create GoldMine user names. The user logged into the APl must have master rights.

GoldMine API Version: 5.50.10111

Name/Value Pairs

WriteGMUser NV Pairs
Name Description
UserName Username to add
Password Password for the user
FullName Full name of the user
SQLUser SQL login to be used for this user if connecting to an MS SQL database
SQLPassword Password for the SQL login
MasterUser Set to “1” to enable master rights for this user, otherwise “0”

Return Values

WriteGMUser returns “1” on success and “0” on failure.

Reading a GoldMine Login

The ReadGMUser function returns detailed information about a GoldMine Login.

GoldMine API Version: 6.00.21021

Output Name/Value Pairs

ReadGMUserNV Pairs
Name Description
UserName Username to add.

Page 304 of 463

GoldMine ™

Password Password for the user

FullName Full name of the user

SQlLUser SQL login to be used for this user if connecting to an MS SQL database
SQLPassword Password for the SQL login

MasterUser

Return Values

ReadGMUser returns “1” on success and “0” on failure.

Retrieving Security Access

GetUserAccess returns the security information specified for the currently logged-in user.
GoldMine API Version: 5.50.10111

GetUserAccess Return Name/Value Pairs

Name Description
SQLUser SQL Username specified for this user
Master Whether or not the user has master rights: 1 master, 0 not

Page 305 of 463

GoldMine ™

AccessRights

This name/value pair consists of a set of flags indicating the access rights the user has
to various areas of GoldMine. Each permission is either granted or denied based on
the value of its position in the set of flags. A value of “1” signifies the permission is
granted, and “0” if it is denied. Below is a chart of the positions in the set of flags and
their corresponding permission:

Position Permission

2 Others Calendar

3 Others History

4 Others Forecasts

5 Others Reports

6 Others Forms

7 Others Filters

8 Others Groups

9 Others Linked Documents

12 Create new contact records
13 Edit Fields

14 Delete contact records

15 Assign contact record owners
16 Edit tab folders

17 Schedule automated processes
19 Issue SQL Queries

20 Netupdate

21 Output To menu

25 Build groups

35 Real time tab

36 Toolbar settings

UsersCALENDAR

The user group’s calendar that this user has permission to view. Valid if permission is
set. See AccessRights name/value pair.

UsersHISTORY

The user group’s history that this user has permission to view. Valid if permission is
set. See AccessRights name/value pair.

The user group’s linked documents that this user has permission to view. Valid if

UsersLINKS
permission is set. See AccessRights name/value pair.

UsersGROUPS The u'se.r gr(.)up s contact groups that this user has .perm|55|on to view. Valid if
permission is set. See AccessRights name/value pair.

UsersREPORTS The user group’s reports that this user has permission to view. Valid if permission is

set. See AccessRights name/value pair.

Page 306 of 463

GoldMine ™

UsersFILTERS The user group’s filters that this user has permission to view. Valid if permission is set.
See AccessRights name/value pair.

The user group’s forms that this user has permission to view. Valid if permission is set.

UsersFORMS
See AccessRights name/value pair.

UsersSALES The user gro'up’s sales that this u.ser has permission to view. Valid if permission is set.
See AccessRights name/value pair.

ForceLogoutAt The time (AM/PM) that this user will be forced to exit GM.

IdleLogout The amount of time (in minutes) that GM will remain idle before shutting down.

A string containing the menu ID's that are excluded from the user's instance of GM,

M Exclusi
enutxclusion delimited by an underscore. Ex. "344_531_164_"

A Boolean value that states whether or not new users are automatically assigned to

NewRecOwnership .
this user.

Retrieving Field-Level Access Rights

FieldAccessRights returns a list of all fields and the access right for the logged-in user for each.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

FieldAccessRightsOutput NV Pairs

Name Description

TotalFieldCount Number of fields returned

Possible values:
Field Names N - No Access
(for example, COMPANY, CONTACT, KEY1) R - Read Access
W - Read/Write Access

Example NV Container Returned from FieldAccessRights

TotalFieldCount = 3
COMPANY = R
CONTACT = W

ACCOUNTNO N

Retrieving Visible Fields

NonCurtainedFields returns a \n delimited list of fields visible on partially curtained records. The list is returned in
the NonCurtainedList and SemiPartNonCurtainedList name/value pairs. The latter pair indicates which fields are
visible when the contact record is semi-partially curtained (all four top quadrants of the contact record are visible)
and is only returned in GoldMine 6.0 and greater.

Page 307 of 463

GoldMine ™

NOTE: You must pass an empty NV container with all calls that do not take any parameters.

Checking for Record Curtaining

IsContactCurtained tests a contact record for curtaining.

Required Name/Value Pairs

IsContactCurtained Required NVPairs

Name Description

RecID Record ID of the Contactl record to test. AccountNo can be passed in place of this
Name/Value pair.

AccountNo of the Contactl record to test. RecID can be passed in place of this Name/Value

AccountNo .
pair.

Output Name/Value Pair

Curtain NV pair return values

Value Description

0 Not curtained

1 Partial curtaining
2 Fully curtained

The GMW _Execute function will return TRUE if the record was found.

Generating a Remote License File

CreateRemotelicense generates a license file for a remote user or site. The resulting license.dbf (6.7 or lower) or
license.bin (7.0 or higher) file will be stored in a subdirectory off a specified path. If the path specified is C:\temp,
then the file will be in C:\temp\user where “user” is the GoldMine username provided to the function.

GoldMine API Version: 5.50.10111

Name/Value Pairs

CreateRemotelicense Required NV Pairs

Name Description

UserName User or site name

LicPath Location to place the license files. If left empty, the file will be put in a directory called UserLic
under the sysdir (GoldMine directory)

LicType U (undocked) or S (site)

Page 308 of 463

GoldMine ™

SiteUsers For a sublicense site, the number of users at that site

Return Name/Value Pairs

CreateRemotelLicense returns one NV pair called “Result” with the following return codes. This code is also
returned as the function’s result value.

CreateRemotelicense Return Result Codes

Value Description

1 OK

0 General Error

-1 No Username

-2 User already undocked

-3 Cannot open user file

-4 User not found

-5 Undocked license count exceeded
-8 Cannot create the new license file

Removing a Remote License

RemoveRemotelicense removes an undocked user or sub-license site.

GoldMine API Version: 5.50.10111

Name/Value Pairs

RemoveRemotelicense NV Pairs

Name Description
UserName User Name or Site Name
LicType U (undocked) or S (sublicense site)

Return Name/Value Pairs

RemoveRemotelicense returns one NV pair called “Result” is returned with the following return codes. This code
is also returned as the function’s result value.

RemoveRemotelicense Return Result Codes

Value Description

1 Success

Page 309 of 463

GoldMine ™

0 General Error

E-mail Name/Value Functions

This set of functions allows the manipulation of GoldMine and Internet e-mail.

Reading a Mail Message

The ReadMail function reads an e-mail message based on either the RecID in the Mailbox table or the Cal/ContHist
tables. A flag is required to specify whether the function should look in the Cal tables or ContHist tables. The mail
message can be opened for editing or reading.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

None.

Optional Name/Value Pairs

ReadMail Optional NV Pairs

Name Description

MboxReclD Mailbox ReclID. Either this NV pair or the RecID NV pair must be included.
ReclD Cal/History ReclID.

History Flag identifying location of RecID provided. 1 for History, 0 or nothing for Cal.
ForEdit 1 to open for editing, 0 or nothing if for reading.

Password Password to decrypt the message if it was encrypted on send.

READMAIL Output Name/Value Pairs

Output NV Pairs
Name Description
ReclD Cal/History ReclD
MboxRecID Mailbox ReclD

Page 310 of 463

GoldMine ™

Collection of flags:
MAILBOX_ITEM_READ 0x0001
MAILBOX_ITEM_HIST 0x0002
MailboxFlags MAILBOX_ITEM_OUTBOUND 0x0004
MAILBOX_ITEM_ATTACH 0x0008
MAILBOX_ITEM_REDIRECT 0x0010
MAILBOX_ITEM_GMASLINKS 0x0020

To List of all the To: recipients. Comma-delimited and quoted if needed.

Cc List of all the CC: recipients. Comma-delimited and quoted if needed.

Bcc List of all the Bcc recipients. Comma-delimited and quoted if needed.

ReplyTo Reply to address (if any)

From The from address of the message. Will usually be the default user account, but can

contain other addresses.

Subject Subject

Org Organization that will appear in the header.
MessagelD MessagelD from the header.

Status Message status from the header.

Date Internet standard date from the header.

XMailer XMailer from the header.

OtherHeaders Other headers not categorized above.

Body Message body. This will be different in edit mode.
Attachments A question mark delimited list of attachments.
Alarm 1if set, 0 if not.

History 1 if from History, 0 if not.

Private 1 if private, O if not.

RSVP 1 if marked for RSVP, 0 if not.

ReturnReceipt 1if requested, 0 if not.

Encrypted 1 if the message is encrypted, 0 if not.

Outgoing Message is an outgoing message (queued for delivery or already sent): 1 or 0.

Page 311 of 463

GoldMine ™

MailType Following types are possible:
SMM_Internet 0 This is the one to handle
SMM_GoldMine 1 Only exists for compatibility with GoldMine 4.0
SMM_Template 2 Template mails.

IsMIME 1 if MIME based message, 0 if not.

AccountNo Accountno of the linked contact (or empty).

LinkedContact

If an additional contact is linked this will have the ContSupp RecID.

LinkedOppty ReclD of the linked opportunity or project (if applicable).
Activity Activity Code
Result Result Code
CalDate Calendar/History date
CalTime Calendar/History time
Contact Contact name
User who created the mail or “Internet” if the message was retrieved from the mail
CreateBy
server.
Folder Folder in which the message is stored.
SubFolder Subfolder in which the message is stored. No value will be returned if the message(s)
already exist in the Inbox or Outbox.
RecType of the Calendar record:
RecType In Cal: Q = Queued mail, M = Incoming
In History: Ml = Incoming, MO = Outgoing
Reference Calendar/History reference. Usually initialized from the subject automatically.
User User who owns the message belongs.
HasTransferSet 1 if the e-mail message has a transfer set attached to it, 0 if not.
HasVCard 1 if the e-mail message has a Vcard attached to it, O if not.

HasWeblmport

1 if the e-mail message has a Weblmport attached, 0 if not.

Return Codes

ReadMailReturn Result Codes

Value

Description

1

Success

Page 312 of 463

GoldMine ™

0 Failure

-1 Message is private

-2 Message not found, or cannot be loaded
-3 Exception

Queuing a Message for Delivery

The QueueMail function queues a message for delivery. The actual delivery is not handled through the DLL. It is
recommended to set up a specific user in GoldMine responsible for sending multiple users’ mail on a regular basis.

If the message to be queued already exists within GoldMine, pass either the Mailbox ReclD or the
Calendar/History ReclD with the history flag. When queuing a new message, do not provide values for the ReclD
name/value pairs or the flag.

GoldMine API Version: 5.50.10111

QueueMail Optional NV Pairs

Name Description

MboxReclD The mailbox ReclD. Either this NV pair or the RecID NV pair must be included.
RecID The Cal/History ReclD.

History Flag identifying location of RecID provided. 1 for History, 0 or nothing for Cal.
To A list of To: addresses delimited by commas and double-quoted as needed
Cc A list of CC addresses delimited by commas and double-quoted as needed
Bcc List of Bcc addresses delimited by commas and double-quoted as needed
ReplyTo Reply-to address

OtherHeaders Special headers, if needed

Organization

Organization field

From From address

Subject Subject of the message.

BodyText Body text

TextRTF Set to non-zero if the text should be in RTF format
NumAttachments Number of attachments to send

Attachment0..AttachmentN

Indexed list of attachments. The first attachment NV pair will be AttachmentO,
then Attachment2, and so on.

Page 313 of 463

GoldMine ™

MailboxFlags See ReadMail
AccountNo Accountno of the contact to which the message is linked
OpptyRecID ReclD of an opportunity or project to which the message should be linked

LinkedContact

ReclD of the contsupp record of an additional contact, if so linked

ActivityCode Activity code

CalDate Calendar date — the date to actually send the message
CalTime Calendar time — the time to actually send the message
Reference Reference in the calendar record

Result Result code

User User name

Private 1 to mark as Private, 0 if not

RSVP 1 to request a RSVP, 0 if not

Alarm 1 set alarm, 0 if not

ReturnReceipt

Request a return receipt. The value portion of the pair should be the return
address to which to send the receipt.

SaveAsDraft Set to 1 if the message should be saved as a draft and not queued.
Set to 1 to force the message to be a MIME message even if no attachments
UseMIME . .
are available, otherwise 0.
AttachVCard Set to 1 to attach the user Vcard to the message, otherwise 0
SendNow Set to “1” to send the message immediately without queuing it. Pertains to a
GoldMine user only (no Internet recipients).
Password Specify a password to set this message to be encrypted. See also the
EncryptUSMode name/value pair.
Set to “1” and specify a password to use the US encryption mode. This will be
EncryptUSMode peciyap s

forced to “0” if the license does not allow it.

Return Name/Value Pairs

QueueMail Return NV Pairs

Name Description

RecID Calendar/History ReclD

Page 314 of 463

GoldMine ™

MboxReclD Mailbox ReclD

MailBoxFlags Mailbox flags (see above for description)

Updating a Mail Message

The UpdateMail function allows the modifying of the opportunity with which the mail is associated and indicates
whether the message has been read, its encryption state, and whether or not it is private.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

UpdateMail Required NV Pairs

Name Description

MboxReclID Mailbox ReclD. Either this NV pair or the RecID NV Pair must be included

ReclD Cal/History RecID

History Flag identifying the location of ReclID provided. 1 for History, O or nothing for Cal.

Optional Name/Value Pairs

UpdateMail Optional NV Pairs

Name Description

OpptyRecID Opportunity with which the message is associated.

Private Set to 1 to mark the message as private, otherwise 0.
MarkRead Set to 1 to mark the message as having been read, 0 for unread.
Password Password to decrypt the message.

EncryptUSMode Set to 1 for 128-bit encryption, 0 for 32-bit encryption.

Saving a Mail Message into GoldMine

The SaveMail function enables you to save a mail message into GoldMine when the actual sending or retrieval of
the message took place in an outside application. The folder/subfolder specified to save the message to will be
created by GoldMine if needed. There’s no need to create it beforehand.

GoldMine API Version: 5.50.10111

The NV Pairs coincide with the QueueMail function. SaveMail also has the following additional NV pairs:

Optional Name/Value Pairs

SaveMail Optional NV Pairs

Name Description

Page 315 of 463

GoldMine ™

OutgoingMail Set to 1 if mail was sent by the user. Don’t include, or set to 0, if it was received mail

The name of the folder in which to put the mail. If nothing is given, it will be put in the

Fold
olaer Inbox or Outbox according to the OutgoingMail NV pair

The name of the subfolder in which to put the mail. Folder must also be defined. To put it

SubFolder in a sub-inbox, set Folder to “X-GM-INBOX”

Return Codes
The SaveMail function returns the following values:

SaveMail Return Codes

Value Description

Cannot initialize

-1 Cannot queue the message

-2 Can’t save the message (for incoming e-mail)

-3 Can’t complete the message to the requested folder

-4 An existing message was loaded. SaveMail works only with new messages.

Deleting a Message

The DeleteMail function deletes a message according to the settings specified for the user within GoldMine (use
trashcan or not, delete attachments or not). A message can be deleted based on either the Mailbox RecID or the
Calendar/History ReclD with a flag to tell the function if it should look in the Calendar or History table.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

DeleteMailRequired NV Pairs

Name Description

MboxReclD Mailbox ReclID for the record to be deleted, or

ReclD Calendar/History ReclD

History 1 if the ReclD in the RecID NV pair is from the History table, or 0 if from the Calendar table

Filing a Message in History
The FileMail function files a mail message in history specified by the Mailbox table RecID.

GoldMine API Version: 5.50.10111

Page 316 of 463

GoldMine ™

Required Name/Value Pairs

FileMail Required NV Pairs

Name Description

MboxReclD Mailbox ReclID for the record to be deleted

Optional Name/Value Pairs

FileMail Optional NV Pairs

Name Description

Folder Folder to file into

Subfolder Subfolder to file into

Result Result to be marked in history

ToUser Used to specify another username if filed on behalf of that user

Return Codes

FileMail Return Codes

Value Description

Success

General Failure

-1 Cannot initialize Internet-related structs
-2 Message doesn’t exist or can’t be loaded
-3 Cannot complete the message or the message is already filed

Preparing the NV Container for a New Mail Message

A number of options and templates are available to GoldMine users for sending e-mail within the GoldMine
program. For new messages being sent through the API, all of these can be accessed by utilizing the
PrepareNewMail function. This function will return a container containing the same NV pairs returned by the
ReadMail function reflecting the appropriate settings within GoldMine. You may then modify the container
accordingly and send the message with QueueMail.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

None.

Page 317 of 463

GoldMine ™

Optional Name/Value Pairs

PrepareNewMailOptional NV Pairs

Name

Description

LinkToAccount

AccountNo of the contact to link the new message to.

ReclD of the additional contact record to link to. LinkToAccount must also be

LinkToAddContact .
specified.
ManualTo Specific e-mail address to send to.
MailType Pass a 1 to indicate creation of an internal GoldMine mail message.

Return Name/Value Pairs

Same as ReadMail

Preparing the NV Container to Reply to a Mail Message

A number of options and templates are available to GoldMine users for sending e-mail within the GoldMine
program. All of these can be accessed for replying to messages sent through the API by utilizing the
PrepareReplyMail function. In addition, the body text of the message may be returned containing quoted text
from the message being replied to. This function will return a container containing the same NV pairs returned by
the ReadMail function reflecting the appropriate settings within GoldMine. You may then modify the container
accordingly and send the message with QueueMail.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

PrepareReplyMail Required NV Pairs

Name Description
FromRecID ReclID from Cal or ContHist of the message replied to
FromHist 1 if the message is in History (contHist), otherwise assumed to be in Cal
Text to quote in the reply. If this NV pair is left empty, the full message text will be
QuoteText . , .
quoted. If so, set in the user’s mail preferences.
ReplyToAll Reply to all recipients of the original message, not just the sender
ToEMail Set to 0 if replying to a non-mail activity

Optional Name/Value Pairs

PrepareReplyMailOptional NV Pairs

Page 318 of 463

GoldMine ™

Name Description

LinkToAccount AccountNo of the contact to whom to link the new message.

ReclID of the additional contact record to link to LinkToAccount must also be

LinkToAddContact o
specified.

Return Name/Value Pairs

Same as ReadMail—see .

Preparing an NV Container to Forward a Mail Message

A number of options and templates are available to GoldMine users for sending e-mail within the GoldMine
program. For forwarded messages being sent through the API, all of these can be accessed by using the
PrepareFwdMail function. In addition, PrepareFwdMail includes the original message body text and header
information to be forwarded. This function will return a container containing the same NV pairs returned by the
ReadMail function reflecting the appropriate settings within GoldMine. You may then modify the container
accordingly and send the message with QueueMail.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

PrepareFwdMail Required NV Pairs

Name Description

FromRecID ReclD from Cal or Conthist of the message replied to

FromHist 1 if the message is in History (conthist), otherwise assumed to be in Cal
Redirect Pass a 1 to create a redirected mail instead of forwarded.

ForwardToGMUser Set to 1 to forward the mail to a GoldMine user instead of another contact record.

FwdToUser If ForwardToGMUser is set, then set to the desired GoldMine username to forward the
message to.

Optional Name/Value Pairs

PrepareFwdMail Optional NV Pairs

Name Description
LinkToAccount Accountno of the contact to link the new message to.

) ReclD of the additional contact record to link to. LinkToAccount must also be
LinkToAddContact

specified.

Page 319 of 463

GoldMine ™

Return Name/Value Pairs

Same as ReadMail—see .

Adding an E-mail Center Folder

Use AddFolder to create a folder and/or subfolder in the E-mail Center. If both the folder and the subfolder do
not exist, then both will be created.

GoldMine API Version: 5.50.10111

Name/Value Pairs

AddFolder NV Pairs
Name Description
Folder Folder name to be created—Required
SubFolder Optional subfolder name
User Optional user name. Defaults to the logged-in user

Deleting an E-Mail Center Folder

Use DeleteFolder to remove folders or subfolders from the E-Mail Center. If both a folder and subfolder are
supplied, only the subfolder will be deleted. Any messages included in the specified folder are also deleted.

GoldMine API Version: 5.50.10111

Name/Value Pairs

DeleteFolder NV Pairs

Name Description
Folder Folder name—Required
Subfolder Optional subfolder name.

Obtaining a List of E-Mail Center Folders

The FolderList function returns a sorted list of folders from the E-Mail Center. Folders are returned with a prefix
of “0” if the folder is a top-level folder, or a prefix of “1” if it is a subfolder. System folders are not returned, only
user folders.

GoldMine API Version: 5.50.10111

Return Name/Value Pairs

FolderList Return NV Pairs

Page 320 of 463

GoldMine ™

Name Description
FolderCount Number of folders in the list
Folderl..FolderN List of folders

Example List of Folders
FolderCount = 6

Folderl = OFiled

Folder2 = 1January 2000

Folder3 = 2February 2000

Folder4 = 0Sent

Folder5 = 1January 2000

Folder6 = 2February 2000
FromList

The FromList function returns a list of unique From addresses to use in outgoing e-mail.

GoldMine API Version: 5.50.10111

Return Name/Value Pairs

FromList Return NV Pairs

Name Description

FromCount Number of From addresses returned

FromO..FromN List of addresses, indexed from 0 to FromCount-1

History Flag identifying the location of RecID provided. 1 for History, 0 or nothing for Cal

Accessing E-mail Templates

The TemplatelList function returns a list of e-mail templates for a specified user.

GoldMine API Version: 5.50.10111

Optional Name/Value Pairs

TemplatelList Optional NV Pairs

Name Description
User Username for whom to get the list of templates. Default is the currently logged-in user
IncludePublic Set to “1” to include public templates

Return Name/Value Pairs

TemplatelList Return NV Pairs

Page 321 of 463

GoldMine ™

Name Description

TemplateCount Number of templates in the list.

Namel..NameN Names of the templates, indexed from 0 to TemplateCount-1.
RecID1..RecIDN ReclDs of the templates, indexed from 0 to TemplateCount-1.

Retrieving E-mail Account Information

The GetAccountsList function returns a set of name/value pairs describing all e-mail accounts defined for the
currently logged-in user. Because a user may have multiple e-mail accounts defined, the name/value pairs are
indexed to identify the account that corresponds to the setting. The index number is appended to the beginning of
each name. The indexes begin with zero (0).

GoldMine API Version: 5.50.10111

Return Name/Value Pairs

GetAccountsList Return NV Pairs

Name Description
AccountsCount Number of accounts
DefaultAccountID Default account number

Indexed Name/Value Pairs:

AccountID ID needed by the other e-mail account-related functions (for example, OnlineList)

DisplayName Name of the e-mail account displayed in the E-mail Center. If available, the account
name is used, and if the user requests that mailto:user@server
will always be shown, then they’re appended to the account name.

User User to whom the profile is assigned (same as the logged-in user)
AccountName User-defined descriptive name given to the e-mail account
POP3Server Address of the POP3 server

Username Username for the POP3 server

Password Password for the POP3 account

User who owns the account. This is used so one user can retrieve e-mail for another
OwnUser user. The result is that e-mail messages retrieved by JOHN but with OwnUser set to
MARY, will appear in MARY’s e-mail center, not in JOHN’s.

Page 322 of 463

mailto:user@server
mailto:user@server

GoldMine ™

POPAuthMode POP server’s authentication mode. Possible values:
0 — PASS
1-APOP
2 —RPA
3-NTLM
DeleteMail Set to “1” to auto-delete mail from this account, otherwise “0”

AutoRetrieve

Set to “1” to auto-retrieve messages from this account, otherwise “0”

UseSigFile Set to “1” to use a signature file with this account, otherwise, “0”
SigFile Path and filename to the signature file if UseSigFile is set
POPPort POP3 Server’s port number
TOPSupport Set to 1 if the account supports the TOP command
ShowInIMC Set to “1” to show this account in the Internet Mail Center
SMTPServer SMTP Server address
ReturnAddress Return e-mail address for this account
SMTPPort Port number for the SMTP server
SMTPUser Username for the SMTP server, if the server requires authentication.
SMTPPass Password for the SMTP server, if the server requires authentication
SMTPAUTH Set to “1” if the SMTP server requires authentication

Possible Values:
SMTPAUTHMode 0 None

1-Llogin

2 -NTLM

Retrieving a List of Messages Waiting Online

The OnlineList function returns a list of all messages waiting online for the requested account. Each message’s
corresponding NV pairs are indexed from 1 to N according to the number of available messages. The index

numbers are appended to the end of the NV pair name.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

Onlinelist Required NV Pairs

Name

Description

AccountID

AccountlD to retrieve. Get this value from GetAccountsList.

Page 323 of 463

GoldMine ™

Return Name/Value Pairs

OnlinelList Returned NV Pairs

Name Description

Error Will include an error message if an error occurred and there is a message to
present (like server error messages).

NumMessages The number of messages available online.

Indexed Name/Value Pairs:

Message_Subject

Subject of the message.

Message_DispDate

Date as displayed in the GoldMine E-mail Center.

Message_Date

Date in the message.

Message_Time

Time the message was sent.

Message_Address

Address that sent the message.

Message_Size

Size in bytes.

Message_DispSize

Size as displayed in GM.

Message_Type

Possible Values:

0 - Plain

1 — Plain MIME (no attachments)
2 — Complex MIME

3 —GM Sync set

Message_AccNo

Accountno to which this message is linked.

Message_UID

Server UID of this message.

Message_Num

Message number on the server—use for retrieval/delete.

Message_Mailer

Mailer that generated the message.

Message_ReplyTo

Reply-to address for this message.

Message_To

Address to which the message is sent.

Message_CC

CC (copy) addresses for the message.

Message_Bcc

Bcc (blind copy) addresses for the message.

Message_GMUsersTo

Comma-delimited list of GoldMine users to whom the message is being sent.

Message_GMUsersCc

List of GoldMine users to whom the message is being copied.

Message_Org

E-mail organization field.

Page 324 of 463

GoldMine ™

Message_OtherHeaders

Other headers associated with this message.

Message_Read

1 if the message has already been read, otherwise 0.

Message_Headers

Formatted headers as they appear in the preview window.

Message_Body

Message body (according to the number of lines previewed in the E-mail Center).

Return Values

Onlinelist Return Values

Value Description

1 Success

0 General Failure

-1 Invalid Account ID

-2 Protocol Error—see the description in error

-3 Comm error—see the description in error

-4 Timeout or other error—see the description in error
-5 Unknown error

Retrieving Messages

The RetrieveMessages function retrieves specified messages that are online. The returned name/value pairs will
have a message number appended to the end of the name.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

RetrieveMessage Required NV Pairs

Name Description

AccountID Account ID to use.

AllMessages Set to “1” for all messages to be retrieved.

Messagelist Tab (\t) delimited list of message numbers (taken from OnlinelList) to retrieve.

Return Name/Value Pairs

RetrieveMessage Return NV Pairs

Name

Description

Page 325 of 463

GoldMine ™

Message_CalRec Cal ReclD of the message, ***** if an error occurred

Message_MboxRec Mailbox ReclD of the message, ***** if an error occurred.

Return Values

RetrieveMessages Return Values

Value Description

1 Success

0 General Failure

-1 Invalid Account ID

-2 Protocol Error—see the error description in error

-3 Comm error—see the error description in error

-4 Timeout or other error—see the error description in error
-5 Unknown error

Deleting Online E-mail Messages

The DeleteMessages function allows deletions of messages waiting online.

GoldMine API Version: 5.50.10111

Required Name/Value Pairs

DeleteMessages Required NV Pairs

Name Description

AccountID Account ID to use.

AllMessages Set to “1” for all messages to be deleted.

Messagelist Tab (\t) delimited list of message numbers (taken from OnlineList) to delete.

Return Name/Value Pairs

The returned name/value pair will have each message number appended to the end of the name.
GoldMine API Version: 5.50.10111

DeleteMessages Return NV Pairs

Name Description

Message_Deleted “1” if the message was deleted successfully.

Page 326 of 463

GoldMine ™

Return Values

DeleteMessages Return Values

Value Description
1 Success
0 General Failure
-1 Invalid Account ID
-2 Protocol Error—see the error description in error
-3 Comm error—see the error description in error
-4 Timeout or other error—see the error description in error
-5 Unknown error
Saving a Manual List of Recipients

The SaveManualRcptList function will receive a list of manually provided recipients and save them to an .ini file.
The name/value pair list will be Recipient1.RecipientN with the values being the addresses you wish to add to the
list. Any missing entry will be saved as an empty address.

GoldMine API Version: 5.50.10111

Retrieving a Manual List of Recipients

The GetManualRcptList function returns a list of the saved manual recipient list. The return value will be “1” for
success and “0” for failure. The container will have a name/value pair NumberOfRecipients with the number of
recipients. Finally, it will contain Recipient0..RecipientN with the actual addresses.

GoldMine API Version: 5.50.10111

Managing Internet E-mail Preferences

GetEmailPrefs and SetEmailPrefs allow you to get and set the Internet preferences for the user. The preferences
correspond with the Internet Preferences dialog box within GoldMine. The functions work the same, except the
former receives information from GoldMine and the latter updates the data in GoldMine.

GoldMine API Version: 5.50.10111

IMPORTANT: Before calling SetEmailPrefs, the values of the e-mail preferences in the NV
pair container must be preloaded with GetEmailPrefs. Otherwise, all e-mail preferences
not included in the container for SetEmailPrefs will be deleted from GoldMine.

Page 327 of 463

GoldMine ™

Optional input (SetEmailPrefs) and Output (GetEmailPrefs) Name/Value Pairs

GetEmailPrefs and SetEmailPrefs Name/Value Pairs

Name

Description

UserName (GoldMine 6.0 or

greater ONLY)

The GoldMine user whose e-mail preferences you wish to retrieve or set

MultiActive

1 - Show all accounts in the mail center
0 — Show only the default account

PreviewLines

Number of lines to preview in the E-Mail Center prior to downloading the
message

QuoteAll

1 to quote entire message by default when replying, otherwise 0

NewQuoteStyle

1 to specify a custom quote string identifier, otherwise 0

QuoteString

Quote string identifier to be used if NewQuoteStyle is set. Ex: >>

Organization

User-specified signature .txt file

UseOrg 1 to include the signature specified in Organization
SaveHistDefault 1 — Save filed mail in history by default
0—Do not
AttachDir Folder in which to save attachments.
. 1 - When auto retrieving, retrieve only mail from other GoldMine clients.
OnlyGMMail . . & . y
0 — Auto retrieve mail from all clients
SkipLarge If automatic retrieval is set, set to 1 to skip large e-mail message larger than

size specified in MaxEmailSize, otherwise 0

MaxEmailSize

Limit on size of messages to be automatically retrieved if SkipLarge is set to 1

SkipNoAddress 1 indicates to not skip addresses not on file, otherwise 0
WarnAboutRTE 1 —warn user before sending HTML mail
0—Do not
GetUnreadMail If automatic retrieval is set, set to 1 to retrieve only unread mail, otherwise 0
UseHeaderDate 1 to use the date in the mail header, otherwise 0

CompleteOnReply

1 to complete the original message being replied to, otherwise 0

UUEncodeScan

1 to scan mail for UUEncoded Data, otherwise O

VcardAction

100 if incoming Vcards are not to be saved

Page 328 of 463

GoldMine ™

Use8BitEncoding

1 to use 8 bit encoding, otherwise 0

AutoSpell 1 to automatically spell check messages before sending, otherwise 0
ForceWrapAt When forcing line wrap, wrap at this specified column number
WrapReplyAt Wrap quoted lines in reply at this specified column number

LoadPublicTemplates

1 to show public e-mail templates, otherwise 0

ReadOnGet

1 to Open ‘Read E-mail’ dialog on retrieval, otherwise 0

LinkOnGet

1 - Prompt user if incoming e-mail address is not on file
0—Do not

SkipOnDispose

1 - Go to next message in reader after disposing of (deleting/filing) the current
one
0 — Close the reader

ShowHeaders Settings for the mail center preview window headers display:
0 —no headers
1 - summary of headers only
2 —full headers display
UseTrashCan 1 to use trash can for deleted mail, otherwise 0.
EmptyTrashOnExit 1 to empty trash when closing E-Mail Center, otherwise 0.
ConfirmEmptyTrash 1 to confirm before deleting from trash can, otherwise 0.

ShowFullAccountName

1 to show both the e-mail address and the account name (if available) for
online accounts, otherwise 0.

DiscardWeblmportMessages

1 to discard Web import message after the data has been imported, otherwise
0.

AutoWeblmport

1 to import data when retrieving E-Mail Center mail, otherwise 0 (setting this
to 0 does NOT assume BackgroundWeblmp).

BackgroundWeblmp

1 to import data on background e-mail retrieval, otherwise 0 (setting this to 0
does NOT assume AutoWeblmport).

SyncContact

Sticky setting from the E-mail Center to move the current contact record to
the one the selected message belongs to. Set to 1 to activate, 0 otherwise.

KeepOldTransfers

1 to keep the transfer set attachments after retrieving them, otherwise 0.

AllowDeleteAll

1 to enable ‘Delete All Server Mail’, otherwise 0.

SendVCard

1 to use user-supplied V-card, otherwise 0.

Page 329 of 463

GoldMine ™

DefaultLinkAddr

When linking an incoming e-mail in GoldMine, if the

e-mail does not exist within GoldMine, a dialog box appears to the user. There
is a checkbox indicating whether to keep the setting of how the unlinked
message is handled. To keep the setting, set this NV pair to 1, otherwise 0.

SyncAttachmentDefault

1 to mark attachments for syncing by default, otherwise O.

ShowOutlookInIMC

1 to show the Outlook folder in the E-Mail Center, otherwise 0.

LinkAttachToCont

1 to save attachments as linked documents, otherwise 0.

MarkIncomingAsPrivate

1 to mark incoming messages as private, otherwise 0.

DelAttachWithMsg

1 to delete attachments when deleting the mail, otherwise 0.

KeepUserVCard

Every time GoldMine is restarted and a message is sent, GoldMine creates a
VCard for the sending user so that a correct VCard for the user can be sent
with the mail if so requested. The VCard is created from information GoldMine
has for the logged-in user. Sometimes a user may want to manually edit the
VCard to add or change information not available to GoldMine. In this case,
the user can ask GoldMine to not recreate the VCard from scratch and
GoldMine will use the existing VCard that the user modified. Set to 1 to have
GoldMine not create a new VCard, otherwise 0.

BccToSelf

1 to always send a Bcc to the user, otherwise 0.

UseShortDate

1 to use the short date format, 0 to use the long format.

GMAttachAsLinks

1 to send attachments as links to GoldMine users, otherwise 0.

POPIdleDisconnect

Number of minutes to wait without activity only in the E-mail Center before
automatically disconnecting. The default is 10 minutes.

SkipOverWriteUl

1 to suppress file overwrite prompt, otherwise 0.

RetrieveOverwrite

Default action to be taken when an e-mail attachment file already exists.
Possible values:

4 — auto name assignment

5 —do not save the file

6 — overwrite existing file

7 — new file name

DefaultOUTFolder

Folder name under which to put sent mail (replace the default sent folder).

DefaultINFolder

Folder name under which to put filed mail instead of the default Filed folder.

MonthlyFolderNames

List of folder names to replace the standard month names used in GoldMine
by default. Each month must be * separated and the last entry must be ???*

Page 330 of 463

GoldMine ™

NewFilingMode

(GoldMine 6.0 and greater

1 to indicate to use two-level filing mode

ONLY)
ActiveAutoGetMail 1 to activate automatic mail retrieval, otherwise 0.

Frequency in minutes to check for mail automatically, if ActiveAutoGetMail is
GetlInterval

set.
SendQueueWhen 1 to send queued messages when ActiveAutoGetmail is set, otherwise 0.
AutoGet

GetOldToNew

1 to download old messages first, otherwise 0.

UseHTMLByDefault

1 to use HTML when creating new e-mail, otherwise 0.

ExtractEmbedded

H)'(I'l::f mbedae 1 to extract embedded HTML as attachment, otherwise 0.

TCPTimeout Number of seconds until a communication timeout.

SendQueueFor A semicolon-delimited list of GoldMine user names for which this account

should send queued e-mail.

Used to present the system as a user-defined name if the name returned by

FakeSMTPDomain
the system is not acceptable by the SMTP server.

DefaultTemplate Specify the default template name for new outgoing messages.

DefaultReplyTemplate Specify the default template name for new reply messages.

DefaultFwdTemplate Specify the default template name for new forwarded messages.

Quarantine-to Name of the quarantine directory to which the quarantine rules move files.

In addition, each e-mail account set up for the user is supplied or returned through a special multi-value item
named Profiles. The Profiles NV pair contains a set of containers; each holds information for a different e-mail
account. You can determine the number of accounts by calling the GMW_NV_GetMultiValueCount function.

To retrieve the HGMNV pointers for the child containers, call GMW-NV-GetMultiNvValue for each account to
retrieve.

If you are setting e-mail preferences, you will want to set the NV values for an e-mail account by using either:

O GMW_NV_AppendNvValue, to copy a prepared container to the Profiles NV pair
or

O GMW_NV_AppendEmptyNvValue, to create an empty child container within the Profiles NV Pair for which
you can later set the values.

See “” for more information on these functions.

Profiles child containers have the following NV Pairs.

Profiles Child Container NV Pairs

Page 331 of 463

GoldMine ™

Name

Description

POP3_Account

The user-editable descriptive name for the account

POP3_Server

The server name or address

POP3_User

The server user name

POP3_Pass

The password for the account

Return_Address

The return address

SMTP_Server

The SMTP server name or address

SigFile

The path to the signature file to use

OwnUser

The user to which this account belongs. This is used so one user can retrieve e-mail for
another user. The result is that e-mails retrieved by JOHN but with OwnUser set to
MARY will appear in MARY’s e-mail center, not in JOHN’s.

DelServerMail

Set to 1 to delete the messages from the server upon retrieval, otherwise 0

AutoGetMail Set to 1 to automatically retrieve mail for this account.
UseSigFile Set to 1 to use the specified signature file

ShowInIMC Set to 1 to show this account in the E-mail Center.
UseTOPCmd Set to 1 if this server supports the TOP command, otherwise 0
POP3_Port The POP3 server’s port number

SMTP_Port The SMTP server’s port number

POP3_AuthMode

The POP server’s authentication mode. Possible values:

0 — PASS

1-APOP

2 —RPA
SMTP_AuthMode Possible values:

0—None

1-Login

2—NTLM
SMTP_User The username for the SMTP server, if the server requires authentication
SMTP_Pass The password for the SMTP server, if the server requires authentication

Validating a Web User Name and Password

ContactlLogin validates a WebUserName/WebPassword assigned to a contact.

GoldMine API Version: 5.50.10111

Page 332 of 463

GoldMine ™

Required Name/Value Pairs

ContactlLogin Required NV Pairs

Name Description
UserName Contact’s Web user name.
Password Contact’s Web password.

Special Name/Value Pairs

ContactlLogin Special NV Pairs

Name Description

NewUserName Changes the existing Web username. Must be used with NewPassword, and a valid
UserName. Password must also be passed for verification.

Changes the existing Web password. Must be used with NewUserName, and a valid

NewPassword
UserName/Password must be passed for verification.

Output Name/Value Pairs

Contactlogin Output NV Pairs

Name Description

AccountNo Returns the AccountNo of the contact record

RecID Returns the ReclID for the contact record
Notes

This function is useful when writing an extranet solution for GoldMine. To enable GUI access to these features, set
ContWebAccess=1 under the [GoldMine] section of your username.ini. You can then select Edit > Record
Properties > WebAccess to set the Web user/pass (maximum of 15 characters each). GoldMine stores Web access
data in ContSupp with a RecType of W. Each user name and password must be unique. This information does not
synchronize.

Manipulating User-Defined Fields and Views

Beginning in GoldMine 6.00.21021, the ability to read and write changes to the user-defined fields and views was
added to the GoldMine API. Most of the following functions use multi-container NV pairs. This means that a single
NV pair may contain multiple containers, each with their own set of NV pairs. For example, when reading field
views, there will be an NV pair named “View”. This NV pair will contain an entire NV pair container for each field
view in GoldMine containing a set of NV pairs that describe that view. In addition, each of those containers will
store an NV pair named “Field”. This NV pair will contain an entire NV pair container for each field defined on that

view, each with its own set of NV pairs describing that field. For information on how to read and manipulate multi-

container NV pairs, please see .

Page 333 of 463

GoldMine ™

IMPORTANT: The GoldMine user logged into the APl must have master rights in order to
use these functions.

Reading All Field Views

The GetContactViews function returns all of the field views, including the custom screens, main contact record,
and the summary tab fields. As described above, this function utilizes multi-container NV pairs. Execute
GetContactViews, passing an empty NV pair container, to retrieve the following NV pairs describing the field
views.

GoldMine API Version: 6.00.21021

Output Name/Value Pairs

GetContactViews Output NV Pairs

Name Description
NumViews The number of views, including the Main and Summary views.
SelectedViewlD The view currently selected for the Field tab of the contact record.

A multi-value list containing a container for each of the actual views. See the table below

View . . .
for details of the NV containers this value stores.

VIEW Name/Value Pairs

The View NV Pair in the container returned by GetContactViews contains NV Pair containers with the following NV
Pairs describing the field views defined in GoldMine.

View NV Pair Output Container

Name Description

ID The view ID

Name The view name

TabName The tab name, if this view has one

UserAccess The user that is allowed to access this view.

CurrContactset If set to 1, then the view is visible in the current contact set, otherwise the value is 0
FieldCount The number of fields this view has.

A multi-value list containing a container for each of the actual fields on the view. See the

Field . . .
table below for details of the NV containers this value stores.

Page 334 of 463

GoldMine ™

Field Name/Value Pairs

The Field NV Pair in the View container contains NV Pair containers with the following NV Pairs describing the
fields displayed on the view defined in GoldMine.

Field NV Pair Output Container

Name

Description

VerticalCenter

Y coordinate of the colon on the view

HorizontalCenter

X coordinate of the colon on the view

LabelSize The length allowed for the label

EditWidth The width of the editable space for the field on the view

IndexNumber This is the index associated with this field and is used to decide if the field is
searchable (as in the Key fields).

FieldLen The physical length of the field in the database.

HotKey Reserved for future use.

TabOrder The tab order position for the field (the order in which the field will be selected when
pressing the tab key)

ExprField If 1, indicates an expression field, otherwise 0

PhoneFaxField

If 1, indicates if the field is a phone or fax field.

ExtendedProperties

If 1, this field has extended properties

LoglnHistory

If 1, any changes made to this field will be logged as a history record on the contact

ReadAccess

Indicates the user or group that can read the contents of the field

WriteAccess

Indicates the user or group that can modify the contents of the field

FieldName The physical field name

FieldExpr The field expression if ExprField = 1

Globallabel The global label for the field

Locallabel The local label for the field

RecNo Unique identifier for the field on the view. Needed to modify or delete the field from
the view.

LabelExpr Expression to evaluate to generate the field label

LabelColorExpr

Contains the number representing the color of the label

Page 335 of 463

GoldMine ™

FieldColorExpr Contains the number representing the color of the field.

Text value to refer to an expression label (in the list of fields for the view, for

LabelReference
example)

GetContactViews Return Values

GetContactViews Return Values

Value Description

1 Success

0 General Failure

-1 Not a master rights user

-2 Field views cannot be loaded

Deleting a Contact View

The DeleteContactView function deletes the view specified by the view ID. This function accepts one input NV
pair, ViewlD. Retrieve the ViewID with the GetContactViews function.

GoldMine API Version: 6.00.21021

DeleteContactViews Return Values

DeleteContactViews Return Values

Value Description

1 Success

0 General Failure

-1 Not a master rights user

-2 Field view cannot be found

-3 The Main and Summary view cannot be deleted
-4 Failed to delete

Creating or Modifying a Contact View

The WriteContactView function enables adding and modifying contact views. In addition, fields displayed on the
contact views are added, modified or deleted through this function. This function does not modify the data
structure, only the display properties of the fields included in the view.

Page 336 of 463

GoldMine ™

The input NV container for this function has an NV pair named Field. This is a multi-value NV pair that stores
multiple NV pair containers, each describing a field to add, update, or delete on the view. Multiple field operations
can be performed in one call to WriteContactView. For example, an existing field could be updated, new fields can
be added to the view, and fields can be deleted; each operation has its own Field child container.

GoldMine API Version: 6.00.21021

input Name/Value Pairs

WriteContactView Input NV Pairs

Name Description

ID The view ID if updating an existing view. Retrieve this from GetContactViews. Omit if
creating a new view.

Name The view name

TabName The tab name, if this view has one

UserAccess The user that is allowed to access this view.

CurrContactset If set to 1, then the view is visible in the current contact set, otherwise the value is 0

A multi-value list containing a container for each of the field operations to perform
Field (adding, deleting, modifying). See the table below for details of the NV containers to
include.

Field Name/Value Pairs

The Field NV Pair in the parent container contains NV Pair containers with the following NV Pairs describing the
fields to add, edit or delete from the view.

Field NV Pair Input Container

Name Description

Action NEW, UPDATE, or DELETE

RecNo Unique identifier for the field on the view. Omit if adding a new field to the view. If
updating or deleting, retrieve this value by calling GetContactViews.

VerticalCenter Y coordinate of the colon on the view

HorizontalCenter X coordinate of the colon on the view

LabelSize The length allowed for the label

EditWidth The width of the editable space for the field on the view

HotKey Reserved for future use.

TabOrder The tab order position for the field (the order in which the field will be selected when

pressing the tab key)

Page 337 of 463

GoldMine ™

ExprField

If 1, indicates an expression field, otherwise 0

LoglnHistory

If 1, any changes made to this field will be logged as a history record on the contact

ReadAccess

Indicates the user or group that can read the contents of the field

WriteAccess

Indicates the user or group that can modify the contents of the field.

FieldName The physical field name

FieldExpr The field expression if ExprField = 1

GloballLabel The global label for the field

LocalLabel The local label for the field

LabelExpr Expression to evaluate to generate the field label

LabelColorExpr Contains the number representing the color of the label

FieldColorExpr Contains the number representing the color of the field.

LabelReference Text value to refer to an expression label (in the list of fields for the view, for

example)

WriteContactView output NV pairs

One NV pair is returned, FieldErrors, indicating the number of field-related errors reported. The function
continues adding fields even if some fail. For each field the API could not add, an entry is added to the field’s child
container in an NV pair called Error. The possible values for this pair are:

Field Error Codes
Value Description
-1 Invalid Action
-2 Requested field not found
-3 No Record ID given for updating or deleting a field
-4 Field cannot be deleted
-5 Field cannot be written
6 For a new view, only new fields are possible (Action cannot equal MODIFY or DELETE if creating a
new view).
-7 Reserved
-8 Reserved
-9 Reserved
-10->-20 Invalid positioning

Page 338 of 463

GoldMine ™

WriteContactView Return Values

WriteContactView Return Values

Value Description

1 Success

0 General Failure

-1 Not a master rights user

-2 Field view cannot be loaded
-3 Field view could not be saved

Reading Custom Fields

The ReadCustomFields function returns information about the physical properties of custom fields defined in
GoldMine. This function contains a multi-value NV Pair, called Field, which stores multiple name/value containers,
each with specific details about each field. For information on manipulating and reading multi-value NV pairs, see .

GoldMine API Version: 6.00.21021

ReadCustomFields input NV pairs
ReadCustomeFields Input NV Pairs

Name Description

NumFields The number of fields returned.

A multi-value NV containing containers for each field returned. See the table below for details

Field
! on the NV pairs included.

Field NV Pair Container

The Field NV pair in the parent container returned by ReadCustomFields contains an NV pair container for each
custom field defined in GoldMine. The fields are described by the following NV pairs:

Field NV Pairs
Name Description
Description A text description of the field
Name The physical field name
Type The data type stored in the field. Possible values are C (char), D (date), and N (numeric)
Length The physical length of the field

Page 339 of 463

GoldMine ™

Decimals The number of decimal places, if numeric

ReadCustomfields Return Values

ReadCustomFields Return Values

Value Description

1 Success

0 General Failure

-1 Not a master rights user
-2 Cannot open ContUDef

Modifying the Structure of Custom Fields

The EditCustomField function adds, deletes, or updates a custom field.

IMPORTANT: The API will not rebuild the GoldMine database to reflect the physical
changes you may specify with this function. This must be initiated with the GoldMine
application.

GoldMine API Version: 6.00.21021

EditCustomField Input NV pairs
EditCustomField Input NV Pairs

Name Description

Action NEW, DELETE, or UPDATE

Description A meaningful description of the field

Name The field name of an existing field to update or delete. Specify a new unique field name if
creating a new field.

Type The data type of the field: C (char), D (date), or N (numeric)

NewName The new name to assign to this field if updating an existing one

Length The physical length to make the field

Decimals The number of decimals for a numeric field

EditCustomField Return Values
EditCustomField Return Values

Page 340 of 463

GoldMine ™

Value Description

1 Success

0 General Failure

-1 Not a master rights user
-2 Cannot open ContUDef
-3 Invalid action

-4 Invalid field name

-5 Name is not unique

-6 Field not found

-7 Field not allowed to be deleted
-8 Invalid field type

-9 Missing field parameters
-10 Failure deleting field

-11 Cannot write record

Reading Calendar Preferences

ReadCalendarPrefs reads a passed user's calendar preferences. If user not passed, assumed to be the session's
logged in user. User must be master rights in order to read other's prefs.

READCALENDARPREFS Input NV pairs
ReadCalendarPrefs Input NV Pairs

Name Description

UserName The GoldMine user name to read the prefs of

READCALENDARPREFS OUTPUT NV pairs
ReadCalendarPrefs Output NV Pairs

Name Description

UserName The GoldMine user name to read the prefs of
UserList The list of Users that appear on the user's calendar
PegboardUserList List of users on the user's pegboard

Page 341 of 463

GoldMine ™

ShowAction Show actions on the calendar

ShowAppt Show appointments on the calendar
ShowCall Show calls on the calendar

ShowEvent The number of decimals for a numeric field
ShowLitReq Show literature requests on the cal
ShowMsg Show msgs on the cal

ShowOccasion

Show occasions on the cal

ShowOpTask Show opportunity tasks on the cal
ShowOther Show other events on the cal
ShowProjTask Show project tasks on the cal
ShowPubEvent Show public events on the cal
ShowSales Show sales on the cal

ShowToDo Show to do's on the cal

ShowHistAction

Show history actions on the cal

ShowHistCall

Show call actions

ShowHistEvent

Show event actions

ShowHistLitReq

Show lit req actions

ShowHistMsg

Show msg actions

ShowHistOpTask

Show op task actions

ShowHistOther

Show other actions

ShowHistProjTask

Show proj task actions

ShowHistPubEvent

Show pub event actions

ShowHistSales

Show sales actions

ShowHistToDo

Show todo actions

Page 342 of 463

GoldMine ™

DefaultView

The default view of the calendar
0 - day

1-week

2 - month

3 -year

4 - planner

5 - outline

6 - pegboard

AutoForwardCalls

Automatically forward calls

AutoForwardMsgs

Automatically forward messages

AutoForwardActions

Automatically forward actions

AutoForwardAppts

Automatically forward appointments

AutoForwardSales

Automatically forward sales

AutoForwardOther Automatically forward other

SyncRecord Sync the record

ShowTotals Show totals

Showlcons Show icons

RefreshRate In seconds

PegRefreshRate Pegboard refresh rate in secs

Color The windows color value for the cal color

Timelncrement

In minutes

FontSize

Calendar font size

ShowWeekends

Show weekends

FirstDayofWeek

0 =Sunday 7 = sat

nWeekends Bit mathed for days to consider the weekend
DayBegin Military time for the day beginning. 09:00
DayEnd Day end in military time - 17:00 for 5pm

CalShowActvCode

Show activity code on cal

HistShowActvCode

Show hist activity code

PublishliCal

Publish iCal file?

Page 343 of 463

GoldMine ™

PublishlCalPath

The path to where to publish ical - must be in URI format (must start with

file:, http:, or ftp:)

PublishlCalUser

If path is ftp or http, the login user name

PublishlCalPwd

If path is ftp or http, the login user pwd

PublishlCalUsersList

The users to publish

PublishlcalAction

Publish actions

PublishlcalAppt

Publish appointments

PublishlcalCall

Publish calls

PublishlcalEvent

Publish events

PublishlcalLitReq

Publish literature requests

PublishlcalMsg

Publish msgs

PublishlcalOccasion

Publish occasions

PublishlcalOpTask

Publish opportunity tasks

PublishlcalOther

Publish other events

PublishlcalProjTask

Publish project tasks

PublishlcalPubEvent

Publish public events

PublishlcalSales

Publish sales

PublishlcalToDo

Publish to do's

PublishlcalHistAction

Publish history actions

PublishlcalHistCall

Publish call

PublishlcalHistEvent

Publish event

PublishlcalHistLitReq

Publish literature request

PublishlcalHistMsg

Publish message

PublishlcalHistOpTask

Publish op task

PublishlcalHistOther

Publish other

PublishlcalHistProjTask

Publish project task

PublishlcalHistPubEvent

publish public event

PublishlcalHistSales

Publish sales

Page 344 of 463

GoldMine ™

PublishlcalHistToDo Publish todo

Publish2ICSFilterByDate Dates to publish

Publish2ICSStartDate The start date of the range

Publish2ICSEndDate The end date of the range

PublishICSFilterActivCode The activity code to filter on

PublishICSFilterRef The reference code to filter on

PublishICSFilterByLink Filter on the link? true or false

PublishHTML Publish cal to HTML?

The path to where to publish the HTML - must be in URI format (must

PublishHTMLPath
ubis @ start with file:, http:, or ftp:)

PublishHTMLUser If path is ftp or http, the login user name

PublishHTMLPwd If path is ftp or http, the login user pwd

PublishHTMLUsersList The users to publish

PublishHTMLAction Publish actions

PublishHTMLAppt Publish appointments

PublishHTMLCall Publish calls

PublishHTMLEvent Publish events

PublishHTMLLitReq Publish literature requests

PublishHTMLMsg Publish msgs

PublishHTMLOccasion Publish occasions

PublishHTMLOpTask Publish opportunity tasks

PublishHTMLOther Publish other events

PublishHTMLProjTask Publish project tasks

PublishHTMLPubEvent Publish public events

PublishHTMLSales Publish sales

PublishHTMLToDo Publish to do's

PublishHTMLHistAction

Publish history actions

PublishHTMLHistCall

Publish call

Page 345 of 463

GoldMine ™

PublishHTMLHistEvent

Publish event

PublishHTMLHistLitReq

Publish literature request

PublishHTMLHistMsg

Publish message

PublishHTMLHistOpTask

Publish op task

PublishHTMLHistOther

Publish other

PublishHTMLHistProjTask

Publish project task

PublishHTMLHistPubEvent

Publish public event

PublishHTMLHistSales

Publish sales

PublishHTMLHistToDo

Publish todo

Publish2HTMFilterByDate

Dates to publish
0 - today

1 - yesterday

2 - tomorrow
3 - this week

4 - last week

5 - next week
6 this month

7 last month

8 next month
9 - this year

10 - next year
11 - date range

Publish2HTMStartDate

the start date of the range

Publish2ZHTMEndDate

the end date of the range

PublishHTMFilterActivCode

the activity code to filter on

PublishHTMFilterRef

the reference code to filter on

PublishHTMFilterByLink

Filter on the link? true or false

PublishFB

publish free busy time if PublishFB is TRUE

PublishFBPath

the path to where to publish free busy - must be in URI format (must start

with file:, http:, or ftp:)

PublishFBUser

if path is ftp or http, the login user name

PublishFBPwd

if path is ftp or http, the login user pwd

PublishFBAction

Publish actions

Page 346 of 463

GoldMine ™

PublishFBAppt

Publish appointments

PublishFBCall

Publish calls

PublishFBEvent

Publish events

PublishFBLitReq

Publish literature requests

PublishFBMsg

Publish msgs

PublishFBOccasion

Publish occasions

PublishFBOpTask

Publish opportunity tasks

PublishFBOther

Publish other events

PublishFBProjTask

Publish project tasks

PublishFBPubEvent

Publish public events

PublishFBSales

Publish sales

PublishFBToDo

Publish to do's

PublishFBHistAction

Publish history actions

PublishFBHistCall

Publish call

PublishFBHistEvent

Publish event

PublishFBHistLitReq

Publish literature request

PublishFBHistMsg

Publish message

PublishFBHistOpTask

Publish op task

PublishFBHistOther

Publish other

PublishFBHistProjTask

Publish project task

PublishFBHistPubEvent

Publish public event

PublishFBHistSales

Publish sales

PublishFBHistToDo

Publish todo

Page 347 of 463

GoldMine ™

PublishFBFilterByDate Dates to publish
0 - today
1 - yesterday
2 - tomorrow
3 - this week
4 - last week
5 - next week
6 this month
7 last month
8 next month
9 - this year
10 - next year
11 - date range

PublishFBStartDate The start date of the range
PublishFBEndDate The end date of the range
PublishFBFreq Frequency in minutes

READCALENDARPREFS RETURN VALUES

ReadCalendarPrefs Return Values

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

-3 Cannot open the cal table

Modifying Calendar Preferences

WriteCalendarPrefs writes a passed user's calendar preferences. The user must have master rights in order to
write another user's preferences.

WRITECALENDARPREFS Input NV pairs
WriteCalendarPrefs Input NV Pairs

Name Description

UserName The GoldMine user name to read the prefs of

Page 348 of 463

GoldMine ™

WRITECALENDARPREFS OUTPUT NV pairs
WriteCalendarPrefs Output NV Pairs

Name Description

UserName The GoldMine user name to read the prefs of
UserList The list of Users that appear on the user's calendar
PegboardUserList List of users on the user's pegboard

ShowAction Show actions on the calendar

ShowAppt Show appointments on the calendar

ShowCall Show calls on the calendar

ShowEvent The number of decimals for a numeric field
ShowlLitReq Show literature requests on the cal

ShowMsg Show msgs on the cal

ShowOccasion

Show occasions on the cal

ShowOpTask Show opportunity tasks on the cal
ShowOther Show other events on the cal
ShowProjTask Show project tasks on the cal
ShowPubEvent Show public events on the cal
ShowSales Show sales on the cal

ShowToDo Show to do's on the cal

ShowHistAction

Show history actions on the cal

ShowHistCall

Show call actions

ShowHistEvent

Show event actions

ShowHistLitReq

Show lit req actions

ShowHistMsg

Show msg actions

ShowHistOpTask

Show op task actions

ShowHistOther

Show other actions

ShowHistProjTask

Show proj task actions

ShowHistPubEvent

Show pub event actions

Page 349 of 463

GoldMine ™

ShowHistSales

Show sales actions

ShowHistToDo

Show todo actions

DefaultView

The default view of the calendar

AutoForwardCalls

Automatically forward calls

AutoForwardMsgs

Automatically forward messages

AutoForwardActions

Automatically forward actions

AutoForwardAppts

Automatically forward appointments

AutoForwardSales

Automatically forward sales

AutoForwardOther Automatically forward other

SyncRecord Sync the record

ShowTotals Show totals

Showlcons Show icons

RefreshRate In seconds

PegRefreshRate Pegboard refresh rate in secs

Color The windows color value for the cal color

Timelncrement

In minutes

FontSize

Calendar font size

ShowWeekends

Show weekends

FirstDayofWeek

0 =Sunday 7 = sat

nWeekends Bit mathed for days to consider the weekend
DayBegin Military time for the day beginning. 09:00
DayEnd Day end in military time - 17:00 for 5pm

CalShowActvCode

Show activity code on cal

HistShowActvCode

Show hist activity code

PublishlCal

Publish iCal file?

PublishlCalPath

The path to where to publish ical - must be in URI format (must start with
file:, http:, or ftp:)

PublishlCalUser

If path is ftp or http, the login user name

Page 350 of 463

GoldMine ™

PublishlCalPwd

If path is ftp or http, the login user pwd

PublishlCalUsersList

The users to publish

PublishlcalAction

Publish actions

PublishlcalAppt

Publish appointments

PublishlcalCall

Publish calls

PublishlcalEvent

Publish events

PublishlcalLitReq

Publish literature requests

PublishicalMsg

Publish msgs

PublishlcalOccasion

Publish occasions

PublishlcalOpTask

Publish opportunity tasks

PublishlcalOther

Publish other events

PublishlcalProjTask

Publish project tasks

PublishlcalPubEvent

Publish public events

PublishlcalSales

Publish sales

PublishlcalToDo

Publish to do's

PublishlcalHistAction

Publish history actions

PublishlcalHistCall

Publish call

PublishlcalHistEvent

Publish event

PublishicalHistLitReq

Publish literature request

PublishlcalHistMsg

Publish message

PublishlcalHistOpTask

Publish op task

PublishlcalHistOther

Publish other

PublishlcalHistProjTask

Publish project task

PublishlcalHistPubEvent

Publish public event

PublishlcalHistSales

Publish sales

PublishlcalHistToDo

Publish todo

Publish2ICSFilterByDate

Dates to publish

Publish2ICSStartDate

The start date of the range

Page 351 of 463

GoldMine ™

Publish2ICSEndDate

The end date of the range

PublishICSFilterActivCode

The activity code to filter on

PublishICSFilterRef

The reference code to filter on

PublishICSFilterByLink

Filter on the link? true or false

PublishHTML

Publish cal to HTML?

PublishHTMLPath

The path to where to publish the HTML - must be in URI format (must

start with file:, http:, or ftp:)

PublishHTMLUser

If path is ftp or http, the login user name

PublishHTMLPwd

If path is ftp or http, the login user pwd

PublishHTMLUsersList

The users to publish

PublishHTMLAction

Publish actions

PublishHTMLAppt

Publish appointments

PublishHTMLCall

Publish calls

PublishHTMLEvent

Publish events

PublishHTMLLitReq

Publish literature requests

PublishHTMLMsg

Publish msgs

PublishHTMLOccasion

Publish occasions

PublishHTMLOpTask

Publish opportunity tasks

PublishHTMLOther

Publish other events

PublishHTMLProjTask

Publish project tasks

PublishHTMLPubEvent

Publish public events

PublishHTMLSales

Publish sales

PublishHTMLToDo

Publish to do's

PublishHTMLHistAction

Publish history actions

PublishHTMLHistCall

Publish call

PublishHTMLHistEvent

Publish event

PublishHTMLHistLitReq

Publish literature request

PublishHTMLHistMsg

Publish message

Page 352 of 463

GoldMine ™

PublishHTMLHistOpTask

Publish op task

PublishHTMLHistOther

Publish other

PublishHTMLHistProjTask

Publish project task

PublishHTMLHistPubEvent

Publish public event

PublishHTMLHistSales

Publish sales

PublishHTMLHistToDo

Publish todo

Dates to publish
0 - today

1 - yesterday

2 - tomorrow
3 - this week

4 - last week

5 - next week
6 this month

7 last month

8 next month
9 - this year

10 - next year
11 - date range

Publish2HTMFilterByDate

Publish2HTMStartDate The start date of the range

Publish2ZHTMEndDate The end date of the range

PublishHTMFilterActivCode The activity code to filter on

PublishHTMFilterRef The reference code to filter on

PublishHTMFilterByLink Filter on the link? true or false

PublishFB Publish free busy time if PublishFB is TRUE

PublishFBPath The path to where to publish free busy - must be in URI format (must

start with file:, http:, or ftp:)

PublishFBUser If path is ftp or http, the login user name

PublishFBPwd If path is ftp or http, the login user pwd

PublishFBAction Publish actions

PublishFBAppt Publish appointments

PublishFBCall Publish calls

PublishFBEvent Publish events

Page 353 of 463

GoldMine ™

PublishFBLitReq

Publish literature requests

PublishFBMsg

Publish msgs

PublishFBOccasion

Publish occasions

PublishFBOpTask

Publish opportunity tasks

PublishFBOther

Publish other events

PublishFBProjTask

Publish project tasks

PublishFBPubEvent

Publish public events

PublishFBSales

Publish sales

PublishFBToDo

Publish to do's

PublishFBHistAction

Publish history actions

PublishFBHistCall

Publish call

PublishFBHistEvent

Publish event

PublishFBHistLitReq

Publish literature request

PublishFBHistMsg

Publish message

PublishFBHistOpTask

Publish op task

PublishFBHistOther

Publish other

PublishFBHistProjTask

Publish project task

PublishFBHistPubEvent

Publish public event

PublishFBHistSales

Publish sales

PublishFBHistToDo

Publish todo

PublishFBFilterByDate

Dates to publish
0 - today

1 - yesterday

2 - tomorrow
3 - this week

4 - last week

5 - next week
6 this month

7 last month

8 next month
9 - this year

10 - next year
11 - date range

Page 354 of 463

GoldMine ™

PublishFBStartDate The start date of the range
PublishFBEndDate The end date of the range
PublishFBFreq Frequency in minutes

WRITECALENDARPREFS RETURN VALUES

WriteCalendarPrefs Return Values

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

-3 Cannot open the cal table

Reading Personal Preferences

The ReadPersonalPrefs function gets the personal preferences for the passed or current user.

READPERSONALPREFS Input NV pairs
ReadPersonalPrefs Input NV Pairs

Name Description

UserName User name passed

READPERSONALPREFS OUTPUT NV pairs
ReadPersonalPrefs Output NV Pairs

Name Description

UserName User name passed

Title The user’s title

Dept The user’s department
Phone The user’s phone number
Fax The user’s fax

Page 355 of 463

GoldMine ™

READPERSONALPREFS RETURN CODES

ReadPersonalPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Updating Personal Preferences

The WritePersonalPrefs function updates the personal preferences for the passed or current user.

WRITEPERSONALPREFS Input NV pairs
WritePersonalPrefs Input NV Pairs

Name Description

UserName User name passed

WRITEPERSONALPREFS OUTPUT NV pairs
WritePersonalPrefs Output NV Pairs

Name Description

UserName User name passed

Title the user’s title

Dept The user’s department
Phone The user’s phone number
Fax The user’s fax

WRITEPERSONALPREFS RETURN CODES

WritePersonalPrefs Return Codes

Value Description
1 Success
0 No container passed

Page 356 of 463

GoldMine ™

-1 Not a master rights user or invalid user name

-2 User ini file doesn't exist

Reading Record Preferences

The ReadRecordPrefs function gets the record preferences for the passed or current user.

READRECORDPREFS Input NV pairs
ReadRecordPrefs Input NV Pairs

Name Description

UserName User name passed

READRECORDPREFS OUTPUT NV pairs
ReadRecordPrefs Output NV Pairs

Name

Description

UserName

User name passed

UseContactForTitle

Use contact instead of company in title — 1 = cont, 0 company

SelectFieldContents

When a field gets focus select its contents

AutoOpenOrgTree

Open org tree when record object is maximized

ShowDatesInWords

Show user-defined dates in words

DateFormat

0=MMM d, yy
1=MMMM dd, yyyy
2 =d MMM yy
3=d. MMM yy

4 =dd MMMM yy

RightAlignNumbers

Show numerics right-aligned

ShowSortByFieldInStatus

Show sort-by field on status bar

ZipValidationMode

0= none, 1 primary, 2 show zip dialog

Show9DigitZip

Show 5 or 9 digits in zip code lookup validation window

UseDarkBgd Use a dark background color on the RO

LargeFont Use a large font — doesn’t affect 640x480 resolution
LabelColor Windows color for the labels

DataColor Windows color for the data

Page 357 of 463

GoldMine ™

READRECORDPREFS RETURN CODES
ReadRecordPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Updating Record Preferences

The WriteRecordPrefs function updates the record preferences for the passed or current user.

WRITERECORDPREFS Input NV pairs

WriteRecordPrefs Input NV Pairs

Name

Description

UserName

User name passed

UseContactForTitle

Use contact instead of company in title — 1 = cont, 0 company

SelectFieldContents

When a field gets focus select its contents

AutoOpenOrgTree

Open org tree when record object is maximized

ShowDatesInWords

Show user-defined dates in words

DateFormat

0=MMM d, yy
1=MMMM dd, yyyy
2 =d MMM yy
3=d. MMM yy

4 =dd MMMM yy

RightAlignNumbers

Show numerics right-aligned

ShowSortByFieldInStatus

Show sort-by field on status bar

ZipValidationMode

0= none, 1 primary, 2 show zip dialog

Show9DigitZip Show 5 or 9 digits in zip code lookup validation window
UseDarkBgd Use a dark background color on the RO
LargeFont Use a large font — doesn’t affect 640x480 resolution

Page 358 of 463

GoldMine ™

LabelColor Windows color for the labels

DataColor Windows color for the data

WRITERECORDPREFS RETURN CODES
WriteRecordPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Reading Schedule Preferences

The ReadSchedulePrefs function gets the schedule preferences for the passed or current user.

READSCHEDULEPREFS Input NV pairs
ReadSchedulePrefs Input NV Pairs

Name Description

UserName User name passed

READSCHEDULEPREFS OUTPUT NV pairs

ReadSchedulePrefs Output NV Pairs

Name Description
UserName User name passed
ConflictOn Check for timing conflicts when scheduling

CarryCompletionNotesOnFollowUp

Carry over completion notes when scheduling follow ups

StartTimerOnComplete

Start timer when completing activities

ShowDetailsInActivityListingWindow

Show the details section in activity listing window

SyncContactWithActivityListingWindow

Sync the contact window with the activity listing window

WarnAboutCompleteMultiLinkActiv

Show alert when completing an activity with others associated.

WarnAboutEditMultiLinkActiv

Show alert when editing an activity with others associated

WarnAboutDeleteMultiLinkActiv

Show alert when deleting an activity with others associated

Page 359 of 463

GoldMine ™

READSCHEDULEPREFS RETURN CODES
ReadSchedulePrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Updating Schedule Preferences

The WriteSchedulePrefs function updates the record preferences for the passed or current user.

WRITESCHEDULEPREFS Input NV pairs
WriteSchedulePrefs Input NV Pairs

Name Description
UserName User name passed
ConflictOn Check for timing conflicts when scheduling

CarryCompletionNotesOnFollowUp

Carry over completion notes when scheduling follow ups

StartTimerOnComplete

Start timer when completing activities

ShowDetailsInActivityListingWindow

How the details section in activity listing window

SyncContactWithActivityListingWindow

Sync the contact window with the activity listing window

WarnAboutCompleteMultiLinkActiv

Show alert when completing an activity with others associated.

WarnAboutEditMultiLinkActiv

Show alert when editing an activity with others associated

WarnAboutDeleteMultiLinkActiv

Show alert when deleting an activity with others associated

WRITESCHEDULEPREFS RETURN CODES
WriteSchedulePrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name

Page 360 of 463

GoldMine ™

-2 User ini file doesn't exist

Reading Alarm Preferences

The ReadAlarmPrefs function gets the alarm preferences for the passed or current user.

READALARMPREFS Input NV pairs
ReadAlarmPrefs Input NV Pairs

Name Description

UserName User name passed

READALARMPREFS OUTPUT NV pairs
ReadAlarmPrefs Output NV Pairs

Name Description

UserName User name passed

AlarmType 0 =none, 1 - pop up, 2 —taskbar notifications
AlarmsLead Time before an event that an alarm fires
AlarmFreq Scan for alarm every xx seconds

TaskBarReminder

Reminder shown for x minutes

IgnoreSnooze Amount of to snooze an ignored alarm
PageAlarm Page user with alarm when not acknowleged within xx minutes.
GMAlarmSound Path to the alarm sound

READALARMPREFS RETURN CODES

ReadAlarmPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Page 361 of 463

GoldMine ™

Updating Alarm Preferences

The WriteAlarmPrefs function updates the alarm preferences for the passed or current user.

WRITEALARMPREFS Input NV pairs
ReadAlarmPrefs Input NV Pairs

Name Description

UserName User name passed

AlarmType 0 =none, 1 - pop up, 2 —taskbar notifications
AlarmsLead Time before an event that an alarm fires
AlarmFreq Scan for alarm every xx seconds

TaskBarReminder

Reminder shown for x minutes

IgnoreSnooze Amount of to snooze an ignored alarm
PageAlarm Page user with alarm when not acknowleged within xx minutes.
GMAlarmSound Path to the alarm sound

WRITEALARMPREFS RETURN CODES

WriteAlarmPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Reading Lookup Preferences

The ReadLookupPrefs function gets the lookup preferences for the passed or current user.

READLOOKUPPREFS Input NV pairs
ReadLookupPrefs Input NV Pairs

Name Description

UserName User name passed

Page 362 of 463

GoldMine ™

READLOOKUPPREFS OUTPUT NV pairs
ReadLookupPrefs Output NV Pairs

Name Description

UserName User name passed

SyncContact Sync the contact window with the search center window
InShrunkenMode Appear in shrunken mode when finding by

SyncDelay Lookup alignment delay when typing in tenths of a second
DefField Default lookup field 0 — contact, 1 = company

SelectAction

When a rec is selected in search cente

0 = move the search center window to the back
1 = close the search center window

2 = minimize the search center windowr

READLOOKUPPREFS RETURN CODES
ReadLookupPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Updating Alarm Preferences

The WriteLookupPrefs function updates the lookup preferences for the passed or current user.

WRITELOOKUPPREFS Input NV pairs
WriteLookupPrefs Input NV Pairs

Name Description

UserName User name passed

SyncContact Sync the contact window with the search center window
InShrunkenMode Appear in shrunken mode when finding by

SyncDelay Lookup alignment delay when typing in tenths of a second

Page 363 of 463

GoldMine ™

DefField Default lookup field 0 — contact, 1 = company

When a rec is selected in search cente

0 = move the search center window to the back
1 = close the search center window

2 = minimize the search center windowr

SelectAction

WRITELOOKUPPREFS Return Codes
WriteLookupPrefs Return Codes

Value Description

1 Success

0 no container passed

-1 Not a master rights user or invalid user name
-2 user ini file doesn't exist

Reading Pager Preferences

The ReadPagerPrefs function gets the pager preferences for the passed or current user.

READPAGERPREFS Input NV pairs
ReadPagerPrefs Input NV Pairs

Name Description

UserName User name passed

READPAGERPREFS OUTPUT NV pairs
ReadPagerPrefs Output NV Pairs

Name Description

UserName User name passed

GoldPagelnstalled Is the goldpage application installed?
Terminal Terminal pager number

PIN The pin for the pager

MaxChars The number of max chars for a pager
PagerEmail Email page address

Page 364 of 463

GoldMine ™

READPAGERPREFS Return Codes
ReadPagerPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
2 User ini file doesn't exist

Updating Pager Preferences

The WritePagerPrefs function updates the pager preferences for the passed or current user.

WRITEPAGERPREFS Input NV pairs
WritePagerPrefs Output NV Pairs

Name Description

UserName User name passed

GoldPagelnstalled Is the goldpage application installed?
Terminal Terminal pager number

PIN The pin for the pager

MaxChars The number of max chars for a pager
PagerEmail Email page address

WRITEPAGERPREFS Return Codes
WritePagerPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Page 365 of 463

GoldMine ™

Reading Miscellaneous Preferences

The ReadMiscPrefs function gets the miscellaneous preferences for the passed or current user.

READMISCPREFS Input NV pairs
ReadMiscPrefs Input NV Pairs

Name Description

UserName User name passed

READMISCPREFS OUTPUT NV pairs
ReadMiscPrefs Output NV Pairs

Name Description

ShowWhatsNew Show whats new in the info center when logging in

Timeln24Hr Show time in 24/military style

DatelnLocalFormat Show dates in local format

ShowPageStatus Show status while paging

OldMenu Use the old GM4 style menu

EPOCH The EPOCH year

MSMailUser The MS outlook username if not the same as the GM user name

READMISCPREFS Return Codes
ReadPagerPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Updating Miscellaneous Preferences

The WriteMiscPrefs function updates the miscellaneous preferences for the passed or current user.

Page 366 of 463

GoldMine ™

WRITEMISCPREFS Input NV pairs
WriteMiscPrefs Input NV Pairs

Name Description
ShowWhatsNew Show whats new in the info center when logging in
Timeln24Hr Show time in 24/military style

DatelnLocalFormat

Show dates in local format

ShowPageStatus Show status while paging

OldMenu Use the old GM4 style menu

EPOCH The EPOCH year

MSMailUser The MS outlook username if not the same as the GM user name

WRITEMISCPREFS Return Codes

WriteMiscPrefs Return Codes

Value Description

1 Success

0 No container passed

-1 Not a master rights user or invalid user name
-2 User ini file doesn't exist

Reading the Database Engine Type (7.0 or higher)

The GetDbEngineType function gets the database engine type based on a passed table name.

GETDBENGINETYPE Input NV pairs

GetDbEngineType Input NV Pairs

Name Description

Table The table name you are trying to open - if not passed, assumed to be CONTACT1

GETDBENGINETYPE Return Codes

GetDbEngineType Return Codes

Value Description

Page 367 of 463

GoldMine ™

0 No container passed
-1 Table name not passed
-2 Table name invalid

-3 Could not open table

1 Table is MSSQL

2 Table is Firebird

3 or higher Unknown DB type

Reading a List of GoldMine User Groups

The GetGMUserGroups function returns a list of GoldMine user groups and their users.

GETGMUSERGROUPS OUTput NV pairs
GetGMUserGroups Output NV Pairs

Name Description

GROUP NV container for EACH group containing:
GroupNumber — the group’s internal number
Name — the name of the group
UserCount —the number of users in the group
UserList — a list of the users in the group delimited by ;

GETGMUSERGROUPS Return Codes
GetGMUserGroups Return Codes

Value Description

1 Success

0 No container passed

-1 Could not open data tables

Creating or Updating GoldMine User Groups

The WriteGMUserGroup function creates or updates a GoldMine user group.

WRITEGMUSERGROUP Input NV pairs
WriteGMUserGroup Input NV Pairs

Name Description

Page 368 of 463

GoldMine ™

Name The name of the group to update or create

ReclD The record number of the group if updating

WRITEGMUSERGROUP Return Codes
WriteGMUserGroup Return Codes

Value Description

0 No container passed
-1 No group name

-2 Could not write data
-3 Not a master user

-4 Could not lock record
1 Success

Adding a GoldMine User to a Group

The AddGMGroupUser function adds a GoldMine user to a group.

ADDGMGROUPUSER Input NV pairs
AddGMGroupUser Input NV Pairs

Name Description
UserName The name of the user to add to the group
GroupName The group name or the group number to add the user to

ADDGMGROUPUSER Return Codes
AddGMGroupUser Return Codes

Value Description

0 No container passed

-1 No name or group passed

-2 Could not open users table
-3 Could not lock user record
-4 Could not find user record

Page 369 of 463

GoldMine ™

-5 Invalid group passed
-6 Not a master user
1 Success or user already group member

Removing a GoldMine User from a Group

The RemoveGMGroupUser function removes a GoldMine user from a group.

REMOVEGMGROUPUSER Input NV pairs
RemoveGMGroupUser Input NV Pairs

Name Description
UserName The name of the user to remove from the group
GroupName The group name or the group number to remove the user from

REMOVEGMGROUPUSER Return Codes

RemoveGMGroupUser Return Codes

Value Description

0 No container passed

-1 No name or group passed

-2 Could not open users table

-3 Could not lock user record

-4 Could not find user record

-5 Invalid group passed

-6 Not a master user

1 Success or user already group member

Creating or Updating an Opportunity or Project

The WriteOpProj function updates an opportunity or project.

WRITEOPPROJ Input NV pairs

In addition to the following, the user can pass the custom user defined fields (GM 6.6 or higher) that they have

created.

Page 370 of 463

GoldMine ™

WriteOpProj Input NV Pairs

Name Description

RecID If the item is an update — the recid of the item to update
OpID The opportunity rec id to attach to
RecType OorP

AccountNo The contact to attach to’s account no
User The gm user to assign the item to
Flags Flags for the item

Company The company this item involves
Contact The contact the item involves

Name Name of the item

Status The status of the item

Cycle The cycle of the item

Stage The item’s stage

Source The item’s source

F1 The F1 value

F2 or CompRecID

The rec id of the company from Company field

F3 or Units The number of units this item involves
StartDate The start date

ClosedDate The date closed

CloseBy The date to close by

ForProb The probability of the item success
ForAmt The projected value of the item
CloseAmt The actual value of the item

Notes [tem notes

WRITEOPPROJ Return Codes
WriteOpProj Return Codes

Page 371 of 463

GoldMine ™

Value Description
1 Success
0 No container passed

Page 372 of 463

GoldMine™

Working with GoldMine Plug-ins

Overview

This chapter contains information geared toward individuals with at least an intermediate knowledge of
programming.

GoldMine 7.0 supports integrations based on ActiveX controls or HTML. To use either of these integration
methods, you must first create an ActiveX control or an HTML file or web site to integrate with.

Using ActiveX Plug-in Support

The ActiveX structure allows the most control and can be made with almost any language, including C++, Delphi,
VB and the .NET languages. When used in conjunction with the other GoldMine APIs, Active X is extremely
powerful.

Within the ActiveX support, there are 5 methods that can be implemented in your control to allow for stronger
interaction with GoldMine. These functions are not necessary to implement:

public void GMonstart(long hwnd)

This is the only function that passes a parameter. The parameter is the HWND (window handle) of the container
window in GoldMine. You can then use the Windows APl SendMessage() call to control what happens to the
container. This is for situations where you want to implement a Close button, since the control is late bound in
GoldMine, and cannot expose events.

pubTic void GMOnActivate()

This function will tell you when the user has given your control’s container focus in GoldMine.
public void GMLostFocus()

Called whenever the user gives focus to another object when your control had focus.
public void GMonDestruct()

Called when the window is just about to close. This allows you the opportunity to clean up.
public void GMHandleFile(BSTR sPath)

Used to open associated files with your plug-in. the passed Path is the path to the file itself that your plug-in
described it could handle.

Page 373 of 463

GoldMine ™

Using HTML Plug-in Support

HTML plug-in support also has great potential. The HTML will attempt to call a JavaScript or VBScript function
named like the last 3 ActiveX methods, with exactly the same capabilities:

GMOnActivate()
GMLostFocus ()
GMonDestruct()

The GMOnNStart() function is not supported in HTML.

Plug-In Description File

The plug-in description file is a well formed XML file that describes the plug-in. The extension for the file is .GME
(for GoldMine Extension).

HTML Plug-in Description File

The following example shows the structure for the HTML plug-in.

<PTugInDefs>
<PTugInDef>
<URL>http://gmail.google.com/gmail</URL>
<QueryString>q=&1t;&1t;&Addressl>>, &I1t;&1t;&City>>,
&1t;&1t;&State>>, &1t;&1t;&zip>></Querystring>
<Description>
<Language Locale="1033" IsDefault="1">
<Name>G-Mail</Name>
<PubTisher>Google</Publisher>
<Description>Launches Google's Gmail Service</Description>
<Menu>Launch GMAIL</Menu>
<MenuPath>Web Based Tools\\Google</MenuPath >
</Language>
<Language Locale="4000">
<Name>eegay ale-may</Name>
<PubTisher>oogle-Gay</Publisher>
<Description>aunches-Lay oogle-Gay’s eegay ale-may Urvice-
Say</Description>
<Menu>aunch-Lay eegay ale-may</Menu>
<MenuPath>eb-way ased-Bay ools-Tay\\oogle-Gay</MenuPath >
</Language>
</Description>
<Onbemand>1</0OnDemand>
<Startup>1l</Startup>
<MultipleInstance>0</MultipleInstance>
<Modal>0</Modal>
<DefaultPos>
<top>50</top>
<left>50</left>

Page 374 of 463

GoldMine ™

</DefaultPos>

<DefaultSize>

<width>800</width>

<height>600</height>

</DefaultSize>

<Visible>1l</visible>
<IconFile>google.ico</IconFile>
<InternalName>GOOGLE_MAIL</InternalName>
</PlugInDef>

</PlugInDefs>

The root node must be PluginDefs, and as the name implies, multiple plug-ins can be installed under one
definition file. For each plug-in, there is one PluginDef. The child nodes for PluginDef are:

Node Description

<URL> The URI for the html or site — must be http://, https:// or file://

The querystring to be tacked on to the end of the URL. Can contain GoldMine field
macros that will be evaluated on launch of the plug-in. The macro wrapping structure
is <<field>>, like <<&Contact>> or <<Contactl->AccountNo>>. Please note that you
must XMLEncode the macros like above.

<QueryString>

<Description> These values describe the item to the user.

<Language> Uses the locale code associated with the target language. One Langauge structure
must be marked as IsDefault, and this one is used in case the target language is not
supported by the plug-in. Always use XML entities in place of extended characters. (N
would be Ñ)

<Name> The dialog name and used for security
) Your company name — creates a sub menu under the Plug-ins menu if MenuPath not
<Publisher>
passed
<Description> Used in the Help->About Plug-ins button (not there yet)
<Menu> The text that the user sees for a menu item.
<MenuPath> Creates a hierarchical set of menus, with each submenu delimited by “\\” — double
backslashes
Determines if the plug-in is added to the plug-ins menu. 1 = True, 0 = False. If false —
<OnDemand>
then the item is started up with GoldMine.
Determines if the item is started up with GoldMine. This is for situations where you
want it to come up — but if the user closes the window — you want them to be able to
<StartUp>

access the plug-in via a menu. 1 = startup with GoldMine, 0= don’t start with
GoldMine.

Page 375 of 463

GoldMine ™

<Multiplelnstance>

Determines if multiple instances of the plug-in are allowed. 1 = allow multiple
instances, 0 = false. If false, if the user chooses the menu item for that plug-in — then
GoldMine will bring that window to the front and give it focus. non-OnDemand, Modal
and non-visible plug-ins are automatically single instance.

<Modal>

Determines if any action can occur outside of the window in GoldMine. 1= Modal, 0 =
Modeless. Startup/non-OnDemand items cannot be modal. Modal items are strictly
single instance.

<DefaultPos>

Describes the coordinates where your dialog will first show up. This is only used the
first time the plug-in is run, and is ignored for Modal plug-ins, which are automatically
centered in relation to the GoldMine window.

<top>

Number of pixels from the top of the screen.

<left>

Number of pixels from the left of the screen.

<DefaultSize>

describes the height and width of the dialog for first time use, or for modal windows —
which cannot be resized.

<width> Width of the window in pixels.
<height> Height of the window in pixels.
<Visible> Determines if the user can see the window. Not recommended for HTML based plug-
ins.
<lconFile> If you have an ico file that you want the item to use, then put it in the plug-ins folder

and specify it here.

<InternalName>

This is a name that you give to your plug-in that can then be used in the INI files to
block/grant access. If it is not passed it will be made up of a concatenation of the
Publisher name and the Name fields for the default locale, using only the following

characters:
“ABCDEFGHIJKLMNOPQRSTUVWXYZ_1234567890”

ActiveX Plug-in Description File

The following example shows the structure for the ActiveX plug-in.

<PTugInDefs>
<PTugInDef>

<ProgID>myApp.ClassInstance</ProgID>
<Installer>myAppInstaller.exe</Installer>
<Description>

<Language Locale="1033" IsbDefault="1">

<Name>My Fantastical App</Name>
<PubTisher>3CS</Publisher>

<Description>This app does it all!!!</Description>
<Menu>The most amazing app EVER</Menu>
<MenuPath>You\\Can\\Expect\\To Be\\AMAZED</MenuPath >

Page 376 of 463

GoldMine ™

</Language>

<Language Locale="4000">

<Name>eegay ale-may</Name>
<PubTisher>oogle-Gay</Publisher>
<Description>aunches-Lay oogle-Gay’s eegay ale-may Urvice-
Say</Description>

<Menu>aunch-Lay eegay ale-may</Menu>
<MenuPath> ou-Yay\\an-Kay\\Expect-ay\\o-tay ebay\\AMAZED-AY</MenuPath >
</Language>

</Description>

<OnDemand>1</0onDemand>
<Startup>1l</Startup>
<MultipleInstance>0</MultipleInstance>
<Modal>0</Modal>

<DefaultPos>

<top>50</top>

<left>50</Teft>

</DefaultPos>

<DefaultSize>

<width>800</width>

<height>600</height>

</Defaultsize>

<Visible>1l</visible>
<IconFile>MYAPP.ico</IconFile>
<InternalName>BEST_APP_EVER</InternalName>
<HandledFiTleExtensions>doc;x1s;pdf;txt;ini</HandledFileExtensions>
<Methods>

<Method>

<Language Locale="1033" IsbDefault="1">
<Menu>Launch The app</Menu>

</Language>

</Method>

<Method call="configure">

<Language Locale="1033" IsbDefault="1">
<Menu>Configure the bliss</Menu>
</Language>

<Language Locale="4000">
<Menu>0Onfigure-Kay ah-they 1iss-blay</Menu>
</Language>

</Method>

</Methods>

</PlugInDef>

</PlugInDefs>

Although it is very similar to the HTML plug-in description, there are 2 primary differences: the ProglID and
Installer nodes instead of the URL and QueryString nodes.

The ProglD is the ProglD for your ActiveX control, and the Installer is the installer name for the application. The
Installer should be located in a folder named Installers under the plug-in directory.

Page 377 of 463

GoldMine ™

There is also the “HandledFileExtensions” element that can be added to handle files of certain extensions with
your plug-in internally in GoldMine. This means that if there is a linked document, email attachment, or other
internally attached file that would normally launch a third party application, the path to the file will be passed to
your plug-in via the GMHandleFile call. This does not mean external to GoldMine that opening that file will launch
GoldMine and your plug-in. However, it should be a simple task to write an .exe wrapper for your plug-in (since its
ActiveX based, after all) and associate the file types to that exe wrapper.

The Methods Section allows you to call custom methods in your application. When in use the Description’s Menu
node becomes a sub-menu with all of the methods that you have described. A method is described by the Method
node with an optional attribute “call” which tells GoldMine what internal method to call. The internal method
must be public and expect no parameters. It must also return nothing (void or sub). The language portion works
exactly like the description node’s does — except it only has the Menu entry.

Security and Plug-in Directories

Using GM.INT or the User.INI, a user/admin can block the use of plug-ins altogether, block individual plug-ins and
also add user specific directory for more plug-ins.

Security

For security, GM. INI has precedence over the user INI file. There are two methods — Optimistic and Pessimistic.
You can have different methods for M. INI and the user INI, but Pessimistic will win out.

The Optimistic method is as follows:

[PTugIns]
allow_by_default=1

The Pessimistic method is as follows:

[PTugIns]
deny_by_default=1

If you had allow_by_default=0, then this would be the same as deny_by_default=1 — and vice versa. If the keys are
missing, then the method is assumed to be Optimistic.

If you are using the Optimistic method, then you do not have to add anything besides blocked plug-ins to the INI
files. If you are using the Pessimistic method, then you must give a plug-in permission to run.

For example, if you have a plug-in with a Name node of “Evil Plugin ...”

The INI name for this would be EVILPLUGIN unless you added the InternalName element to your plug-in
description.

To block the plug-in with Optimistic mode:

[PTugIns]
allow_by_default=1 or deny_by_default=0
EVILPLUGIN=0

To allow a plug-in with Pessimistic mode:

[PTugIns]

Page 378 of 463

GoldMine ™

deny_by_default=1 or allow_by_default=0
GOODPLUGIN=1

Adding a Local Plug-in Directory

By default — the plug-in directory is under %SysDir%/Plug-ins and in server installs this means that all users will
have the plug-ins under that folder. If a user wanted to add his own local plug-in directory — he could add it to his
user INI:

[PTugIns]
LocalPath=c:\personal\GMPlugIns

The user will still get the global level programs (assuming they’re not blocked) — so make sure there’s no
duplication between the two.

Sample Plug-ins

The following are examples of the GoldMine plug-in capabilities

gmail.gme

This plug-in opens a browser window to the Google mail address. It demonstrates the basic capability of opening a
browser window from GoldMine.

<?xml version="1.0" encoding="UTF-8"7>
<PlugInDefs>

<PlugInDef>
<URL>http://gmail.google.com/gmail</URL>
<Description>

<Language Locale="1033" Isbefault="1">
<Name>G-Mail</Name>
<Publisher>Google</Publisher>
<Description>Launches Google's Gmail Service</Description>
<Menu>Launch GMAIL</Menu>

</Language>

</Description>

<OnDemand>1</0OnDemand>
<Startup>1l</Startup>
<MuTtipleInstance>0</MultipleInstance>
<Modal>0</Modal>

<DefaultPos>

<top>50</top>

<left>50</left>

</DefaultPos>

<DefaultSize>

<width>800</width>
<height>600</height>

</DefaultSize>

<Visible>1</Vvisible>

</PlugInDef>

</PlugInDefs>

Page 379 of 463

GoldMine ™

External.gme

This plug-in allows a user to store more than the 254 custom fields for a contact record externally. Users can
select any contact record, then select the plug in, to either add new information or update existing information
depending on what is found in the database.

<?xml version="1.0" encoding="UTF-8"7>
<PlugInDefs>

<PlugInDef>
<URL>http://Tocalhost/gmplus.asp</URL>
<QueryString>accountno=&1t;&1t;&Accountno>></Querystring>
<Description>

<Language Locale="1033" IsDefault="1">
<Name>Extra Fields</Name>
<Publisher>Robie</Publisher>
<Description>Access External Tables</Description>
<Menu>Access External Tables</Menu>
</Language>

</Description>

<onDemand>1</0OnDemand>
<MuTtipleInstance>1l</MultipleInstance>
<Modal>0</Modal>

<DefaultPos>

<top>50</top>

<left>50</left>

</DefaultPos>

<DefaultSize>

<width>600</width>
<height>590</height>

</DefaultSize>

<Visible>1l</Vvisible>

</PlugInDef>

</PlugInDefs>

gmplus.asp

Following is the source listing for gmplus.asp, which is the corresponding ASP page for the External.gme plug-in.

NOTE: The following code sample uses text wrapping in order to fit the sample on these pages. Make sure
that the lines in your actual code do not wrap.

<html1>

<body>

<h3>External Location Information</h3>

<%

Dim action

Dim DSNConnection

Dim SQLTable

'Update the DSN information here to access the sSQL database HERE.

Page 380 of 463

GoldMine ™

DSNConnection = "Driver=SQL
Server;Server=CompanyServerName;Database=GMplus;Uid=sa;Pwd=sa;"
'Update to table in database

SQLTable = "GoldPlus"

'add/edit additional fields here
Dim strdocument, strlocation, strextrastuffl, straccountno
'add/edit additional fields here too

strdocument = Replace(Request('"document™), "'", "''™)
strlocation = Replace(Request("location™), "'", "''™)
strextrastuffl = Rep1ace(Request("extrastuffl"), rrmoonrnmy
straccountno = Replace(Request("accountno™), "'", "''™)

'This section updates fields if the accountno is found in the database
if Request("action")="update" then

set conn=Server.CreateObject("ADODB.Connection")
conn.Open (DSNConnection)

'This is the sQL statement that updates information, so you will need to
add/edit fields here too.

set rs = Server.CreateObject("ADODB.recordset")

strsqQL = "UPDATE "+ SQLTable +" SET document = '" + strdocument +"'
Jocation = '" + strlocation + "', extrastuffl = '"" + strextrastuffl +
WHERE accountno = '" + straccountno + "'"

conn.Execute (strsQqL)

conn.close

set conn = nothing

set strsqQL = nothing

'This does a redirect to the update page once the data is entered into the
SQL database

Response.write("<meta http-equiv=refresh
content=0;url=gmplus.asp?accountno=" + straccountno + ">")

Vkek

PR RO N A R T A RN K A RN N R R N N OROR K RIORORK NN
R A A o R A g A T A A e B AR R T e A T A A o T A S e 1Y

'This section does the addition of the fields if they are not found in the
database
else if Request("action")="add" then

set conn=Server.CreateObject("ADODB.Connection")
conn.Open (DSNConnection)

'This adds new information if it is not found in the database

set rs = Server.CreateObject("ADODB.recordset")

strsQL = "INSERT INTO "+ SQLTable +"
(accountno,document,location,extrastuffl) VALUES ('" + straccountno +
mia ™ ma Tn

,"" + strdocument + "','" + strlocation + "','" + strextrastuffl + "')"
Conn.Execute (strsqQL)

Page 381 of 463

GoldMine ™

conn.close

set conn = nothing
set strsqQL = nothing
'This does a redirect to the update page once the data is entered into the
SQL database.

Response.AddHeader "Location", "/gmplus.asp?accountno="'

end if

"

+ straccountno +

set conn=Server.CreateObject("ADODB.Connection")
conn.Oopen (DSNConnection)

set rs = Server.CreateObject("ADODB.recordset")
rs.open "SELECT accountno, document, location, extrastuffl from "+

SQLTabTle +" where accountno ='"+ straccountno + , conn

T ale ale le ol ol ale ola ol ol ale ole ofe ol oo ola ol ot oo ola ol ol ol ole ofa ol ol ole ol ol ol ole fa ol ol ol ofa ol alo ale ola ol ol ol ofa oTe ot ale ol ol alo ol ola ol ot ol ola ol ol ol ola ol ol ol ol ol ot ol ol ol ol ol ol ot
= R e e Tl A e e e e e o A A T i e e e Ll e e ol Tl e e e i A e A A e A A R kA e Tl A e T L e T L e T

B A R N M R R N
L e e T A e T A A R kA 1

'if the AccountNo is NOT found, display the ADD form

if rs.eof AND rs.bof then

%>

<form action="gmplus.asp" method="get">

<input type="hidden" name="action" value="add">

<% Response.wWrite("<input type=hidden name=accountno value="+ straccountno
+">")%>

<table border="1">

<tr>

<td>Document</td><td><input type="text" name="document" size="30"></td>
<tr>

</tr>

<td>Location</td><td><input type="text" name="location" size="30"></td>
<tr>

</tr>

<td>Extra Stuff l</td><td><input type="text" name="extrastuffl"
size="30"></td>

</tr>

</table>

<input type="Submit" value="add">

</form>

<% Ve
kS

else

'if the AccountNo IS found, display the UPDATE form

%>

<form action="gmplus.asp" method="get">

<input type="hidden" name="action" value="update'>

<% Response.Write("<input type=hidden name=accountno value="+ straccountno
+">")%>

<table border="1">

<tr>

Page 382 of 463

GoldMine ™

<td>Document</td><td><input type="text" name="document" value="<%= rs
("document") %>" size="30"></td>

</tr>

<tr>

<td>Location</td><td><input type="text" name="location" value="<%= rs
("Tocation") %" size="30"></td>

</tr>

<tr>

<td>Extra Stuff l</td><td><input type="text" name="extrastuffl" value="<%=
rs("extrastuffl") %>" size="30"></td>

</tr>

</table>

<input type="Submit" value="update">

</form>

B S S S T S S R A N PR A AR R MK M AR %
R A e Tl e A AR Ak i e e e i A e Aol e L i A e S A e T e

</body>
</html

Page 383 of 463

GoldMine™

Using Xbase Expressions

Overview

This chapter contains information geared toward individuals with at least an intermediate knowledge of
programming.

IMPORTANT: Improper use of these functions may result in data that is not recoverable. Be sure to back up
your data frequently.

TIP: For details on data backups, see “Backing up Data” in Maintaining GoldMine.
GoldMine offers a variety of Xbase expression functions to:

= Manipulate data for comparison, such as for creating filters and groups.
m Store data, such as for global replacements and updates to field data (LOOKUP.INI).
m Evaluate and return data when using DDE and GMXS32.DLL function calls.

To ensure that your Xbase functions work correctly, GoldMine also features a real-time expression tester. To
activate the tester on an active record window, press Ctrl-Shift-D.

TIP: Xbase functions are also known as dBASE functions.

Filter expressions work equally well on Xbase or SQL tables. With SQL, the Xbase filter is evaluated on the client
side, not the server side.

The following pages list Xbase functions in three sections:

m Function/Parameter Types
m Conditionals, Operators, and Logical Evaluators

= Xbase Functions

Function/Parameter Types

Xbase functions recognize and return several types of data. These data types represent the format of the data,
such as a number. To properly evaluate and return a value, a function must include the correct parameter types.
For example, a function may require that a date be passed as a parameter. Trying to pass a name to the function
would not be accepted. In many cases, you can use a special function to convert one data type to another.

Page 384 of 463

GoldMine ™

Data types may be referenced literally, either as a field name of a specific type, or as the result of an Xbase
function.

The following list describes valid data types for Xbase functions and shows examples of use when referenced as a
literal, field value, or function result.

String Sequence of any printable character.
Literal use: "my string"
Field use: Upper(Contactl->Company)
Function Use: Upper(Substr("test123",5,3))

Date Special numeric value representing a date.
Literal use: {03/10/1999}
Field use: DTOS(Contact2->UBirthday)
Function use: DTOS(DATE())

Value representing a number.
Literal use: 100

Numeric Field use: STR(Contact2->UBalance)

Function use: STR(100 + VAL("100"))

Value that results whenever a comparison is made. Boolean values are either TRUE or
Boolean

FALSE.

For an expanded description of Boolean expressions, see “Using Boolean Expressions” in the Online Help.

Conditionals, Operators, and Logical Evaluators

A function can manipulate values by using one of the following:

m Conditional: Compares one value to another, using the specified standard or condition, such as “equal to,”
“greater than,” and so on.

m Operator: Performs an arithmetic operation on the values, such as addition or multiplication.

m Logical evaluator: Compares values as a true/false condition, so that a value either meets or fails the standard
for selection. This type of comparison is also known as a Boolean operator.

You can use the following conditionals, operators, and logical evaluators in conjunction with the Xbase functions.

Conditionals
Conditional: >
Description: Greater than
Applies to: All types

Page 385 of 463

GoldMine ™

1>2 returns: FALSE
Examples: "BBC">"ABC" returns: TRUE
Date()>Date()-10 returns: TRUE
Conditional: <
Description: Less than
Applies to: All types
300<400 returns: TRUE
Examples: "MARCELA"<"NELSON" returns: TRUE
Date() < Date()-7 returns: FALSE
Conditional: <>
Description: Greater/Less than (not equal)
Applies to: All types
250<>2500 returns: TRUE
Examples: "ABC"<>UPPER("abc") returns: FALSE
Date()<>Date()+3 returns: TRUE
Conditional: >=
Description: Greater than or Equal to
Applies to: All types
100>=99 returns: TRUE
Examples: "ABC">="BBC" returns: FALSE
Date()+10>=-Date() returns: TRUE
Conditional: <=
Description: Less than or equal to

Page 386 of 463

GoldMine ™

Applies to: All types
100<=99 returns: FALSE
Examples: "ABC"<="BBC” returns: TRUE
Date()+10<=Date() returns: FALSE
Operators

Operator: +
Description: Adds one value to another value
Applies to: All types

"ABC"+"DEF" returns: "ABCDEF"
Examples: 100+23 returns: 123

Date()+7 returns: date one week from today
Operator: -
Description: Subtracts one value from another value
Applies to: Numeric and Date types

123-100 returns: 23
Examples:

Date()-140 returns: date of two weeks ago
Operator: /
Description: Divides one number by another
Applies to: Numeric type
Example: 100/4 returns: 25
Operator: *
Description: Multiplies one value by another
Applies to: Numeric type
Example: 100*5 returns: 500

Page 387 of 463

GoldMine ™

Operator: %

Description: Modulus

Applies to: Numeric type

Example: 100%33 returns: 1

Logical Evaluators

Logical: .OR.

Description: Returns TRUE if either condition is TRUE

Example: State="CA" .OR. Zip="99999"

Logical: .AND.

Description: Returns TRUE only if all conditions are TRUE

Example: Company="GoldMine, Inc." .AND. Phone1="(310)454-6800"
Logical: .NOT.

Description: Returns the opposite of the condition being tested
Example: .NOT. City="San Francisco”

Xbase Functions

GoldMine recognizes four types of Xbase functions as valid

m String: Use primarily for manipulating string data types. A string function can return other data types.
m Date: Use for any date-related operations. A date function can return other data types.
m Numeric: Use for numeric operations. A numeric function can return other data types.

m Miscellaneous: Additional functions that fall outside of the previous three categories of data types. These may
return any type of data.

For convenience, functions are listed under these four categories, according to how they are most typically used.
For example, under “Date Functions,” you will find those functions that return numeric or string types from dates.

Page 388 of 463

GoldMine ™

String Functions

ALLTRIM(<string>)

Returns a string value with both leading and trailing spaces
from <string>.

Return type: String

Example

“[“+ALLTRIM(“ This is a test “)+"]”

returns [This is a test].

ASC(<char>)

Returns the ASCII decimal value for <char>.
Return type: Numeric

Example

ASC(“A”)

returns 65.

AT(<string1>,
<string2>)

Returns the first position of <stringl> in <string2>.
Return type: String

Example

AT(“a”, “once upon a time”)

returns 11.

CHR(<byte>)

Returns the ASCII character value for <byte>.
Return type: String

Example

CHR(65)

returns A.

FMTTIME(<time>)

Returns a character string (hh:mmap format) derived from <time>.
Return type: String

Example

FMTTIME(TIME())

returns 2:28p.

HTTPSTR(<string>)

Returns <string> with all nonletter/number characters replaced with %values.
Return type: String

Example

HTTPSTR(“www.Website.com/some dir/”)

returns www.Website.com%2Fsome%20dir%2F.

lIF(<condition>,<true
result>,<false result>)

Returns either <true result> or <false result>, depending on the Boolean
evaluation of <condition>.

Return type: Logical

Example

IIF (99 < 100, “Value is Less than 100”, “Value is more than 100”)
returns “Value is Less than 100”.

Page 389 of 463

GoldMine ™

LEFT(<string>, <length>)

Returns the leftmost <length> characters from <string>.
Return type: String

Example

LEFT("Four score and seven",10)

returns Four score.

LEN

See LENGTH below.

LENGTH(<string>)

Returns the number of characters in <string>.
Return type: Numeric

Example

LENGTH("This is a test")

returns 14.

LOWER(<string>)

Returns <string> in lower-case letters.
Return type: String

Example

LOWER("TEST THIS FUNCTION")
returns test this function.

LTRIM(<string>)

Returns <string> with all leftmost spaces removed.
Return type: String

Example

"['" + LTRIM(" This is a test " + "]"

returns [This is a test].

LTRIMPAD(<string>,
<length>, <fill>)

Returns <string> with leftmost spaces removed and padded to <length> with
<fill> character.

Return type: String

Example

"["+LTRIMPAD(" 1341", 10, "0")+"]"

returns 0000001341.

MID(<string>, <start>,
<length>)

Returns the string of <length> characters starting at position <start> within
<string>.

Return type: String

Example

MID("Four score and seven",6,5)

returns score.

PAD(<string>, <length>,
<fill>, <mode>)

Returns <string> padded to <length> with the <fill> character.
<fill>

This optional parameter defaults to a space.

<mode>

can be 0 for right pad (default), 1 for centered, and 2 for left pad.
Return type: String

Example

PAD(“TEST”, 8, “x”, 1)

returns xxTESTxx.

Page 390 of 463

GoldMine ™

PADL(<string>, <length>,
<fill>)

Returns <string> padded to <length> with the <fill> character.

<fill>

This optional parameter defaults to a space. PADL pads from the left.
Return type: String

Example

PADL("TEST", 8, "x")

returns xxxxTEST.

PADR(<string>, <length>,

Same as PADL, except that PADR pads the string to the right.

<fill>) Return type: String
Example
PADR("TEST", 8, "x")
returns TESTxxxx.
PROPER(<string>) Returns a string in which the first letter of each word in <string> is capitalized,

and the all following letters are lower-case.
Return type: String

Example

PROPER("fighting IRISH")

returns Fighting Irish.

RAT(<string1>,string2>)

Returns the last position of <string1> in <string2>.
Return type: Numeric

Example

RAT("t", "this is a test.")

returns 14.

RIGHT(<string>, <length>)

Returns the rightmost <length> characters from <string>.
Return type: String

Example

RIGHT("Four score and seven",5)

returns seven.

RTRIM(<string>)

Returns <string> with all rightmost spaces removed.
Return type: String

Example

"["+ RTRIM(" This is a test " + "]"

returns [This is a test].

STR(<value>,<length>,
<decimals>,<fill char>)

Returns the numeric <value> formatted as a string. The <value> parameter is
required. All other parameters are optional. The <length> parameter pads the
number to the left with spaces or with the <fill char> if specified.

Return type: String

Example

STR(456, 7, 2, "0")

returns 0456.00.

Page 391 of 463

GoldMine ™

STRTRAN(<string1>,
<string2>, <string3>)

Returns a string based on <string1> with all occurrences of <string2>
translated to <string3>.

Return type: String

Example

STRTRAN("A1B1C1D1", "1", "x")

returns AxBxCxDx.

SUBSTR(<string>,
<start>, <length>)

Returns the string of <length> characters starting at position <start> within
<string>.

Return type: String

Example

SUBSTR("Four score and seven",6,5)

returns score.

TRIM(<string>)

See RTRIM.

UPPER(<string>)

Returns the <string> in upper case.
Return type: String

Example

UPPER("this is a test")

returns THIS IS A TEST.

WORD(<string>, <pos>)

Returns the <pos> word within <string>.

Return type: String

Example

WORD("this is a test for the WORD function", 4)
returns test.

Date Functions

ACCDATE(<string>)

Returns a date value for <string>, where <string> is a valid GoldMine AccountNo.
Return type: Date

Example

ACCDATE(Contact1->ACCOUNTNO)

returns 4/20/99.

AGE(<date>)

Returns the age in years since <date>.
Return type: Numeric

Example

AGE(Contact2->UBDATE)

returns 32.

Page 392 of 463

GoldMine ™

CTOD(<string>)

Returns a date value based on <string>. The <string> parameter should be in the
format: mm/dd/yy.

Return type: Date

Example

CTOD("4/20/99")+5

returns 4/25/99.

DATE()

Returns today’s date in date format. To add/subtract from this value, simply use the
number of days in your expression. For example: DATE()+7 will add seven days to
today's date.

Return type: Date

Example

Assuming today’s date is 4/20/99, DATE()+7

returns 4/27/99.

DAY(<date>)

Returns that day of the month for the specified <date>.
Return type: Numeric

Example

DAY(DATE())

returns 18.

DOBINDAYS(<date>)

Returns the number of days until the month/day in <date>.
Return type: Numeric

Example

DOBINDAYS(STOD("19681024"))

returns 232.

DOW(<date>)

Returns the day of the week in numeric format; for example, Sunday = 0, Monday =
1, and soon

Return type: Numeric

Example

DOW/(STOD("19990909"))

returns 4.

DOY(<date>)

Returns the number of days elapsed from the beginning of the year in <date> to the
month/day in <date>.

Return type: Numeric

Example

DOY(Contact2->UDATE)

returns 220.

DTOC(<date>)

Returns a character string (MM/DD/YY format) derived from <date>.
Return type: String

Example

DTOC(Contact2->UDATE)

returns 10/24/99.

Page 393 of 463

GoldMine ™

DTOS(<date>)

Returns a character string (YYYYMMDD format) derived from <date>.
Return type: String

Example

DTOS(Contact2->UDATE)

returns 19991024.

MONTH(<date>)

Returns that numeric month for the specified <date>.
Return type: Numeric

example:

Example

MONTH(Contact2->UDATE)

returns 2.

STOD(<string>)

Converts a <string> value into a date value. <string> should be in the format
YYYYMMDD.

Return type: Date

Example

STOD("20000121")

returns 1/21/2000.

WDATE(<date>,
<format>)

Returns the <date> formatted in variety of ways, based on the optional parameter
<format>.

<format>

0 mm, dd, yy Jan 21, 00

1 ddd, mmm dd, yy Thu, Jan 21, 00

2 mmm dd Jan 21

3 Long date style Thursday, Jan 21, 2000

The Long date style format 3 is taken from the Windows Regional Settings.
Return type: String

Example

WDATE(Contact2->UDATE, 1)

returns Thu, Jan 21, 00.

YEAR(<date>)

Returns the numeric year value of <date>.
Return type: Numeric

Example

YEAR(Contact2->UDATE)

returns 2000.

Numeric Functions

CEILING(<number>)

Returns the nearest integer that is greater than or equal to the numeric expression.
Return type: Numeric

Example

CEILING(3.1)

returns 4.

Page 394 of 463

GoldMine ™

COUNTER(<string>, <inc>,
<start>, <action>)

Returns a sequence of consecutive numbers each time the expression is evaluated.
Each of the parameters is described below.

<name>

This counter must be unique, and can be a maximum of 10 characters.

<inc>

Each evaluation of the function increments the counter by the <inc> value.
<start>and <action>

Optional parameters

When <action>is 1, the <start> value is used to reset the counter. The counter is
deleted when <action>is 2.

COUNTER works similarly to the SEQUENCE function. The key difference is that
COUNTER stores the count value between GoldMine sessions, and it is shared by all
GoldMine users. The COUNTER function updates a database counter, so COUNTER
is much slower than SEQUENCE, which updates a memory counter. The SEQUENCE
counter is local to the operation, and its count is lost at the end of the operation.
GoldMine can track an unlimited number of uniquely named counters. The counter
values are stored in the LOOKUP table.

Return type: Numeric

Example

COUNTER("InvoiceNo", 1, 1000)

returns 1000.

FLOOR(<number>)

Returns the nearest integer that is less than or equal to the numeric expression
Return type: Numeric

Example

FLOOR(2.8)

returns 2.

INT(<number>)

Returns the integer part of a number without rounding.
Return type: Numeric

Example

INT(123.95)

returns 123.

RANDOM(<range>)

Returns a random number.

<range> can be any number between 1 and 32,761. The returned random number
will range between zero and <range>, not including the range limit. If not specified,
the <range> parameter defaults to 32,761. You can generate random numbers up
to two billion with the expression random(32761) * random(32761).

Return type: Numeric

Example

RANDOM(10)

Returns a number between 0-9.

Page 395 of 463

GoldMine ™

SEQUENCE(<start>, <inc>)

Returns a sequence of consecutive numbers each time the expression is evaluated.
When the expression is first evaluated, the <start> parameter starts the counter.
Each subsequent evaluation of the function increments the counter by the <inc>
value. The SEQUENCE counter is local to the operation, and its count is lost at the
end of the operation.

Return type: Numeric

Example 1

SEQUENCE(1000,10)

returns 1010.

Example 2

SEQUENCE(1000,10)

SEQUENCE(1000,10)

returns 1020.

VAL(<string>)

Converts <string>to a numeric value.
Return type: Numeric

Example

VAL("123.45")

returns 123.45.

Miscellaneous Functions

RECCOUNT()

Returns the number of records in Contactl. (May be time-consuming on large SQL
tables.)

Return type: Numeric

Example

RECCOUNTY()

returns 35671

RECNO()

Returns the current record number (Xbase) or ReclD (SQL) for the active Contactl
record.

Return type: Numeric

Example

RECNO()

returns 351.

RECNOCOUNT()

Returns the current record number and total records. This function is not available
for SQL tables.

Return type: String

Example

RECNOCOUNT()

returns 236 of 2204.

Page 396 of 463

GoldMine ™

Returns the current time.
Return type: Time
Example

TIME()

returns 14:56:22.

TIME()

Page 397 of 463

GoldMine™

Xbase Database Structures

Overview

This chapter is provided for programmers who want to integrate their programs with GoldMine Xbase format
database structures.

Third-party developers are encouraged to integrate their products with GoldMine, thereby enhancing both
products. If you design a commercial program that works with GoldMine, please contact GoldMine Inc. so we
can include your program in our Enhancement Guide.

This chapter describes the file organization and structures of GoldMine databases in an Xbase format. Each
database file is listed separately and includes its associated index files, database structure, and special notes. For
information about working with GoldMine databases in an SQL format, see SQL Database Structures. The
following pages describe the database structures of most GoldMine .DBF files. This chapter does not include a
discussion of every database. Security and system database files are not included in this section. You should not
interface with these files. For an in-depth discussion on interfacing with GoldMine, visit the
Public.GoldMine.Programming newsgroup, which you can access directly from http://www.goldmine.com/.

Most GoldMine files are stored in the GOLDMINE\GMBASE directory. These files include most database and
index files. The contact sets (CONT*.*) are stored in a separate directory to allow GoldMine to handle multiple
contact sets.

If you will be developing an application to read and write to the GoldMine databases, we recommend that you
use Dynamic Data Exchange (DDE) as described in Working with Dynamic Data Exchange (DDE) or the functions
contained within GMXS32.DLL, as described in Using GMXS32.DLL for Database Access and Sync Log Updates. If
you choose to write directly to our files without using DDE, you must be aware of the field/index structure and
synchronization methodology used by GoldMine to ensure full compatibility.

To view how GoldMine uses RECTYPEs for various purposes, create a contact set, create sample contacts, and
then create sample activities, and so on. Place obvious values in each of the fields. Use a database viewing
utility, such as BR4, MS-Access, or Excel to view the sample records.

TIP: Do not view your live contact database with an external application. Do not edit GoldMine
fields with an external application.

Page 398 of 463

http://www.goldmine.com/

GoldMine ™

CAL.DBF
Directory: GMBASE
Description: Calendar file—contains a record for each scheduled activity. The different record types are
distinguished by the contents of the RECTYPE field. Different RECTYPEs may use each field
for a different purpose.
Index File: CAL.MDX
CAL Indexes
Name Key
Cal Rectype+userID+DTOS(onDate)+onTime
Calcont AccountNo+rectype+DTOS(onDate)+onTime
Caldate UserID+DTOS(onDate)+onTime
Calprob Rectype+userID+Str(999-duration,3)
Calalarm AlarmFlag+userID+DTOS(ALARMDATE)+alarmTime
Calrlink lopRecID+RECTYPE+DTOS(ONDATE)+ONTIME
Calrecid recld

CAL Structure

Field Name Type Len Description

USERID String 8 User Name

ACCOUNTNO String 20 Account Number of linked contact
ONDATE Date 8 Activity date

ONTIME String 5 Activity Time

ENDDATE Date 8 Ending Date of Scheduled Activity
ALARMFLAG String 1 Alarm Flag

ALARMTIME String 5 Alarm Time

ALARMDATE Date 8 Alarm Date

ACTVCODE String 3 Activity Code

RSVP String 1 RSVP Notification

Page 399 of 463

GoldMine ™

DURATION Integer 3 Duration/Probability
RECTYPE String 1 See: Rectype
ACONFIRM String 3 Meeting Confirmation
APPTUSER String 10 Meeting Confirmation User
STATUS String 4 First character is flag, second char =1 if notes exist
DIRCODE String 10 DirCode of the current contact file
NUMBER1 Integer 11 Sales Potential
NUMBER2 Integer 8 Units of a Forecasted Sale
COMPANY String 60 Company/Contact Name
REF String 80 Reference
NOTES Memo 1 Notes
LINKRECID String 15 Linked Record ID
IdoCrecid String 15 Reserved for future use
LOPRECID String 15 Linked Opportunity Manager Record ID
CREATEBY String 8 Created by User
CREATEON Date 8 Creation Date
CREATEAT String 6 Creation Time
LASTUSER String 8 Last Modified By
LASTDATE Date 8 Last Modified Date
LASTTIME String 5 Last Modified Time
RECID String 15 Record ID
Rectype
The RECTYPE field contains the Calendar’s activity type. The following values are possible contents of
RECTYPE:
A Appointment F Literature fulfillment S Sales potential
C Call Back M Message T Next action
D To-do 0] Other
E Event Q Queued e-mail

Page 400 of 463

GoldMine ™

CONTACT1.DBF
Directory: COMMON
Description: Contact file—contains the main fields of contact records
Index File: CONTACT1.MDX

CONTACT1 Indexes

Name Key

Contacc AccountNo

Contcomp Upper(company)+Substr(accountNo,10,4)
Contname Upper(contact)+Substr(accountNo,10,4)
Contzip zip+Substr(accountNo,10,4)

Contcity Upper(city)+Substr(accountNo,10,4)
Contkeyl Upper(key1)+Substr(accountNo,10,4)
Contkey?2 Upper(key2)+Substr(accountNo,10,4)
Contkey3 Upper(key3)+Substr(accountNo,10,4)
Contkey4 Upper(key4)+Substr(accountNo,10,4)
Contkey5 Upper(key5)+Substr(accountNo,10,4)
Contlast Upper(lastName)+Substr(accountNo,10,4)

CONTSTAT Upper(STATE+CITY)+SUBSTR(ACCOUNTNO, 10,4)

CONTCNTY UPPER(COUNTRY+STATE)+SUBTR(ACCOUNTNO,10,4)

Contphon phonel+Substr(accountNo,10,4)

Cn1Recid recid

CONTACT1 Relations

Related File->Field Contact1 Field

Contact2->AccountNo Contactl->AccountNo
ContHist->AccountNo Contactl->AccountNo
ContSupp->AccountNo Contact1l->AccountNo
Cal->AccountNo Contact1l->AccountNo

Page 401 of 463

GoldMine ™

CONTACT1 Structure

Field Name Type Len Description
ACCOUNTNO String 20 See: Account Number
COMPANY String 40 Company Name
CONTACT String 40 Contact Name
LASTNAME String 15 Contact’s Last Name
DEPARTMENT String 35 Department

TITLE String 35 Contact Title

SECR String 20 Secretary

PHONE1 String 25 Phone 1

PHONE2 String 25 Phone 2

PHONE3 String 25 Phone 3

FAX String 25 Fax

EXT1 String 6 Phone Extension 1
EXT2 String 6 Phone Extension 2
EXT3 String 6 ;,;A;(v:igl::r:ls.ei:)sri]ot:sed as EXT3 to maintain compatibility with
EXT4 String 6 Phone Extension 3
ADDRESS1 String 40 Address 1
ADDRESS2 String 40 Address 2
ADDRESS3 String 40 Address 3

CITY String 30 City

STATE String 20 State

ZIP String 10 Zip Code

COUNTRY String 20 Country

DEAR String 20 Dear (Salutation)
SOURCE String 20 Source (Lead)

KEY1 String 20 Key 1

Page 402 of 463

GoldMine ™

KEY2 String 20 Key 2

KEY3 String 20 Key 3

KEY4 String 20 Key 4

KEY5 String 20 Key 5

STATUS String 3 See : Internal Status
NOTES Memo Notes
MERGECODES String 20 Merge Codes for primary contact
CREATEBY String 8 Creation User
CREATEON Date 8 Creation Date
CREATEAT String 5 Creation Time
OWNER String 8 Record Owner
LASTUSER String 8 Last Modified By
LASTDATE Date 8 Last Modified Date
LASTTIME String 6 Last Modified Time
RECID String 15 Record ID

Account Number

The ACCOUNTNO field contains the following information:

Positions Value

1-6 Date in YYMMDD format

7-11 Seconds since midnight

12-17 Randomly generated

18-20 First three characters of the contact or company name

Internal Status

O Position 1 of the Internal Status field keeps track of the type of phone number for the contact. If the first
character is U, the phone numbers are formatted for USA-style phone numbers: (999)999-9999.

O Position 2 indicates the curtain level (O=none, 1=partial, 2=full)

O Position 3 indicates a record alert is present if the value is 1.

Page 403 of 463

GoldMine ™

CONTACT2.DBF

Directory: COMMON

Description: Contact file—contains the additional fields of contact records. Each complete contact record
has a record in this file. User-defined field data is stored in this file.

Index File: CONTACT2.MDX

CONTACT2 Index

Name Key
Contact2 accountNo
Cn2Recid recld

CONTACT2 Structure

Field Name Type Len Description
ACCOUNTNO String 20 Account Number
CALLBACKON Date 8 Call Back Date
CALLBACKAT String 8 Call Back Time (unused compatibility field)
CALLBKFREQ Smallint 3 Call Back Frequency
LASTCONTON Date 8 Last Contact Date
LASTCONTAT String 8 Last Contact Time
LASTATMPON Date 8 Last Attempt Date
LASTATMPAT String 8 Last Attempt Time
MEETDATEON Date 8 Meeting Date
MEETTIMEAT String 8 Meeting Time
COMMENTS Date 65 Comments
PREVRESULT String 65 Previous Results
NEXTACTION String 65 Next Action
ACTIONON Date 8 Next Action Date
CLOSEDATE Date 8 Expected Close Date
USERDEFO1 String 10 User Defined 1

Page 404 of 463

GoldMine ™

USERDEF02 String 10 User Defined 2
USERDEFO03 String 10 User Defined 3
USERDEF04 String 10 User Defined 4
USERDEF05 String 10 User Defined 5
USERDEF06 String 10 User Defined 6
USERDEF07 String 10 User Defined 7
USERDEFO08 String 10 User Defined 8
USERDEF09 String 10 User Defined 9
USERDEF10 String 10 User Defined 10
RECID String 15 Record ID
CONTGRPS.DBF
Directory: COMMON

Description: Groups file—the CONTGRPS file is used for both the group header, which defines each group,
and members for each group.

Index File: CONTGRPS.MDX

CONTGRPS Indexes

Name Key

GroupNo UPPER(userlD+code)
GroupAcc accountno+userlID
GrpRecID recld

CONTGRPS Structure (header records)

Field Name Type Len Description

USERID String 15 Group user

CODE String 8 Group code
ACCOUNTNO String 20 See: Header Info

REF String 24 Group reference

RECID String 15 Record ID/Group number

Page 405 of 463

GoldMine ™

Header Info

The ACCOUNTNO field contains the following information when the CONTGRPS record is a group header

record:
Positions Value
1_8 “x M//
15-20 Total members in group

The next available group number is stored in the CODE field in the first physical record in CONTGRPS . DBF.

CONTGRPS Structure (member records)

Field Name Type Len Description

USERID String 15 Group number (from group header)

CODE String 8 Member sort value

ACCOUNTNO String 20 Linked contact accountno

REF String 24 Member reference

RECID String 15 Record ID
CONTHIST.DBF

Directory: COMMON

Description: Contact history file—contains a record for each completed activity

Index File: CONTHIST.MDX

CONTHIST Indexes

Name Key

ContHist accountNo+DTOS(onDate)+RECID
ContHusr USERID+SRECTYPE+DTOS(ONDATE)+RECID
CNHRLink lopRecld+DTOS(ONDATE)

CnHRecid recld

CONTHIST Structure

Field Name Type Len Description

Page 406 of 463

GoldMine ™

USERID String 8 User

ACCOUNTNO String 20 Account No.

SRECTYPE String 1 First character of RecType

RECTYPE String 10 See: Record Type

ONDATE Date 8 Action Date

ONTIME String 5 Action Time

ACTVCODE String 3 Activity Code

RESULTCODE String 3 Result Code

STATUS String 2 First character is flag, second character =1 if notes exist
DURATION String 8 Duration

UNITS String 8 Units of a Forecasted Sale

REF String 80 Reference

NOTES Memo 1 Notes

LINKRECID String 15 Linked Record ID

LOPRECID String 15 Linked Opp. Mgr. Record

CREATEBY String 8 Creation User

CREATEON Date 8 Creation Date

CREATEAT String 6 Creation Time

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 6 Last Modified Time

RECID String 15 Record ID

NUMBER1 Float Store value from the DURATION field in numeric format
NUMBER2 Float Store value from the UNITS field in numeric format
EXT String 5 Notes or email message format

COMPLETEDID String 15 The CAL record ID of the completed activity

Record Type

The RECTYPE field contains the completed activity’s type. The following values are possible contents of
RECTYPE:

Page 407 of 463

GoldMine ™

A Appointment M Sent message Cl Incoming call
C Phone call Other C™m Returned message
D To-do S Sale co Outgoing call
E Event T Next action MG E-mail message
F Literature fulfillment U Unknown M Received e-mail
L Form ccC Call back MO Sent e-mail
CONTSUPP.DBF
Directory: COMMON
Description: Supplementary contact set—contains a record for each additional contact record, referral

and profile record. The different record types are distinguished by the contents of the
RECTYPE field. Different RECTYPEs may use each field for a different purpose.

Index File: CONTSUPP.MDX

CONTSUPP Indexes

Name Key
ContSupp accountNo+recType+UPPER(contact)
Contspfd UPPER(RECTYPE+CONTACT+CONTSUPREF)
Cnsrecid recld

CONTSUP Structure
Field Name Type Len Description
ACCOUNTNO String 20 Account No.
RECTYPE String 1 See: Record Type
CONTACT String 30 Contact Name/Profile
TITLE String 35 Contact Title/Referral’s Account Number
CONTSUPREF String 35 Reference
DEAR String 20 Dear (Salutation)
PHONE String 20 Phone

Page 408 of 463

GoldMine ™

EXT String 6 Phone Extension

FAX String 20 FAX number

LINKACCT String 20 Linked Account

NOTES Memo 1 Notes

ADDRESS1 String 40 Additional Contact Address 1
ADDRESS2 String 40 Additional Contact Address 2
ADDRESS3 String 40 Additional Contact Address 3
CITY String 30 Additional Contact City
STATE String 20 Additional Contact State

ZIP String 10 Additional Contact Zip
COUNTRY String 20 Additional Contact Country
MERGECODES String 20 Merge Codes

STATUS String 4 First character is flag, second char =1 if notes exist
LINKEDDOC Memo 10 Linked Document

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date
LASTTIME String 5 Last Modified Time

RECID String 15 Record ID

Record Type
The RECTYPE field contains the record type. The following values are possible contents of RECTYPE:

C Additional contact record 0] Organizational chart

E Automated Process attached event P Profile record/extended profile record
H Extended profile header R Referral record

L Linked document

The RECTYPE value H can be linked to records with the RECTYPE value P. Assigning extended information
settings to a profile (assigned to a tab, or extended fields used) creates an H record type to store the settings.
The profile record stores a character string in the Phone field that matches the H record’s ACCOUNTNO field

Page 409 of 463

GoldMine ™

INFOMINE.DBF
Directory: GMBASE
Description: InfoCenter file—stores all data for the InfoCenter
Index File: INFOMINE.MDX

INFOMINE Indexes

Name Key

infomine UPPER(rectype+LEFT(TSECTION,80)+LEFT(TOPIC,10)
infosort sortKey

infotran recType+reclD

infrecid recld

INFOMINE Structure

Field Name Type Len Description
ACCOUNTNO String 20 Account No.
CREATEBY String 8 Creation User
RECTYPE String 10 Record Type
SORTKEY String 20 Sort Key
TSECTION String 100 Section
TOPIC String 80 Topic
KEYWORDS String 80 Keywords
OPTIONS String 10 Options
OPTIONS1 String 20 Optionsl
OPTIONS2 String 20 Options2
LINKEDDOC Memo 1 Linked Document
NOTES Memo 1 Notes
USERREAD String 8 Read Access
USERWRITE String 8 Write Access

Page 410 of 463

GoldMine ™

LASTUSER String 8 Last Modified By
LASTDATE Date 8 Last Modified Date
LASTTIME String 5 Last Modified Time
RECID String 15 Record ID
LOOKUP.DBF
Directory: GMBASE
Description: Lookup file—contains a record of each defined look-up entry
Index File: LOOKUP.MDX
LOOKUP Indexes
Name Key
Lookup UPPER(FIELDName+entry)
Ikurecid recld
LOOKUP Structure
Field Name Type Len Description
FIELDNAME String 11 Field Name
LOOKUPSUPP String 10 Lookup Options
ENTRY String 40 Description
RECID String 15 Record ID
MAILBOX.DBF
Directory: GMBASE

Description: E-mail Center mailbox file—stores all GoldMine e-mail

Index File: MAILBOX.MDX

MAILBOX Indexes

Name Key

mboxlink LinkRecld

Page 411 of 463

GoldMine ™

mboxuser userld+folder+FOLDER2+DTOS(MAILDATE)

mbxrecid recld

MAILBOX Structure

Field Name Type Len Description
LINKRECID String 15 Linked Record ID
FLAGS String 8 See: Flags
USERID String 8 User Name
FOLDER String 20 See: Folder
FOLDER2 String 20 Subfolder
ACCOUNTNO String 20 Account No.
CREATEON Date 8 Creation Date
MAILSIZE String 8 Mail Size
MAILDATE Date Mail Date
MAILTIME String 8 Mail Time
MAILREF String 100 Reference
RFC822 Memo 1 Entire Mail Message
RECID String 15 Record ID

Flags

The FLAGS field is a String type, but actually stores a number. When the number is converted to binary, the
following rules apply:

Bit On Off

1 Read Not Read

2 In History Not in History

3 Outbound Inbound

4 Attachments No Attachments

Folder

The FOLDER field contains the name of the folder in which mail is stored. GoldMine uses the following
predefined folders:

Page 412 of 463

GoldMine ™

X-GM-INBOX -Inbox
X-GM-OUTBOX -Outbox
X-GM-TEMPLATES -Templates
OPMGR.DBF
Directory: GMBASE

Description: ~ Opportunity Manager file—stores all data maintained in the Opportunity Manager

Index File: OPMGR.MDX

OPMGR Indexes

Name Key

OpMgr UPPER(recType+user|D+stage)
Opld opld+recType

OPACCNO ACCOUNTNO+RECTYPE+OPID
OpRecID reclD

OPMGR Structure

Field Name Type Len Description
OPID String 15 Opportunity ID
RECTYPE String 3

ACCOUNTNO String 20 Account No.
USERID String 8 User Name
FLAGS String 10 Flags
COMPANY String 40 Company
CONTACT String 40 Contact
NAME String 50 Name
STATUS String 50 Status
CYCLE String 50 Cycle

Page 413 of 463

GoldMine ™

STAGE String 30 Stage
SOURCE String 30 Source

F1 String 20

F2 String 20

F3 String 10

STARTDATE Date 8 Start Date
CLOSEDDATE Date 8 Close Date
CLOSEBY Date 8 Close by
FORAMT Float 10 For Amount
FORPROB Integer 4 Probability
CLOSEAMT Float 10 Close Amount
Notes Memo 1 Notes
RECID String 15 Record ID

Record Type

The following OpMgr rectypes are valid, where x represents O for opportunity records, or P for project

records:
0] Opportunity header record XT | Team member
P Project header record X Issue
xC | Contact xF Field
xP | Competitor xK | Task
Directory: GMBASE
Description: Personal Rolodex file—contains a record of each entry in the user’s Rolodex
Index File: PERPHONE.MDX

PERPHONE Indexes

Name

Key

Page 414 of 463

GoldMine ™

Perphone UPPER(recType+userlD+contact)

pphrecid recld

PERPHONE Structure

Field Name Type Len Description
RECTYPE String 1 Record Type
USERID String 8 User Name
STATUS String 2 Status
CONTACT String 30 Contact Name
PHONE1 String 16 Phone Number
RECID String 15 Record ID
RESITEMS.DBF
Directory: GMBASE
Description: Resources file—stores data regarding equipment, facilities, and other resources that you

can schedule from the Resources’ Master File.

Index File: RESITEMS.MDX

RESITEMS Indexes

Name Key
resource name
rscrecid recid

RESITEMS Structure

Field Name Type Len Description
NAME String 8 Name

CODE String 10 Code
RESDESC String 40 Description
CUSTODIAN String 8 Custodian
NOTES Memo 1 Notes

Page 415 of 463

GoldMine ™

RECID String 15 Record ID
SPFILES.DBF
Directory: GMBASE
Description: Contact files directory—contains a record for each GoldMine contact set
Index File: SPFILES.MDX
SPFILES Index
Name Key
Spfiles UPPER(dirPath)
Sflcode dirCode
sflrecid recld
SPFILES Structure
Field Name Type Len Description
DIRNAME String 35 Contact file description
DIRPATH String 100 Contact file path
USERID String 8 Contact file user
DIRCODE String 10 Contact Set Code
DBPASSWORD String 36 Database Password
DRIVER String 25 Database Driver
RECID String 15 Record ID

Page 416 of 463

GoldMine™

SQL Database Structures

Overview

Third-party developers are encouraged to integrate their products with GoldMine, thereby enhancing both
products. If you design a commercial program that works with GoldMine, please contact GoldMine so we can
include your program in our Enhancement Guide.

This chapter describes the file organization and structures of Goldmine SQL format databases in an SQL format.
Each database file is listed separately and includes its associated index files, database structure, and special
notes. For information about working with the GoldMine Xbase format database, see Xbase Database
Structures. The following pages describe the database structures of most GoldMine .DBF files. This chapter does
not include a discussion of every database. Security and system database files are not included in this section.
You should not interface with these files. For an in-depth discussion on interfacing with GoldMine, visit the
Public.GoldMine.Programming newsgroup, which you can access directly from http://www.goldmine.com/.

If you will be developing an application to read and write to the GoldMine databases, we recommend that you
use Dynamic Data Exchange (DDE) as described in Working with Dynamic Data Exchange (DDE) or the functions
contained within GMxs32.DLL, as described in Using GMXS32.DLL for Database Access and Sync Log Updates. If
you choose to write directly to our files without using DDE, you must be aware of the field/index structure and
synchronization methodology used by GoldMine to ensure full compatibility.

To view how GoldMine uses RECTYPEs for various purposes, create a contact set, create sample contacts, and
then create sample activities, and so on. Place obvious values in each of the fields. Use a database viewing
utility, such as MS-Access, MSSQL Enterprise Manager, or isql to view the sample records.

TIP: Do not view your live contact database with an external application. Do not edit GoldMine
fields with an external application.

CAL Table

Description: Calendar file—contains a record for each scheduled activity. The different record types
are distinguished by the contents of the RECTYPE field. Different RECTYPEs may use each
field for a different purpose.

Page 417 of 463

http://www.goldmine.com/

GoldMine ™

CAL Indexes
Name Index Tags Unique?
CALCONT ACCOUNTNO+RECTYPE+ONDATE+ONTIME+RECID No
CAL RECTYPE+USERID+ONDATE+ONTIME+RECID No
CALDATE USERID+ONDATE+ONTIME+RECID No
CALPROB RECTYPE+USERID No
CALALARM ALARMFLAG+USERID+ALARMDATE+ALARMTIME No
CALRLINK LOPRECID+RECTYPE+ONDATE+ONTIME No
CALRECID RECID Yes

CAL Structure

Field Name Type Len Description

USERID String 8 User Name

ACCOUNTNO String 20 Account Number of linked contact
ONDATE Date 8 Activity date

ONTIME String 5 Activity Time

ENDDATE Date 8 Ending Date of Scheduled Activity
ALARMFLAG String 1 Alarm Flag

ALARMTIME String 5 Alarm Time

ALARMDATE Date 8 Alarm Date

ACTVCODE String 3 Activity Code

RSVP String 1 RSVP Notification

DURATION Integer 3 Duration/Probability

RECTYPE String 1 See: Record Type

ACONFIRM String 3 Meeting Confirmation

APPTUSER String 10 Meeting Confirmation User
STATUS String 4 First character is flag, second char =1 if notes exist
DIRCODE String 10 DirCode of the current contact file

Page 418 of 463

GoldMine ™

NUMBER1 Integer 11 Sales Potential

NUMBER2 Integer 8 Units of a Forecasted Sale
COMPANY String 60 Company/Contact Name
REF String 80 Reference

NOTES Memo 1 Notes

LINKRECID String 15 Linked Record ID
IdoCrecid String 15 Reserved for future use
LOPRECID String 15 Linked Opportunity Manager Record ID
CREATEBY String 8 Created by User
CREATEON Date 8 Creation Date

CREATEAT String 6 Creation Time

LASTUSER String 8 Last Modified By
LASTDATE Date 8 Last Modified Date
LASTTIME String 5 Last Modified Time

RECID String 15 Record ID

Record Type

The RECTYPE field contains the calendar’s activity type. The following values are possible contents of

RECTYPE:
A Appointment F Literature fulfillment Sales potential
C Call Back M Message Next action
D To-do o Other
E Event Q Queued e-mail
CONTACT1 Table
Description: Contact file—contains the main fields of contact records

CONTACT1 Indexes

Name Index Tags

Unique?

Page 419 of 463

GoldMine ™

CONTACC ACCOUNTNO No
CONTCNTY U_COUNTRY+U_STATE+ACCOUNTNO No
CONTCOMP U_COMPANY+ACCOUNTNO No
CONTNAME U_CONTACT+ACCOUNTNO No
CONTZIP ZIP+ACCOUNTNO No
CONTCITY U_CITY+ACCOUNTNO No
CONTKEY1 U_KEY1+ACCOUNTNO No
CONTKEY2 U_KEY2+ACCOUNTNO No
CONTKEY3 U_KEY3+ACCOUNTNO No
CONTKEY4 U_KEY4+ACCOUNTNO No
CONTKEYS5 U_KEY5+ACCOUNTNO No
CONTLAST U_LASTNAME+ACCOUNTNO No
CONTSTAT U_STATE+U_CITY+ACCOUNTNO No
CONTPHON PHONE1+ACCOUNTNO No
CN1RECID RECID Yes

CONTACT1 Relations

Related File->Field

Contactl Field

Contact2->AccountNo

Contact1->AccountNo

ContHist->AccountNo

Contactl->AccountNo

ContSupp->AccountNo

Contact1l->AccountNo

Cal->AccountNo

Contact1->AccountNo

CONTACT1 Structure

Field Name Type Len Description
ACCOUNTNO String See: Account Number
COMPANY String 40 Company Name
CONTACT String 40 Contact Name
LASTNAME String 15 Contact’s Last Name

Page 420 of 463

GoldMine ™

DEPARTMENT String 35 Department

TITLE String 35 Contact Title

SECR String 20 Secretary
PHONE1 String 25 Phone 1

PHONE2 String 25 Phone 2

PHONE3 String 25 Phone 3

FAX String 25 Fax

EXT1 String 6 Phone Extension 1
EXT2 String 6 Phone Extension 2
EXT3 String 6 CvAi;E:::\;jjgvisi?oiss EXT3 to maintain compatibility
EXT4 String 6 Phone Extension 3
ADDRESS1 String 40 Address 1
ADDRESS2 String 40 Address 2
ADDRESS3 String 40 Address 3

CITY String 30 City

STATE String 20 State

ZIP String 10 Zip Code
COUNTRY String 20 Country

DEAR String 20 Dear (Salutation)
SOURCE String 20 Source (Lead)
KEY1 String 20 Key 1

KEY2 String 20 Key 2

KEY3 String 20 Key 3

KEY4 String 20 Key 4

KEY5 String 20 Key 5

STATUS String 3 See: Internal Status
NOTES Memo Notes

Page 421 of 463

GoldMine ™

MERGECODES String 20 Merge Codes for primary contact
CREATEBY String 8 Creation User

CREATEON Date 8 Creation Date

CREATEAT String 5 Creation Time

OWNER String 8 Record Owner

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 6 Last Modified Time

U_COMPANY String 40 Upper-case shadow of Company field
U_CONTACT String 40 Upper-case shadow of Contact field
U_LASTNAME String 15 Upper-case shadow of contact’s Last Name field
U_CITY String 30 Upper-case shadow of City field
U_STATE String 20 Upper-case shadow of State field
U_COUNTRY String 20 Upper-case shadow of Country field
U_KEY1 String 20 Upper-case shadow of Key 1 field
U_KEY2 String 20 Upper-case shadow of Key 2 field
U_KEY3 String 20 Upper-case shadow of Key 3 field
U_KEY4 String 20 Upper-case shadow of Key 4 field
U_KEY5 String 20 Upper-case shadow of Key 5 field
RECID String 15 Record ID

Account Number

The ACCOUNTNO field contains the following information:

Positions Value

1-6 Date in YYMMDD format

7-11 Seconds since midnight

12-17 Randomly generated

18-20 First three characters of the contact or company name

Page 422 of 463

GoldMine ™

Internal Status

O Position 1 of the Internal Status field keeps track of the type of phone number for the contact. If the first
character is U, the phone numbers are formatted for USA-style phone numbers: (999)999-9999.

O Position 2 indicates the curtain level (O=none, 1=partial, 2=full).

O Position 3 indicates a record alert is present if the value is 1.

CONTACT2 Table

Description: Contact file—contains the additional fields of contact records. Each complete contact record
has a record in this file. User-defined field data is stored in this file.

CONTACT2 Index

Name Index Tags

Unique?

CONTACT2 ACCOUNTNO

CN2RECID RECID

CONTACT2 Structure

Field Name Type Len Description
ACCOUNTNO String 20 Account Number
CALLBACKON Date 8 Call Back Date
CALLBACKAT String 8 Call Back Time (unused compatibility field)
CALLBKFREQ Smallint 3 Call Back Frequency
LASTCONTON Date 8 Last Contact Date
LASTCONTAT String 8 Last Contact Time
LASTATMPON Date 8 Last Attempt Date
LASTATMPAT String 8 Last Attempt Time
MEETDATEON Date 8 Meeting Date
MEETTIMEAT String 8 Meeting Time
COMMENTS Date 65 Comments
PREVRESULT String 65 Previous Results
NEXTACTION String 65 Next Action
ACTIONON Date 8 Next Action Date

Page 423 of 463

GoldMine ™

CLOSEDATE Date 8 Expected Close Date
USERDEFO1 String 10 User Defined 1
USERDEF02 String 10 User Defined 2
USERDEF03 String 10 User Defined 3
USERDEF04 String 10 User Defined 4
USERDEF05 String 10 User Defined 5
USERDEFO06 String 10 User Defined 6
USERDEFQ7 String 10 User Defined 7
USERDEF08 String 10 User Defined 8
USERDEFQ9 String 10 User Defined 9
USERDEF10 String 10 User Defined 10
RECID String 15 Record ID
CONTGRPS Table
Description: Groups file—the CONTGRPS file is used for both the group header, which defines each group,

and members for each group.

CONTGRPS Indexes

Name Index Tags Unique?
GROUPNO USERID+U_CODE+RECID No
GROUPACC ACCOUNTNO+USERID No
GRPRECID RECID Yes

CONTGRPS Structure (header records)

Field Name Type Len Description
USERID String 15 Group user
CODE String 8 Group code
ACCOUNTNO String 20 See: Header Info
REF String 24 Group reference

Page 424 of 463

GoldMine ™

U_CODE String 8 Upper-case shadow of member sort value
RECID String 15 Record ID/Group number
Header Info

The ACCOUNTNO field contains the following information when the CONTGRPS record is a group header

record:
Positions Value
1_8 “x M”
15-20 Total members in group

The next available group number is stored in the CODE field in the first physical record in CONTGRPS.DBF.

CONTGRPS Structure (member records)

Field Name Type Len Description
USERID String 15 Group number (from group header)
CODE String 8 Member sort value
ACCOUNTNO String 20 Linked contact accountno
REF String 24 Member reference
U_CODE String 8 Upper-case shadow of member sort value
RECID String 15 Record ID
CONTHIST Table
Description: Contact history file—contains a record for each completed activity

CONTHIST Indexes

Name Index Tags Unique?

CONTHIST ACCOUNTNO+ONDATE+RECID No

CONTHUSR USERID+SRECTYPE+ONDATE+RECID No

CNHRLINK LOPRECID+ONDATE No

CNHRECID RECID Yes

Page 425 of 463

GoldMine ™

CONTHIST Structure

Field Name Type Len Description

USERID String 8 User

ACCOUNTNO String 20 Account No.

SRECTYPE String 1 First character of RecType

RECTYPE String 10 See: Record Type

ONDATE Date 8 Action Date

ONTIME String 5 Action Time

ACTVCODE String 3 Activity Code

RESULTCODE String 3 Result Code

STATUS String 2 First character is flag, second character =1 if notes exist
DURATION String 8 Duration

UNITS String 8 Units of a Forecasted Sale

REF String 80 Reference

Field Name Type Len Description

NOTES Memo 1 Notes

LINKRECID String 15 Linked Record ID

LOPRECID String 15 Linked Opp. Mgr. Record

CREATEBY String 8 Creation User

CREATEON Date 8 Creation Date

CREATEAT String 6 Creation Time

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 6 Last Modified Time

RECID String 15 Record ID

NUMBER1 Float Store value from the DURATION field in numeric format
NUMBER2 Float Store value from the UNITS field in numeric format
EXT String 5 Notes or email message format

Page 426 of 463

GoldMine ™

COMPLETEDID String 15 The CAL record ID of the completed activity

Record Type
The RECTYPE field contains the record type. The following values are possible contents of RECTYPE:

C Additional contact record o Organizational chart

E Automated Process attached event P Profile record/extended profile record
H Extended profile header R Referral record

L Linked document

The RECTYPE value H can be linked to records with the RECTYPE value P. Assigning extended information
settings to a profile (assigned to a tab or extended fields used) creates an H record type to store the settings.
The profile record stores a character string in the PHONE field that matches the H record’s ACCOUNTNO field.

CONTSUPP Table

Description: Supplementary contact set—contains a record for each additional contact record, referral and
profile record. The different record types are distinguished by the contents of the RECTYPE
field. Different RECTYPEs may use each field for a different purpose.

CONTSUPP Indexes

Name Index Tags Unique?

CONTSUPP ~ ACCOUNTNO+RECTYPE+U_ No
CONTACT+RECID

CONTSPFD RECTYPE+U_CONTACT+U_CONTSUPREF No

CNSRECID RECID Yes

CONTSUPP Structure

Field Name Type Len Description

ACCOUNTNO String 20 Account No.

RECTYPE String 1 See: Record Type

CONTACT String 30 Contact Name/Profile

TITLE String 35 Contact Title/Referral’s Account Number
CONTSUPREF String 35 Reference

Page 427 of 463

GoldMine ™

DEAR String 20 Dear (Salutation)

PHONE String 20 Phone

EXT String 6 Phone Extension

FAX String 20 FAX number

LINKACCT String 20 Linked Account

NOTES 1 Notes

ADDRESS1 String 40 Additional Contact Address 1
ADDRESS2 String 40 Additional Contact Address 2
ADDRESS3 String 40 Additional Contact Address 3

CITy String 30 Additional Contact City

STATE String 20 Additional Contact State

ZIP String 10 Additional Contact Zip

COUNTRY String 20 Additional Contact Country
MERGECODES String 20 Merge Codes

STATUS String 4 First character is flag, second char =1 if notes exist
LINKEDDOC Memo 10 Linked Document

LASTUSER String 8 Last Modified By

LASTDATE Date 8 Last Modified Date

LASTTIME String 5 Last Modified Time

U_CONTACT String 30 Upper-case shadow of Contact field
U_CONTSUPREF String 35 Upper-case shadow of Reference field
RECID String 15 Record ID

Record Type

The RECTYPE field contains the record type. The following values are possible contents of RECTYPE:

C Additional contact record o Organizational chart
E Automated Process attached event P Profile record/extended profile record
H Extended profile header R Referral record

L Linked document

Page 428 of 463

GoldMine ™

The RECTYPE value H can be linked to records with the RECTYPE value P. Assigning extended information
settings to a profile (assigned to a tab or extended fields used) creates an H record type to store the settings.
The profile record stores a character string in the PHONE field that matches the H record’s ACCOUNTNO field.

INFOMINE Table

Description: InfoCenter file—stores all data for the InfoCenter

INFOMINE Indexes

Name Index Tags Unique?

INFOMINE RECTYPE+U_TSECTION+U_TOPIC No

INFOSORT SORTKEY No
INFOTRAN RECTYPE+RECID No
INFRECID RECID Yes

INFOMINE Structure

Field Name Type Len Description
ACCOUNTNO String 20 Account No.
CREATEBY String 8 Creation User
RECTYPE String 10 Record Type
SORTKEY String 20 Sort Key
TSECTION String 100 Section
TOPIC String 80 Topic
KEYWORDS String 80 Keywords
OPTIONS String 10 Options
OPTIONS1 String 20 Optionsl
OPTIONS2 String 20 Options2
LINKEDDOC Memo 1 Linked Document
NOTES Memo 1 Notes
USERREAD String 8 Read Access
USERWRITE String 8 Write Access

Page 429 of 463

GoldMine ™

LASTUSER String 8 Last Modified By
LASTDATE Date 8 Last Modified Date
LASTTIME String 5 Last Modified Time
U_TSECTION String 100 Upper-case shadow of Section field
U_TOPIC String 80 Upper-case shadow of Topic field
RECID String 15 Record ID
LOOKUP Table
Description: Lookup file—contains a record of each defined look-up entry

LOOKUP Indexes

Name Index Tags Unique?
LOOKUP FIELDNAME+U_ENTRY No
LKURECID RECID Yes
LOOKUP Structure
Field Name Type Len Description
FIELDNAME String 11 Field Name
LOOKUPSUPP String 10 Lookup Options
ENTRY String 40 Description
U_ENTRY String 40 Upper-case shadow of Description field
RECID String 15 Record ID
MAILBOX Table
Description: E-mail Center mailbox file—stores all GoldMine e-mail

MAILBOX Indexes

Name Index Tags Unique?
MBOXLINK LINKRECID No
MBOXUSER USERID+FOLDER+FOLDER2+MAILDATE No

Page 430 of 463

GoldMine ™

MBXRECID RECID Yes
MAILBOX Structure
Field Name Type Len Description
LINKRECID String 15 Linked Record ID
FLAGS String 8 See: Flags
USERID String 8 User Name
FOLDER String See: Folder
FOLDER2 String 20 Subfolder
ACCOUNTNO String 20 Account No.
CREATEON Date 8 Creation Date
MAILSIZE String 8 Mail Size
MAILDATE Date Mail Date
MAILTIME String 8 Mail Time
MAILREF String 100 Reference
RFC822 Memo 1 Entire Mail Message
RECID String 15 Record ID
Flags

The FLAGS field is a String type, but actually stores a number. When the number is converted to binary, the
following rules apply:

Bit On Off

1 Read Not Read

2 In History Not in History

3 Outbound Inbound

4 Attachments No Attachments

Folder

The FOLDER field contains the name of the folder in which mail is stored. GoldMine uses the following
predefined folders:

Page 431 of 463

GoldMine ™

X-GM-INBOX -Inbox
X-GM-OUTBOX -Outbox
X-GM-TEMPLATES -Templates

OPMGR Table

Description:

Opportunity Manager file—stores all data maintained in the Opportunity Manager

OPMGR Indexes

Name Index Tags Unique?
OPMGR RECTYPE+USERID+U_STAGE No
OPID OPID+RECTYPE No
OPACCNO ACCOUNTNO+RECTYPE+OPID No
OPRECID RECID Yes

OPMGR Structure

Field Name Type Len Description
OPID String 15 Opportunity
ID
RECTYPE String 3
ACCOUNTNO String 20 Account No.
USERID String 8 User Name
FLAGS String 10 Flags
COMPANY String 40 Company
CONTACT String 40 Contact
NAME String 50 Name
STATUS String 50 Status
CYCLE String 50 Cycle
STAGE String 30 Stage
SOURCE String 30 Source

Page 432 of 463

GoldMine ™

F1 String 20

F2 String 20

F3 String 10

STARTDATE Date 8 Start Date

CLOSEDDATE Date 8 Close Date

CLOSEBY Date 8 Close by

FORAMT Float 10 For Amount

FORPROB Integer 4 Probability

CLOSEAMT Float 10 Close Amount

Notes Memo 1 Notes
Upper-case

U_STAGE String 30 shadow of
Stage field

RECID String 15 Record ID

Record Type

The following OpMgr rectypes are valid, where x represents O for opportunity records, or P for project

records:
(0] Opportunity header record xT Team member
P Project header record xl Issue
xC Contact xF Field
xP Competitor xK Task
PERPHONE Table
Description: Personal Rolodex file—contains a record of each entry in the user’s Rolodex

PERPHONE Indexes

Name Index Tags Unique?
PERPHONE RECTYPE+USERID+U_CONTACT No
PPHRECID RECID Yes

Page 433 of 463

GoldMine ™

PERPHONE Structure

Field Name Type Len Description
RECTYPE String 1 Record Type
USERID String 8 User Name
STATUS String 2 Status
CONTACT String 30 Contact Name
PHONE1 String 16 Phone Number
U_CONTACT String 30 Upper-case shadow of Contact field
RECID String 15 Record ID
RESITEMS Table
Description: Resources file—stores data regarding equipment, facilities, and other resources that you can

schedule from the Resources’ Master File.

RESITEMS Indexes

Name Index Tags Unique?

RESITEMS NAME No

RSRECID RECID Yes
RESITEMS Structure

Field Name Type Len Description

NAME String 8 Name

CODE String 10 Code

RESDESC String 40 Description

CUSTODIAN String 8 Custodian

NOTES Memo 1 Notes

RECID String 15 Record ID
SPFILES Table

Description: Contact files directory—contains a record for each GoldMine contact set

Page 434 of 463

GoldMine ™

SPFILES Index

Name Index Tags Unique?
SFLCODE DIRCODE No
SFLRECID RECID Yes
SPFILES U_DIRPATH No

SPFILES Structure
C Type Len Description
DIRNAME String 35 Contact file description
DIRPATH String 100 Contact file path
USERID String 8 Contact file user
DIRCODE String 10 Contact Set Code
DBPASSWORD String 36 Database Password
DRIVER String 25 Database Driver
U_DIRPATH String 100 Upper-case shadow of Contact file path
RECID String 15 Record ID

Page 435 of 463

GoldMine™

Appendix: Code Examples

Overview

This appendix contains code examples for the GMXxs32.DLL and GMXMLAPI.DLL in the following programming
languages:

O C++
O Visual Basic
O Delphi

GMXS32.DLL Code Examples

This section shows sample codes for C++, Visual Basic, and Delphi.

C++ Examples

The following C++ files have been provided as part of this package:

GMS5S32.H: C Header file containing all of the GMxs32.DLL function prototypes.

Function prototypes

[177777177777777777777/77/77

//

// gm5s32.h

// Purpose : GM5S32.DLL interface

#ifndef __GM5S32_H

#define __GM5S32_H

#ifdef __cplusplus
extern "c" {

#endif

// Tlicensing structure passed to GMW_GetLicenselInfo

typedef struct
{
char szLicensee[60]; // licensee name
char szLicNo[20]; // master serial number
char szSiteName[20]; // undocked site name
Tong iLicUsers; // Ticensed users

Page 436 of 463

GoldMine ™

long isqQLUsers; // Ticensed SQL users
long iGSSites; // Ticense GoldSync sites
long isDemo; // is demo install
long isServerLic; // is primary Tlicense ('D' or 'E')
long isRemotelLic; // is remote license ('U' or 's')
long 1isUSALicense; // is USA license (1=US,128/32
// bit, O=nonus, 32-bit only)
long iDLLVersion; // the DLL version (400822)
long iReservedl;
Tong 1iReserved?;
Tong szReserved[100];
} GMw_LicInfo;
// DLL initialization functions
int _stdcall GMw_LoadBDE(char *szSysDir, char *szGoldDir, char
*szCommonDir, char *szUser =0, char *szPass =0);
int _stdcall GMW_uUnloadBDE(Q);
int _stdcall GMwW_SetsSQLUserPass(char *szUserName, char *szPassword);
int _stdcall GMW_GetLicenseInfo(GMW_LicInfo *pLic);
Tong _stdcall GMW_IsUserGroupMember(char *szGroup, char *szUseriD);
// DataStream functions
// DBF workarea functions
Tong _stdcall GMW_DB_Open(char *szTableName);
Tong _stdcall GMw_DB_Close(long pArea);
Tong _stdcall GMW_DB_Append(long pArea, char* szRecID);
long _stdcall GMw_DB_Replace(long pArea, char* szField, char *szbata, int
iAddTo);
long _stdcall GMW_DB_Delete(long pArea);
long _stdcall GMW_DB_Unlock(long pArea);
Tong _stdcall GMw_DB_Read(long pArea, char *szField, char *szBuf, int
iBufsSize);
Tong _stdcall GMW_DB_Top (long pArea);
long _stdcall GMW_DB_Bottom(long pArea);
long _stdcall GMW_DB_SetOrder(Tong pArea, char *szTag);
long _stdcall GMW_DB_Seek(long pArea, char®* szParam);
Tong _stdcall GMW_DB_Skip(long pArea, int nSkip =1);
long _stdcall GMW_DB_Goto(long pArea, char *szRecNo);
long _stdcall GMW_DB_Move(long pArea, char *szCommand, char* szParam);
long _stdcall GMW_DB_Search(long pArea, char *szExpr, char *szRecID);
long _stdcall GMW_DB_Filter(long pArea, char *szFilterExpr);
long _stdcall GMW_DB_Range(long pArea, char *szMin, char* szMax, char*
szTag);
Tong _stdcall GMW_DB_RecNo(long pArea, char *szRecID);
Tong _stdcall GMW_DB_IsSQL(long pArea);
// Quick one-field access functions
// (these are slow -- do not use in Toops)
Tong _stdcall GMw_DB_QuickSeek(char *szTableName, char *szIndex, char
*szSeekvalue, char *szRecID);
Tong _stdcall GMw_DB_QuickRead(char *szTableName, char *szRecID, char
*szField, char *szvalue, int iLen);
Tong _stdcall GMw_DB_QuickReplace(char *szTableName, char *szRecID, char
*szField, char *szvalue, int iAddTo =0);

Page 437 of 463

GoldMine ™

// Sync functions

int _stdcall GMw_SyncStamp(char *szStamp, char *szoutBuf);

int _stdcall GMw_UpdateSyncLog(char *szTable, char *szRecID,

char *szField, char *szAction);

int _stdcall GMW_ReadImpTLog(char *szFile, int bDelwhenDone, char
*szStatus);

char* _stdcall GMwW_NewRecID(char *pBuff, char *puser);

// misc functions

long _stdcall GMwW_UserAccess(long ioption);

struct GMwnv;

typedef GMWNvV *HGMNV;

// GM5S32.DLL business logic functions

long _stdcall GMW_Execute(const char *szFunc, HGMNV hgmnv);

// create, release & copy name value containers

HGMNV __stdcall GMW_NV_Create();

HGMNV __stdcall GMwW_NV_CreateCopy (HGMNV hgmnv) ;

void __stdcall GMW_NV_Delete(HGMNV hgmnv) ;

void __stdcall GMW_NV_Copy(HGMNV hgmnvDestination , HGMNV hgmnvSource);
// get and set value by name

const char* __stdcall GMW_NV_Getvalue(HGMNV hgmnv, const char* name, const
char* defaultvalue);

void __stdcall GMW_NV_Setvalue(HGMNV hgmnv, const char* name, const char*
value);

// Check if name exists. returns: 0 failed, 1 success

Tong __stdcall GMW_NV_NameExists(HGMNV hgmnv, const char* name);

// remove name(s)

void __stdcall GMW_NV_EraseName(HGMNV hgmnv, const char* name);

void __stdcall GMW_NV_EraseATlT(HGMNV hgmnv);

// iterate over name-value 1list (1 based)

long __stdcall GMW_NV_Count(HGMNV hgmnv) ;

const char* __stdcall GMW_NV_GetNameFromIndex (HGMNV hgmnv, long index);
const char* __stdcall GMW_NV_GetvalueFromIndex(HGMNV hgmnv, long index);
void __stdcall GMW_NV_SetStr(HGMNV hgmnv, char dimName, char dlmval,const
char* pszStr);

#ifdef __cplusplus
/* close extern "C" { */
b

#endif

#endif // _GM5S32_H

Logging In

The following example uses C++ to access the GM5S32.DLL functions The DLL is dynamically loaded and its
function addresses are retrieved using the GetProcAddress API.

// prototypes

typedef int (*fnGMW_LoadBDE) (char *szSysDir, char *szGoldbir, char
*szCommonDir, char *szUser);

typedef int (*fnGMw_UnloadBDE) ();

void GM5S32_DLL_Test()

Page 438 of 463

GoldMine ™

{
// load the GM5S32.DLL
HMODULE hLib = LoadLibrary("GM5S32.DLL");
ifC hLib)
{
// get proc addresses of GM5S32 functions
fnGMW_LoadBDE GMW_LoadBDE = (fnGMW_LoadBDE) GetProcAddress/(
(HINSTANCE) hLib,"GMW_LoadBDE");
fnGMW_UnloadBDE GMW_UnloadBDE = (fnGMW_UnloadBDE)
GetProcAddress ((HINSTANCE) hLib,"GMw_uUnToadBDE");
// initialize the API
GMW_LoadBDE("d:\\gm4", "d:\\gm4", "d:\\gmd4\\demo", szUser, szPass);
// do whatever..............
// shut down API
GMW_UnToadBDE() ;
// unload the DLL
FreeLibrary(ChLib);
}

return;

}

Creating a Contact with Business Logic/
Enumerating a Name Value Container/DataStream

The following DataStream example assumes that GM5532.DLL has already been loaded and the function addresses
have been retrieved. The first example retrieves a relatively small number of records into a fixed-size packet
buffer, while the second example retries a large number of records using 100-record packet buffers.

void DataStreamDLL_Example()

{

Tong iHandle = 0;
Tong i0K = 0;
// Example 1:
// Get a small number of records and use a fixed size buffer
//
// return all contact names at GoldMine Inc.
//
char *szsQL1l = "SELECT Contact FROM Contactl "

"WHERE U_COMPANY LIKE 'GOLDMINE INC.%' "

"ORDER BY U_CONTACT";
// send DataStream SQL Query
if((iHandle = GMw_DS_Query(szsSQL1l)) > 0)

{

// allocate buffer for 200 contacts at 40 chars per/name
long 1iBufSize = 200%40 +20;
char *szBuf = new char[iBufSize];

// fetch first 200 records into buffer
i0K = GMW_DS_Fetch(iHandle, szBuf, iBufSize, 200);

Page 439 of 463

GoldMine ™

// do whatever with the data
obS(szBuf);

// make sure to delete the buffer
delete [] szBuf; szBuf = NULL;

// close the query
i0OK = GMW_DS_Close(iHandle); iHandle = 0;
ks

// Example 2:
// Get a large number of records in 100-record buffers
//
// return all serial numbers beginning with "123....'
//

char *szsSQL2 = "SELECT ContSupRef, Addressl, AccountNo FROM ContSupp "
"WHERE RECTYPE = 'P' AND U_CONTACT = 'SERIAL NUMBER' "

"AND U_ContSupRef Like '123%' "

"ORDER BY U_ContSupRef";
// send DataStream SQL Query
if((iHandle = GMW_DS_Query(szsQL2)) > 0)

{

char *szBuf = NULL;

long 1iBufSize = -1;

// read while the first character of result is 0

while((szBuf == NULL || szBuf[0] == '0') && iBufSize)

{

// fetch 100 records and get the buffer size needed
// (set the szBuf and iBufSize parameters to 0 to

// fetch the data and retrieve the buffer size needed)
if(iBufsize = GMwW_DS_Fetch(iHandle, 0, 0, 100))

{

// delete old buffer and allocate new buffer

delete [] szBuf; szBuf = NULL;

szBuf = new char[iBufSize];

// read the data (nGetRecs is 0 since data is already read)
iOK = GMW_DS_Fetch(iHandle, szBuf, iBufSize, 0);

// do whatever with the data

oDS(szBuf);

3

ks

// make sure to delete the buffer

delete [] szBuf; szBuf = NULL;

// close the query

i0OK = GMW_DS_Close(iHandle); iHandle = 0;

3

return;

Page 440 of 463

GoldMine ™

Low-Level Work Area

The following example assumes that GM5532.DLL has already been loaded and the function addresses have been
retrieved. The example opens up the Contactl and ContSupp tables to find a particular contact’s phone number
and primary e-mail address.

//
void DB_FuncsDLL_Example()
{
long i0K = 0;
int iBufSize = 100;
char szBuf[100], szBuf2[100], szAccNo[20+1];
//
// Examplel:
// Find a Jon's phone number and primary e-mail address
//
char *szName = "JON V. FERRARA";
// open contactl and contsupp
long iCl = GMW_DB_Open("Contactl");
long iCS = GMw_DB_Open("ContSupp");
// tables opened ok?
if(icl && ics)
{
// set the Contactl index to ContName
iOK = GMW_DB_SetoOrder(icl, "ContName");
// seek Jon's name
//
if(GMw_DB_Seek(iCl, szName) == 1) // seek exact
{
// read Jon's phone number
i0K = GMW_DB_Read(icl1l, "Phonel™, szBuf, iBufSize);
obs(szBuf); // show phone
// read Jon's AccountNo
iOK = GMW_DB_Read(iCl, "AccountNo", szAccNo, 20+1);
//
// set range to all contact's e-mail records
//
wsprintf(szBuf, "%sPE-MAIL ADDRESS", szAccNo);
i0K = GMW_DB_Range(iCS, szBuf, szBuf, "ContSupp");
// loop through all e-mail records
// and find primary one
while(i0K && (iOK = GMW_DB_Skip(ics, 1)))

// read e-mail address from the ContSupRef field
// and status from Zzip
i0K=GMW_DB_Read(iCS, "contSupRef",szBuf,iBufSize);
i0K=GMW_DB_Read(iCS,"zip", szBuf2, iBufSize);

// show e-mail address
oDS(szBuf);

Page 441 of 463

GoldMine ™

// primary e-mail has a '1l' in the second
// char of zip

if(szBuf2[1l] == '1")

break; // found primary address!

3

}

// close the tables

iOK = GMW_DB_Close(icl); 1icl = 0O;
iOK = GMW_DB_Close(iCS); 1iCS = 0;
ks

return;

H

Visual Basic Examples

This section contains function prototypes and examples.

Function prototypes
' Structure for License function
Public Type GMLicInfo
Licensee As String * 60
LicNo As String * 20
SiteName As String * 20
LicUsers As Long
SQLUsers As Long
GSSites As Long
IsDemo As Long
IsServerLic As Long
IsRemoteLic As Long
ISUSALiC As Long
iReservedl As Long
iReserved2 As Long
iReserved3 As Long
sReserved As String * 100
End Type
' LoadAPI Functions
Public Declare Function GMW_LoadBDE Lib "GM5S32.d11" (Byval sSysDir As
String, Byval sGoldDir As String, Byval sCommonDir As String, Byval sUser
As String, Byval sPassword As String) As Long
Public Declare Function GMW_UnloadBDE Lib "GM5S32.d11" () As Long
Public Declare Function GMw_SetSQLUserPass Lib "GM5S32.d11" (Byval
sUserName As String, Byval sPassword As String) As Long
' Business logic functions
Name-Value parameter passing to business logic function GMW_Execute(
Public Declare Function GMW_Execute Lib "GM5S32.d11" (Byval szFunc As
String, Byval GMPtr As Any) As Long
Public Declare Function GMW_NV_Create Lib "GM5S32.d11" () As Long

Page 442 of 463

GoldMine ™

Public Declare Function GMW_NV_CreateCopy Lib "GM5S32.d11" (Byval hgmnv As
Long) As Long

Public Declare Function GMW_NV_Delete Lib "GM5S32.d11" (Byval hgmnv As
Long) As Long

Public Declare Function GMW_NV_Copy Lib "GM5S32.d11" (Byval
hgmnvDestination As Long, Byval hgmnvSource As Long) As Long

Public Declare Function GMw_GetLicenseInfo Lib "GM5S32.d11" (ByRef LicInfo
As Any) As Long

Public Declare Function GMW_NV_Getvalue Lib "GM5S32.d11" (Byval hgmnv As
Long, Byval name As String, Byval Defaultvalue As String) As Long

Public Declare Function GMW_NV_Setvalue Lib "GM5S32.d11" (Byval hgmnv As
Long, Byval name As String, Byval value As String) As Long

Public Declare Function GMW_NV_NameExists Lib "GM5S32.d11" (Byval hgmnv As
Long, Byval name As String) As Long

Public Declare Function GMW_NV_EraseName Lib "GM5S32.d11" (Byval hgmnv As
Long, Byval name As String) As Long

Public Declare Function GMW_NV_EraseAll Lib "GM5S32.d11" (Byval hgmnv As
Long) As Long

Public Declare Function GMW_NV_Count Lib "GM5S32.d11" (Byval hgmnv As
Long) As Long

Public Declare Function GMW_NV_GetNameFromIndex Lib "GM5S32.dT11" (Byval
hgmnv As Long, Byval index As Long) As Long

Public Declare Function GMW_NV_GetvalueFromIndex Lib "GM5S32.d11" (Byval
hgmnv As Long, Byval index As Long) As Long

' Low-Level DB funcs

Public Declare Function GMW_DB_Open Lib "GM5S32.d11" (Byval sTableName As
String) As Long

Public Declare Function GMW_DB_Close Lib "GM5S32.d11" (Byval TArea As
Long) As Long

Public Declare Function GMW_DB_Append Lib "GM5S32.d11" (Byval 1Area As
Long, Byval sRecID As String) As Long

Public Declare Function GMwW_DB_Replace Lib "GM5S32.d11" (Byval 1Area As
Long, Byval sField As String, Byval sData As String, Byval iAddTo As Long)
As Long

Public Declare Function GMW_DB_Delete Lib "GM5S32.d11" (Byval 1Area As
Long) As Long

Public Declare Function GMW_DB_UnLock Lib "GM5S32.d11" (Byval 1Area As
Long) As Long

Public Declare Function GMW_DB_Read Lib "GM5S32.d11" (Byval TArea As Long,
Byval sField As string, Byval sbuf As String, Byval Tbhufsize As Long) As
Long

Public Declare Function GMW_DB_Top Lib "GM5S32.d11" (Byval 1Area As Long)
As Long

Public Declare Function GMwW_DB_Bottom Lib "GM5S32.d11" (Byval 1Area As
Long) As Long

Public Declare Function GMw_DB_SetOrder Lib "GM5S32.d11" (Byval lArea As
Long, Byval Stag As String) As Long

Public Declare Function GMW_DB_Seek Lib "GM5S32.d11" (Byval TArea As Long,
Byval sParam As String) As Long

Page 443 of 463

GoldMine ™

Public Declare Function GMW_DB_Skip Lib "GM5S32.d11" (Byval TArea As Long,
Byval 1Skip As Long) As Long

Public Declare Function GMW_DB_Goto Lib "GM5S32.d11" (Byval TArea As Long,
Byval sRecNo As String) As Long

Public Declare Function GMW_DB_Move Lib "GM5S32.d11" (Byval TArea As Long,
Byval sCommand As String, Byval sParam As String) As Long

Public Declare Function GMW_DB_Search Lib "GM5S32.d11" (Byval 1Area As
Long, Byval sExpr As String, Byval sRecID As String) As Long

Public Declare Function GMW_DB_Filter Lib "GM5S32.d11" (Byval 1Area As
Long, Byval sFilterExpr As String) As Long

Public Declare Function GMW_DB_Range Lib "GM5S32.d11" (Byval lArea As
Long, Byval sMin As String, Byval sMax As String, Byval Stag As String) As
Long

Public Declare Function GMW_DB_RecNo Lib "GM5S32.d11" (Byval TArea As
Long, Byval sRecID As String) As Long

Public Declare Function GMW_DB_IsSQL Lib "GM5S32.d11" (Byval TArea As
Long) As Long

' Sync funcs

Public Declare Function GMwW_NewRecID Lib "GM5S32.d11" (Byval szRecid As
String, Byval szUser As String) As String

Public Declare Function GMW_UpdateSyncLog Lib "GM5S32.d11" (Byval sTable
As String, Byval sRecID As String, Byval sField As String, byvalsAction As
String) As Long

Public Declare Function GMW_ReadImpTLog Lib "GM5S32.d11" (Byval sFile As
String, 1DelwhenDone As Long, sStatus As String) As Long

Public Declare Function GMW_SyncStamp Lib "GM5S32.d11" (sStamp As String,
soutBuf As String) As Long

' Datastream funcs

PubTlic Declare Function GMw_DS_Query Lib "GM5S32.d11" (Byval sSQL As
String, Byval sFilter As String, Byval sFDIm As String, Byval sRDIm As
String) As Long

Public Declare Function GMW_DS_Range Lib "GM5532.d11" (Byval sTable As
String, Byval Stag As String, Byval sTopLimit As String, Byval sBotLimit
As String, Byval sFields As String, Byval sFilter As String, Byval sFDIm
As String, Byval sRDIm As String) As Long

Public Declare Function GMwW_DS_Fetch Lib "GM5S32.d11" (Byval iHandle As
Long, Byval sbuf As String, Byval iBufSize As Long, Byval iGetRecs As
Long) As Long

Public Declare Function GMwW_DS_Close Lib "GM5S32.d11" (Byval iHandle As
Long) As Long

Public Declare Function GMw_IsUserGroupMember Lib "GM5S32.DLL" (Byval
szGroup As String, Byval szUserID As String) As Long

' Misc WinAPI funcs used by VB with the GM5S32.DLL

Public Declare Sub CopyMemory Lib "kernel32" Alias "RtIMoveMemory"
(Destination As Any, Source As Any, Byval Length As Long)

Public Declare Function 1strlen Lib "kernel32" Alias "lIstrlenA" (Byval
TpString As String) As Long

' NOTE! AT1 GM5S32 Funcs that return a string pointer should be converted

Page 444 of 463

GoldMine ™

using
' the following function. For example:

' sResult = PtrToStr(GMW_NV_Getvalue(lGMPtr, "OutPut", ""))
]

Public Function PtrToStr(Byval 1psz As Long) As String

Dim strout As String

Dim TngStrLen As Long

TngStrLen = TIstrlen(Byval Tpsz)

' If returning Targer packets, you may have to
increase this value

TngStrLen = 64000
If (IngstrLen > 0) Then

strout = String$(lngstrLen, vbNullchar)

call copyMemory(Byval strout, Byval lpsz, lngStrLen)
TngstrLen = TIstrlen(strout)

PtrToStr = Left(strout, IngStrLen)

Else

PtrToStr = ""

End If

strout = ""

End Function

Logging In
Dim 1Result As Long
TResuTt = GMW_LoadBDE("c:\gm5\", "c:\gm5\gmbase\", "c:\gm5\demo\",
"MASTER", "ACCESS")
If 1Result <> 1 Then
MsgBox "Unable to Load API"

Creating a Contact
The following example assumes that GMxs32.DLL has already been loaded and functions have been declared

Dim T1GMPtr As Long, _
sGMnvm As String, _
sGMvle As String, _
TResult As Long
'//Create NV and pass pointer value to a variable
1GMPtr = GMW_NV_Create()
'//Fi11 variables with Nulls
sGMnvm = String$(100, chr(0))
sGMvle = String$(100, chr(0))
'//Set Name Values
TResult = GMW_NV_Setvalue(lGMPtr, "Company", "GoldMine Inc.'™)

TResult = GMW_NV_Setvalue(lGMPtr, "Contact", "calvin Luttrell')
TResult = GMW_NV_Setvalue(1GMPtr, "Phonel", "(310)555-1212")
TResult = GMW_NV_Setvalue(l1GMPtr, "Email", "calvin@gm.com™)
TResult = GMW_NV_Setvalue(1GMPtr, "webSite", "www.gm.com")

Page 445 of 463

GoldMine ™

'//Execute Business Logic Function
TResult = GMW_Execute("writeContact", TGMPtr)

Enumerating a Container
The following example assumes that GMxs32.DLL has already been loaded and functions have been declared

'//Get count from Nv for Toop

TCount = GMW_NV_Count (1GMPtr)

For i = 1 To TCount

'//Get name from NV

txttempl.Text = GMW_NV_GetNameFromIndex(1GMPtr, i)
'//Get value from NV

txttemp2.Text = GMW_NV_GetvalueFromIndex (1GMPtr, i)
'//Display in 1list box

sResult = txttempl.Text + "=" + txttemp2.Text
Listl.AddItem sResult
Next
DataStream

The following example assumes that GM5532.DLL has already been loaded and functions have been declared

sFilter = " '" + UCase$(txtMatchvalue.Text) + "' $ UPPER(ContSupRef)"
iHandle = GMW_DS_Range("ContSupp", "ContSPFD", "PE-MAIL ADDRESS", "PE-MAIL
ADDRESS~", "cContSupref;", sFilter, " ", chr(13) + chr(10))

If iHandle > 0 Then

Do

'The initial fetch will tell us how much to allocate the
'buffer for a 50 record packet
sBuf = String$(1, 0)
iBufSize = GMW_DS_Fetch(iHandle, sBuf, 0, 50)
"Now, we actually grab some data..
sBuf = string$(iBufSize + 1, 0) 'NOTE: You must initialize
'strings to the
'proper size before using.
TRes = GMW_DS_Fetch(iHandle, sBuf, iBufSize, 0)

'Check if more data is available or not
If Left(sBuf, 1) = "3" Then

bEOF = True
Else

bEOF = False
End If

'Add the results to a multi-Tine text box for display
txtResults.Text = txtResults.Text + Mid(sBuf, 14, iBufSize)
Loop until bEOF

Else

MsgBox ("Error: Invalid DS Handle!")

End If

Page 446 of 463

GoldMine ™

Low-Level WorkArea

The following example assumes that GMxs32.DLL has already been loaded and functions have been declared. The
example opens up the CONTACT1 and CONTSUPP tables to find a particular contact’s phone number and primary
e-mail address. The Contact name is stored in a VB Text box.

Dim TCIWA As Long
Dim 1C2WA As Long
Dim TCSWA As Long
Dim 1Res As Long
Dim SAccNo As String
Dim sBufl As String
Dim sBuf2 As String
'Initialization
Tb1Email.Caption =
Tb1Prevresult.Caption =
1bT1Company.Caption = ""
1b1Phone.Caption = ""
SAccNo = String$(21, 0)

'Open data files

1C1wA = GMW_DB_Open("Contactl")

1C2WA = GMW_DB_oOpen('Contact2")

1CSWA = GMW_DB_oOpen('"ContSupp")

'If all files are opened OK...

If (1clwA And 1C2WA And TCSWA) Then

'Set the index order

Res = GMW_DB_SetOrder(1C1wA, "ContName')

'Perform the seek

If GMW_DB_Seek(1C1WA, UCase$(txtContactName.Text)) = 1 Then
'Get the AccountNo for the matching record

1Res = GMW_DB_Read(1C1lwA, "AccountNo", sAccNo, 21)

Get the Phone and Company fields from Contactl
'Pre-allocate string buffer

sBufl = String$(100, 0)

sBuf2 = string$(100, 0)

'Get the field data

TRes = GMW_DB_Read(1C1lwA, "Company", sBuf2, 100)
TRes = GMW_DB_Read(1clwA, "Phonel"™, sBufl, 100)
'Update the display labels

Tb1Company.Caption = Trim(sBuf2)
Tb1Phone.Caption = Trim(sBufl)

' Get the Previous result field from Contact2
'Set the index order

1Res = GMW_DB_SetOrder(1C2wA, "Contact2')
'Perform the seek

If GMW_DB_Seek(1C2WA, sAccNo) = 1 Then

Page 447 of 463

GoldMine ™

'Pre-allocate string buffer

sBufl = String$(100, 0)

'Get the field data

TRes = GMW_DB_Read(1C2wA, "PREVRESULT", sBufl, 100)
'Display the field data

1blPrevresult.Caption = sBufl

End If

' Get the e-mail address from ContSupp
'Pre-allocate string buffer

sBufl = String$(100, 0)

'Initialize the range Timits

sBufl = Left(sAccNo + Space$(20), 20) + "PE-MAIL ADDRESS"
'Set the range and go top

TRes = GMW_DB_Range(1CSwWA, sBufl, sBufl, "ContSupp")
1Res = GMW_DB_Top(1CSwWA)

'Loop until a primary e-mail 1is found

Do while (1Res = 1)

'Pre-allocate string buffers

sBufl = String$(100, 0)

sBuf2 = string$(100, 0)

'Get the field data

TRes = GMW_DB_Read(1CSwWA, "cContSupRef", sBufl, 100)
1Res = GMW_DB_Read(1cswA, "zip", sBuf2, 100)
'Check if primary e-mail address

If Mid$(sBuf2, 2, 1) = "1" Then

'Update the Tabel

Tb1Email.Caption = Trim(sBufl)

Exit Do 'all done

End If

'Skip to next record

1Res = GMW_DB_Skip(lcswa, 1)

Loop

Else

'Notify user of problem

MsgBox ("Could not Tocate the specified contact.")
End If

Else

'Al1l tables could not be opened.

MsgBox ("Could not open the data files.")

'"Exit program

Unload Me

End If

Delphi Examples

This section includes function prototypes and examples.

Page 448 of 463

GoldMine ™

Function prototypes
Type
TGMW_LicInfo = record
Licensee: array [0..59] of char;
LicNo: array [0..19] of char;
SiteName: array [0..19] of char;
LicUsers,
SQLUsers,
GSSites,
IsDemo,
IsServerLic,
IsRemotelLic,
ISUSALic,
DLLVersion,
Reservedl,
Reserved2:longint;
Reserved: array [0..99] of char;
end;

Type

hgmnv = pointer;
// GM5S32.DLL initialization functions

function GMW_LoadBDE(sSysbir, sGoldDir, sCommonDir, sUser, sPassword:
Pchar): integer; stdcall; external 'GM5S32.DLL';

function GMW_UnloadBDE: integer; stdcall; external 'GM5S32.DLL';
function GMW_SetSQLUserPass(sUserName, sPassword: PChar):integer; stdcall;
external 'GM5S32.DLL';

function GMW_GetLicenseInfo(pGMW_LicInfo: pointer):integer; stdcall;
external 'GM5S32.DLL';
// GM5S32.DLL Sync functions

function GMW_UpdateSyncLog(sTable, sRecID, sField, cAction:

PChar) :integer; stdcall; external 'GM5S32.DLL';

function GMW_ReadImpTLog(sFile: PChar; bDelwhenDone: integer; sStatus:
PChar): integer; stdcall; external 'GM5S32.DLL';
procedure GMW_NewRecID(sRecID, sUser: PChar); stdcall; external
'GM5S32.DLL";
procedure GMW_SyncStamp(sStamp, sOutBuf: PChar); stdcall; external
'GM5S32.DLL";
// GM5S32.DLL DataStream functions
function GMW_DS_Range(sTable, sTag, sTopLimit, sBotLimit, sFields,
sFilter, sFDIm, sRDIm: PChar): longint; stdcall; external 'GM5S32.DLL';
function GMW_DS_Query(ssQL, sFilter, sFDIm, sRDIm: PChar): Tongint;
stdcall; external 'GM5S32.DLL';
function GMW_DS_Fetch(iHandle: Tongint; sBuf: Pchar; iBufSize, iGetRecs:
integer): longint; stdcall; external 'GM5S32.DLL';
function GMW_DS_Close(iHandle: longint):Tongint; stdcall; external
'GM5S32.DLL"';

Page 449 of 463

GoldMine ™

// GM5S32.DLL DBF workarea functions

function GMW_DB_Open(sTable: Pchar): Tongint; stdcall; external
'GM5S32.DLL";

function GMW_DB_Close(lArea: Longint): Tongint; stdcall; external
'GM5S32.DLL"';

function GMW_DB_Append(lArea: Longint; sRecID: PChar): longint; stdcall;
external 'GM5S32.DLL';

function GMW_DB_Replace(lArea: Longint; sField, sbata: PChar; iAddTo:
integer): longint; stdcall; external 'GM5S32.DLL';

function GMW_DB_Delete(lArea: Longint): Tongint; stdcall; external
'GM5S32.DLL"';

function GMW_DB_UnTlock(1Area: Longint): Tongint; stdcall; external
'GM5S32.DLL";

function GMW_DB_Read(lArea: Longint; sField, sBuf: PChar; iBufSize:
integer): longint; stdcall; external 'GM5S32.DLL';

function GMW_DB_Top(lArea: Longint): Tongint; stdcall; external
'GM5S32.DLL";

function GMW_DB_Bottom(lArea: Longint): Tongint; stdcall; external
'GM5S32.DLL";

function GMW_DB_SetOrder(TArea: Longint; sTag: Pchar): longint; stdcall;
external 'GM5S32.DLL';

function GMW_DB_Seek(lArea: Longint; sParam: PChar): Tongint; stdcall;
external 'GM5S32.DLL";

function GMW_DB_Skip(lArea: Longint; iskip: integer): Tlongint; stdcall;
external 'GM5S32.DLL';

function GMW_DB_Goto(lArea: Longint; sRecNo: PChar): Tongint; stdcall;
external 'GM5S32.DLL';

function GMW_DB_Move(lArea: Longint; sCommand, sParam: PChar): longint;
stdcall; external 'GM5S32.DLL';

function GMW_DB_Search(lArea: Longint; SExpr, sRecID: PChar): longint;
stdcall; external 'GM5S32.DLL';

function GMW_DB_Filter(lArea: Longint; sFilterExpr: Pchar): longint;
stdcall; external 'GM5S32.DLL';

function GMW_DB_Range(lArea: Longint; sMin, sMax, sTag: PChar): longint;
stdcall; external 'GM5S32.DLL';

function GMW_DB_RecNo(lArea: Longint; sRecID: PChar): Tlongint; stdcall;
external 'GM5S32.DLL';

function GMW_DB_IsSQL(lArea: Longint): Tongint; stdcall; external
'GM5S32.DLL";

// GM5S32.DLL Quick one-field access functions

function GMW_DB_QuickSeek(sTableName, sIndex, sSeekvalue, sRecID: PChar):
longint; stdcall; external 'GM5S32.DLL';

function GMW_DB_QuickRead(sTableName, sRecID, sField, svalue: Pchar; iLen:
integer): Tongint; stdcall; external 'GM5S32.DLL';

function GMW_DB_QuickReplace(sTableName, sRecID, sField, svalue: Pchar;
iAddTo: integer): Tongint; stdcall; external 'GM5S32.DLL';

// GM5S32.DLL Misc functions

function GMW_IsUserGroupMember(szGroup, szUserID: PChar): longint;
stdcall; external 'GM5S32.DLL';

Page 450 of 463

GoldMine ™

function GMW_UserAccess(Option: Tongint): Tongint; stdcall; external
'GM5S32.DLL";

function GMW_CalAccess(RecType, UserID, Numberl: PChar): longint; stdcall;
external 'GM5S32.DLL';

function GMW_HistAccess(RecType, UserID: PChar): longint; stdcall;
external 'GM5S32.DLL';
// GM5S32.DLL business logic functions

function GMW_Execute(Func: Pchar; PGMNV: hgmnv): longint; stdcall;
external 'GM5S32.DLL';
// create, release & copy name value containers

function GMW_NV_Create: pointer; stdcall; external 'GM5S32.DLL';
function GMW_NV_CreateCopy(PGMNV: hgmnv): pointer; stdcall; external
'GM5S32.DLL";

procedure GMW_NV_Delete(PGMNV: hgmnv); stdcall; external 'GM5S32.DLL';
procedure GMW_NV_Copy(Destination, Source: hgmnv); stdcall; external
'GM5S32.DLL";
// get and set value by name

function GMW_NV_Getvalue(PGMNV: hgmnv; Name, Defaultvalue: PChar): PChar;
stdcall; external 'GM5S32.DLL';

procedure GMW_NV_Setvalue(PGMNV: hgmnv; Name, value: PChar); stdcall;
external 'GM5S32.DLL';
// Check if name exists. returns: 0 failed, 1 success

function GMW_NV_NameExists(PGMNV: hgmnv; Name: PChar): longint;
stdcall;external 'GM5S32.DLL';
// remove name(s)

procedure GMW_NV_EraseName(PGMNV: hgmnv; Name: PChar); stdcall; external
'GM5S32.DLL";

procedure GMW_NV_EraseAlT(PGMNV: hgmnv); stdcall; external 'GM5S32.DLL';
// iterate over name-value 1list (1 based)

function GMW_NV_Count(PGMNV: hgmnv): Tongint; stdcall; external
'GM5S32.DLL";

function GMW_NV_GetNameFromIndex(PGMNV: hgmnv; Index: longint): PChar;
stdcall; external 'GM5S32.DLL';

function GMW_NV_GetvalueFromIndex(PGMNV: hgmnv; Index: longint): PChar;
stdcall; external 'GM5S32.DLL';
// Set a series of values in one shot

procedure GMW_NV_SetStr(PGMNV: hgmnv; dIimName, dIlmval: char; Stringval:
PChar); stdcall; external 'GM5S32.DLL';

Logging In
The following example assumes that GMXS32.DLL has already been loaded and
function addresses have been retrieved
// Login to GM5

iRet := GMW_LoadBDE('C:\GM5', 'C:\GM5\GMBASE', 'C:\GMS5\DEMO', 'NELSON' ,
")

if iRet < 1 then

ShowMessage('LoadAPI Failed. Err: '+IntToStr(iRet));

Page 451 of 463

GoldMine ™

Creating a Contact

The following example assumes that GMxs32.DLL has already been loaded and function addresses have been
retrieved.

// Create a new NV container

PGMNV = GMW_NV_Create;
// Test if NV 1is valid

If pGMNV <> nil then

begin

// Load the NVs to create the contact record
GMW_NV_Setvalue(pGMNV, 'Company', 'GoldMine Inc.');

GMW_NV_Setvalue(pGMNV, 'Contact', 'Nelson Fernandez');
GMW_NV_Setvalue(pGMNV, 'Phonel', '(310)555-1212"');
GMW_NV_Setvalue(pGMNV, 'Email', 'nelson@gm.com');

GMW_NV_Setvalue(pGMNV, 'webSite', 'www.gm.com');
// Exec the WriteContact function
if GMW_Execute('WriteContact', pGMNV) > 0 then

begin
ShowMessage('Contact record was created. AccountNO=' +
GMW_NV_Getvalue(pGMNV, 'AccountNo', ''));

//Remove the pGMNV

GMW_NV_DeTlete (pGMNV) ;

end

else

// Display error

ShowMessage('writeContact Failed.');;

end

else

// Display Error

ShowMessage('Could not create NV container.');

Enumerating a Container

The following example assumes that GMxs32.DLL has already been loaded and function addresses have been
retrieved.

// Determine the number of returned values
TCount := GMW_NV_Count(pGMNV) ;
// If > 0 then iterate through the 1ist
If TCount > 0 then

For i := 1 to 1Count do // Add to the results memo control
mResults.Text := mResults.Text +

GMW_NV_GetNameFromIndex (pGMNV,i)+'="+
GMW_NV_GetvalueFromIndex (pGMNV, 1i)+#13+#10;

Page 452 of 463

GoldMine ™

DataStream

The following example assumes that GMxs32.DLL has already been loaded and function addresses have been
retrieved.

iHandTle:=GMW_DS_RANGE('Contsupp', 'Contspfd', 'PE-MAIL ADDRESS',
'PE-MAIL ADDRESS~', 'ContSupRef;', PChar('''' + UppercCase
(cebMmatchvalue.Text)+'"'' $ Upper(ContSupRef)'), '', #13+#10);
If iHandle > 0 then

Begin

bDone :=FALSE

Repeat
//Get Buffer Size

iBufsSize:=GMW_DS_Fetch(iHandle,NIL, O, FETCH_SIZE);
//Allocate Buffer Memory

pcBuffer:=AllocMem(iBufSize);
//Fetch Data

Tres:=GMW_DS_Fetch(iHandle, pcBuffer, iBufSize, 0);

if 1res>0 then //Fetch Successfully?

begin

//Get results
sResults:=sResults + Copy(StrPas(pcBuffer),12,iBufSize-12);
FreeMem(pcBuffer, iBufSize); //Free buffer memory
if Copy(sHeader,1,1)<>'3"' then //End of File in GM?
bDone :=TRUE
else
bDone:=FALSE;
end;
until bDone
Tres:=GMW_DS_Close(iHandle);
end;

Low-Level Work Area

The following example assumes that GMxs32.DLL has already been loaded and function addresses have been
retrieved. The example opens up the CONTACT1 and CONTSUPP tables to find a particular contact’s phone
number and primary e-mail address.

var
TRes, 1clwA, Tc2wA, TCSWA: Tongint;
aAccNo: array[0..20] of char;
avaluel: array[0..100] of char;
avalue2: array[0..100] of char;

begin

// Open files

1CIwWA := GMW_DB_Open('Contactl');
1C2WA := GMW_DB_Open('Contact2');

TCSWA := GMW_DB_Open('Contsupp');
// Make sure all files were opened OK
if (1clwAa>0) and (1c2wA>0) and (T1CSwWA>0) then

Page 453 of 463

GoldMine ™

begin
// Set the index order
TRes := GMW_DB_SetOrder(1ClwA, 'ContName');
// Perform the seek
If GMW_DB_Seek(1Cc1lwA, PChar(UppercCase(cebSearchvalue.Text)))=1 then
begin
// Read the AccountNo
GMW_DB_Read(1CclwA, 'AccountNo', aAccNo, 21);
// Get the field data
1Res := GMW_DB_Read(1ClwA, 'Company', avaluel, 100);
//Display the results
clCompany.Caption := StrPas(avaluel);
//Init the range 1imit string
StrrCopy(avaluel, Copy(Strpras(aAccNo),1,20)+'PE-MAIL ADDRESS');
// Set the range and go to Top
TRes := GMW_DB_Range(1CSWA, avaluel, avaluel, 'Contsupp');
TRes := GMW_DB_Top(1CSWA);
// Loop through records..
while TRes = 1 do
begin
//Read the field data...
1Res := GMW_DB_Read(1CSWA, 'ContSupRef', avaluel, 100);
1Res := GMW_DB_Read(1CSwA, 'zIP', avalue2, 100);
if avalue2[1l] = '1' then
begin
clEmail.Caption := avaluel;
Exit;
end;
TRes := GMW_DB_Skip(lcswA, 1);
end;
end
else
// Notify user of problem
ShowMessage('Could not locate the specified contact!');
end
else
// Notify user of problem
ShowMEssage('Could not open all data files');
GMW_UnToadBDE;
end;

Page 454 of 463

GoldMine™

Resources

Additional Documentation

In addition to this guide, the following resources are available to provide you with information about GoldMine:

m Online Help - Accessed by clicking the Help menu option in GoldMine, online help provides topic overviews
and step-by-step instructions to walk you through basic tasks, in addition to a comprehensive table of
contents, index, and a search function.

NOTE: Guides are available in PDF format at: https://www.ivanti.com/support/product-documentation.
Expand the GoldMine drop-down.

= Training Courses - Information regarding training courses for GoldMine family of products can be found at:
https://www.goldmine.com/.

Contact Us

Support Site

For Support, visit: https://www.goldmine.com/goldmine-support/

Contact Information

Ivanti Software, Inc.
698 West 10000 South

South Jordan, UT 84095 USA
TEL: 1.800.443.5457

Offices are also located in Latin America, Asia Pacific, Europe, South Africa, and the Middle East. For
international contact information, go to the GoldMine Web site, click the Contact link at the top of the page,
then select your region.

Page 455 of 463

https://www.ivanti.com/support/product-documentation
https://www.goldmine.com/
https://www.goldmine.com/goldmine-support/

GoldMine™

Index

A
Activities, creating or updating 280
AddContactGrpMembers 293
AddContactGrpMembers function 292
AddFolder function 320
Alert
attaching an alert to the specified contact
record 296
returning alerts attached to a contact record 295
returning all defined alerts 297
API, logging in multiple users 103
Append function 42, 190
AttachTrack function 289
Automated Process
attachingtoacontactrecord 289
retrieving the default contact automated
process 302

B
BDE session
closing 101-102
loading 98-99
Boolean operator 385
BR4 36
Business Logic Methods
accessing 112
comparing methodology to that of
GM5S32.DLL 96
using to simplify procedures 270
working with 270

C
C++ examples for GM5S32.DLL 442
CAL.DBF 418
sQL 417
Xbase 399
CalComplete function 60, 207
Calendar
completing an activity 61
deleting Calendar items 302
CallerID function 61, 209
Close function 43, 191

code examples
for GM5S532.DLL 454
conditionals 385
CONGRPS Structureharformat 405
CONHIST Indexesharformat 425
contact group
adding contacts to 292
creating 291
Contact Groups, retrieving names of 299
contact information
accessing, using Open, Move, or Read 54, 201
accessing, using RecordObj 54, 201
contact record
creating or updating an additional 275, 285, 287-
288
linking contact records to an accounting
application 38
Contact Record
adding a record 131, 164
attaching an alert to the specified contact
record 296
attaching an automated process 289
creating or updating 270
creating or updating a referral 279
deleting the current record 131, 165
evaluating an Xbase expression on a contact
record 300
reading a Contactl or Contact2 record 294
retrieving the default contact automated
process 302
returning alerts attached to a contact record 295
updating notes of a primary contact record 273
CONTACT1 Relationsharformat 402
CONTACT1.DBF 422
sQlL 419
Xbase 401
CONTACT2 Indexharformat 404
CONTACT2 Structureharformat 404
CONTACT2.DBF
sQL 423
Xbase 404
ContactLogin function 332

Page 456 of 463

Index

ContactLogin Required NV Pairsharformat 333
CONTGRPS Structure (member records)harformat 406,
425

CONTGRPS.DBF

sQL 424

Xbase 405
CONTHIST.DBF

sQL 425

Xbase 406
CONTSUPP Indexesharformat 427
CONTSUPP.DBF 428

sQL 427

Xbase 408
COUNTER function 63, 210
CreateContactGroup function 291
CreateRemotelLicense function 308
Curtaining

checking for record curtaining 308

retrieving visible fields 307

D
data
accessing low-level data using work areas 127, 161
merging data into a document 38
retrieving data with DataStream 123, 155
data file
accessing 41, 190
closing 129, 163
opening 48, 129, 163, 194
querying for a field value 132, 166
database
file location 398
sessions, handling 270
updating information 38
database structures
CAL.DBF 418
CONTACT1.DBF 422
CONTSUPP.DBF 428
GoldMine 5.5 416
GoldMine Sales and Marketing 435
DataStream
advantages of using 123, 155
Close subcommand 65, 213
Fetch subcommand 65, 213
functions 123, 156
performance advantages 66, 215
record selection 123, 156
retrieving data with 123, 155
returning GoldMine record data 64, 212
date and time stamps
converting to TLog timestamps 84
DDE Parametersharformat 39

DDE See Dynamic Data Exchange 37
DDEINITIATE function 40
DDERequestor 36
decrypting encoded text 302
DecryptString function 302
DecryptString Required NV Pairsharformat 302
Delete function 43,191
DeleteFolder function 320
DeleteHistory Required NV Pairsharformat 303
DeleteMail function 316
DeleteMail Required NV Pairsharformat 316
DeleteMessages functionE-mail
deleting online e-mail messages 326
DeleteMessages Required NV Pairsharformat 326,
334-335, 337
DeleteSchedule function 302
DeleteScheduley Required NV Pairsharformat 302
Delphi examples 448
Delphi examples for GM5532.DLL 454
Detail Record
creating or updating 277
dialog box
displaying a message dialog box 75, 222
document link, creating or updating 74, 221
Dynamic Data Exchange 94
APPEND function 43
application service name 39
CalComplete 61
CallerID 63, 209
Counter function 63
DDE item string 39
definition 37
establishing a conversation 41
Expr function 68
Filter 45
FormAddFields function 69
FormNewFormNo 71
FormQueryCreate 72
GoldMine license macros 94, 243
GoldMines DDE server 41
identifying incoming telephone numbers 38
inserting incoming e-mail 38
InsHistory 74
LinkDoc 75
linking e-mail to external systems 38
macros 84, 233
merge form macros 93, 243
merging a document with 38
Move 48
MsgBox 77
MsgBox function 76, 223
NewForm 79

Page 457 of 463

Index

NewGroup 80 querying a data file for 132, 166
RecNo 51 reading 141, 177

Replace function 52 replacing 142, 177

Search 54 FieldAccessRights function 307
SendPage 83 FieldAccessRights Required NV Pairsharformat 307
service topic 39 FileMail function 316

StatusMsg 84 FileMail Required NV Pairsharformat 317
transferring data to accounting application 38 filter creation 134, 168

updating database 38 Filter function 43, 192

using to query for data 38 FolderList function 320

working with DDE functions 41 form

adding merge fields 69
E . .
] closing a profile 70
E-mail FormAddFields function 68, 216

accessing e-mail templates 321 FormAddFields function See Dynamic Data
account information, retrieving 322 Exchange 69

adding an PlaceNameE-mail PlaceTypeCenter FormClearFields function 69, 217
folder 320 FormCloseForm function 70, 217
deleting an PlaceNameE-Mail PlaceTypeCenter FormCreateFile function 70, 217
folder 320 FormGetFieldName function 71, 218
filing a message in History 316 FormNewFormNo function 71, 219
managing internet e-mail preferences 327 FormQueryCreate function 72, 219
name/value functions 310 FromList function 321
obtaining a list of PlaceNameE-Mail
PlaceTypeCenter folders 320 G
queuing a message for delivery 315 GetAccountslList function 322
retrieving a manual list of recipients 327 GetActiveOppty function 60, 207
retrieving e-mail account information 322 GetAllAlerts function 297
returning a list of unique From addresses 321 GetContactAlerts function 295
saving a manual list of recipients 327 GetEmailPrefs function 327
updating an e-mail address 272 GetGroupName function 299
empty child container, creating 118 GetGroupUsersList function 298
empty record GetloginCredentialsfunction 59, 205-206
adding 42, 190 GetManualRcptList function 327
encrypting text 301 GetNewContactAP function 302
EncryptString function 301 GetUserAccess function 305
EncryptString Required NV Pairsharformat 301 GetUserMemberships function 298
exported records GetUsersList function 297
counting the number of 72,219 GM5S32.DLL 127,161
Expr function 67, 216 database access and sync log updates 95
external application loading and logging in 96
linking with GoldMine fields 54, 200 synchronization functions 143, 180
GM5S32.DLL code examples 454
F C++ 442
field Delphi 454
returning a FormNo value to register unattached Visual Basic 448
fields 71 GM5532.DLL Low-Level Access
field name Functionsharformat 129, 162
returning for an expression, macro, or field 71 GMS5TP.DLL 105
field value GMW_DB_Append function 131, 164
changing 52,133, 167 GMW_DB_Bottom function 140, 175

Page 458 of 463

Index

GMW_DB_Close function 129, 163
GMW_DB_Close Return Valuesharformat 130
GMW_DB_Delete function 131, 165
GMW_DB_Filter function 134, 168
GMW_DB_Filter Return Valuesharformat 134, 169
GMW_DB_Goto function 138,173
GMW_DB_|IsSQL function 130, 164
GMW_DB_Move Commands and Function
Equivalentsharformat 137, 172
GMW_DB_Move function 137, 172
GMW_DB_Open function 129, 163
GMW_DB_QuickRead function 141, 177
GMW_DB_QuickReplace function 142,177
GMW_DB_QuickSeek function 140, 176
GMW_DB_Range function 135, 169
GMW_DB_Read function 132, 166
GMW_DB_RecNo function 132, 166
GMW_DB_Replace function 133, 167
GMW_DB_Search function 135, 170
GMW_DB_Seek function 136, 170
GMW_DB_SetOrder function 136, 171
GMW_DB_Skip function 139, 174
GMW_DB_Skip Return Valuesharformat 140, 174
GMW_DB_Top function 139, 174
GMW_DB_Unlock 133, 168
GMW_DS_Close 124,127,156, 161
GMW_DS_Fetch 124, 156
GMW_DS_Query 123, 156
GMW_DS_Range 123, 156
GMW_Execute function 112
GMW_GetlLicenselnfo function 121-122
GMW_LoadBDE function 98-99, 149, 151-152
GMW_MUBeginSession function 104
GMW_MULogin function 103
GMW_MULogout function 104, 153
GMW_NewRecID function 145, 182
GMW_NV_AppendEmptyNvValue function 118, 331
GMW_NV_AppendNvValue function 331
GMW_NV_AppendValue function 117-118
GMW_NV_Copy function 106
GMW_NV_Count function 110
GMW_NV_Create function 105
GMW_NV_CreateCopy function 106
GMW_NV_Delete function 107
GMW_NV_EraseAll function 109
GMW_NV_EraseName function 109
GMw_NV_EraseName function 116
GMW_NV_GetMultiValue function 116
GMW_NV_GetMultiValueCount function 114
GMW_NV_GetNameFromindex function 110
GMW_NV_GetNVValue function 115
GMW_NV_GetValue function 107

GMW_NV_GetValueFromIndex function 111
GMW_NV_GetValueType function 113
GMW_NV_IsRoot function 113
GMW_NV_NamekExists function 108
GMW_NV_SetNvValue function 117
GMW_NV_SetStr function 111
GMW_NV_SetValue function 108
GMW_ReadIlmpTLog 229
GMW_ReadlmpTLog function 144, 181, 229
GMW_ReadlmpTLogharformat 145, 181
GMW_SetSQLUserPass function 97
GMW_SyncStamp function 146, 182
GMW_UnloadBDE function 101-102
GMW_UpdateSyncLog function 143, 180, 228
GMW_UserAccess function 119, 230
GoldMine 5.5 database structures 416
GoldMine KnowledgeBase 35
GoldMine license macros see Dynamic Data
Exchange 94, 243
GoldMine Sales and Marketing database
structures 435

group

adding a group member 80

creating an empty group 79

H

History

filing a message in History 316
history record

creating 72, 220

creating or updating 284

IIS extensions, and multi-threaded applications 105
import file
importing a prepare TLog import file 144, 181, 229
index
setting the current index tag 136, 171
INFOMINE.DBF
sQL 429
Xbase 410
InsHistory function 72, 220
InsHistory Valid Values (2nd parameter)charformat 72,
220
integrating with GoldMine
methods 32
integration tools
DDERequestor 36
interfacing with GoldMine 398, 417
internet
e-mail preferences 327
IsContactCurtained function 308

Page 459 of 463

Index

IsSQL function 45, 192

K
KnowledgeBase 35

L

license
generating a remote license file 308
removing a remote license 309
returning GoldMines Licensing Information 121-
122
LinkDoc function 74, 221
linked document
creating or updating 278
logical evaluators 385
logicals 388
login
creating a new GoldMine login 304
login sessions, switching between 104
LOOKUP Indexesharformat 411
LOOKUP.DBF
Xbase 411

M

macro
identifying by file name 81, 225
identifying by number 81, 225
macros 81, 225
creating 81, 225
DDE macros for Merge Forms 91, 241
DDE macros for the GoldMine License 93, 243
mail message
deleting a message 316
deleting online e-mail messages 326
filing a message in History 316
preparing an Name/Value container to forward a
mail message 319
preparing the NV container for a new mail
message 317
queuing a message for delivery 315
reading 310
retrieving a list of messages waiting online 323
retrieving online messages 325
saving a mail message into GoldMine 315
updating 315
MAILBOX Indexesharformat 430
MAILBOX.DBF
sQL 430
Xbase 411
merge fields added to a form 69
merge form
adding 77,224

DDE macros See Dynamic Data Exchange 93, 243
merging data into a document 38
message dialog box display 77
message,displaying in GoldMines status bar 83, 227
Move function 45, 193
mrecord

moving to the previous or following record 139
MS Word for Windows, Linking GoldMine to 39
MsgBox function 75, 222
multi-threaded applications

special considerations 105
multi-value NV pairs 114

appending string values 118

deleting values from 116

retrieving values 116

N

Name/Value container
assigning a container to a parent 117
copying values between containers 106
creating 105
creating an empty child container within the

parent 118

creating with copied values 106
deleting a container 107

determining container position in NV hierarchy 113

preparing an NV container to forward a mail
message 319
preparing the container for a new mail
message 317
reading values from a container 107
retrieving containers from an NV pair 115
storing NV pairs in a container 108
Name/Value Functions 105
E-mail 310
Name/Value pair
determining the type of an NV pair 113
finding an NV name 110
finding an NV value 111
getting the number of values in a multi-value
pair 114
removing all NV pairs from a container 109
removing one NV pair 109
retrieving values in a multi-value pair 116
searching for an NV pair 108
setting NV pairs 111
totaling NV pairs in a container 110
working with multi-value NV pairs 112
NewForm function 77, 224
NewGroup function 79
NewMember function 80

Page 460 of 463

Index

NonCurtainedFields function 307
Notes, updating notes of a primary contact record 273

(0]
OnlinelList function 323
Open function 48, 194
operators 385
OPMGR Indexesharformat 432
OPMGR.DBF

sQL 432

Xbase 413

P

pager message
creating and sending 82, 227
PERPHONE Indexesharformat 433
PERPHONE.DBF
sQL 433
Xbase 414
placeCityWriteContactOutput StateNVharformat 271
PlayMacro function 81, 225
PrepareFwdMail Required NV Pairsharformat 319
PrepareNewMail function 317

Q

QueueMail function 315
QuickRead 141, 177
QuickReplace 142,177
QuickSeek 140, 176

R
Range function 49, 195
Read function 50, 196
ReadContact function 294
ReadMail function 310
ReadRecord function 293
ReadRecord Required NV Pairsharformat 293
RecNo function 51, 197
record
checking the current record number or record
ID 132, 166
creating a subset of records 134, 168
deleting the current record 43,191
getting a new record 182
moving to a specified record 45, 138, 173, 193
moving to the first match 136, 170
moving to the first record 139, 174
moving to the last record 140, 175
moving to the previous or following record 174
positioning the pointer to a specified record 137,
172
reading a 293
unlocking 54

unlocking a record 133, 168
RecordObj

subfunctions 55, 201
RecordObj function 54, 200
referral, creating or updating 279
remote license

generating a remote license file 308

removing 309
RemoveRemotelicense function 309
Replace function 51, 198
RESITEMS.DBF

sQL 434

Xbase 415
RetrieveMessages function 325

S
SaveMail function 315
SaveManualRcptList function 327
search
limiting the search scope 135, 169
performing a sequential search 135, 170
SEARCH function 52, 199
Security
handling GoldMine Security 304
reading security and rights for a DLL user 119, 230
retrieving field-level access rights 307
retrieving security access 305
validating a Web user name and password 332
seek
moving to the first record match 136, 170
seeking a record 140, 176
SendPage function 82, 227
service item 84, 233
service name 39
service topics 39
SetContactAlert function 296
SetEmailPrefs and CityplaceGetEmailPrefs StateNV
Pairsharformat 328
SetEmailPrefs function 327
SetSessionHandling function 270
SPFILES.DBF
sQL 434
Xbase 416
sQL
determining whether a table is SQL or Xbase 130,
164
executing a query 290
setting the database login name and password 97
table, checking for 45, 192
SQL database structures 435
SQLStream function 290

Page 461 of 463

Index

status bar
message display 84
StatusMsg function 83
Summary tab 90, 239
support and resources
GoldMine KnowledgeBase 35
sync log
updating sync logs with GM5S32.DLL 143, 180
updating the Sync Log file 143, 180
sync stamp
converting to time format 146, 182
synchronization functions 143, 180
SyncStamp function 84, 227
System Agent 226

T
table
checking for an Xbase or SQL table type 45, 192
moving to the last record 140, 175
Templatelist function 321
templates, accessing e-mail templates 321
third-party developers 398, 417
timestamps
converting TLog 84, 227
TLog import file
importing a prepared TLog import file 144, 181,
229
TLog Import Structureharformat 145, 182, 229
TLog timestamps
converting to date and time stamps 84

U
UNLOCK function 200
UpdateEmailAddress function 272
UpdateMail function 315
UpdateWebSite function 273
user
creating a new GoldMine login 304
generating a remote license file 308
logging in multiple users through the API 103
reading security and rights for a DLL User 119, 230
removing a remote license 309
retrieving field-level access rights 307
retrieving security access 305
returning a user list 297
returning group memberships for a specified
user 298
validating a Web user name and password 332
user group
returning a user group member list 298
returning group memberships for a specified
User 298

saving a user group 299

\'}

VBA 40-41

visible fields, retrieving 307

Visual Basic examples for GM5S32.DLL 448
Visual Basic for Applications 40

w
Web
validating a Web user name and password 332
Web import instruction file, processing 215
Web site record,updating 273
Work Area
accessing low-level data using work areas 127, 161
in DDE functionsharformat 40
WriteContact function 270
WriteContact Special NV Pairsharformat 271
WriteContactNotes function 273
WriteDetail function 277
WriteGMUser function 304
WriteGroupUsersList function 299
WriteHistory function 284
WriteLinkedDoc function 278
WriteLinkedDoc Optional NV Pairsharformat 278
WriteOtherContact function 275, 285, 287-288
WriteOtherContact Special NV Pairsharformat 276
WriteReferral function 279
WriteSchedule function 280

X
Xbase
conditionals, operators, and logical evaluators 385
creating an Xbase file with registered fields 70, 217
date functions 388, 392
determining whether a table is SQL or Xbase 130,
164
evaluating an Xbase expression on a contact
record 300
expression, reading without opening a file 67, 216
function/parameter types 384
functions 388
miscellaneous functions 388, 396
numeric functions 388, 394
string functions 388-389
table, checking for 45, 192
Xbase database structures 416
XbaseContactExpr function 300
XbaseContractExpr Return NV Pairsharformat 300

Page 462 of 463

	Contents
	Introduction to Integrating with GoldMine
	Introduction
	Methods of Integrating with GoldMine
	Integrating via Dynamic Data Exchange
	Integrating via GMXS32.DLL
	Integrating via the GoldMine XML API (GMXMLAPI.DLL)
	Interacting with GoldMine via the GoldMine COM Server
	Integrating via GoldMine Plug-ins
	Integrating via a Database Engine
	Comparing Integration Methods
	Resources and Support
	Technology Partner Program
	Open Developer Community
	Technology Partner Program
	Integration Tools

	Working with Dynamic Data Exchange (DDE)
	Overview
	Using DDE in GoldMine
	Merging Data into a Document
	Updating Database Information
	Querying for Data
	Identifying Telephone Numbers Automatically
	Linking Contact Records to an Accounting Application
	Inserting Incoming E-mail
	Linking GoldMine to MS Word for Windows
	Entering Application, Topic, and Item Names
	DDE Parameters, Functions, Expressions, Macros
	Establishing a DDE Conversation
	To Initiate a DDE Conversation
	To Request Data

	Working with DDE Functions
	Accessing Data Files
	Adding an Empty Record
	Parameters
	Return Value
	Example

	Closing an Opened File
	Parameters
	Return Value
	Example

	Deleting the Current Record
	Parameters
	Example

	Creating a Subset of Records
	Parameters
	Example

	Checking for an Xbase or SQL Table
	Parameters
	Return Values

	Moving to a Specified Record
	Parameters
	Return Value
	Example

	Opening a Data File
	Parameters
	Return Value
	Example

	Limiting GoldMine Search Range
	Parameters
	Example

	Reading a Field Value
	Parameters
	Return Value

	Checking the Current Record Number or Record ID
	Parameters
	Return Value
	Example

	Changing a Field Value
	Parameters
	Return Value
	Example

	Performing a Sequential Search
	Parameters
	Return Value
	Search Return Values
	Example

	Unlocking a Record
	Parameters
	Return Value
	Example

	Accessing Contact Records
	Linking GoldMine Fields with an External Application
	Parameters
	Valid RecordObj Functions
	Return Value
	Example

	Accessing Specialized DDE Functions
	Retrieving Login Credentials for Use with the GMXS32.DLL
	Example

	Retrieving the RecID of the Current Opportunity
	Return Value
	Example

	Completing a Calendar Activity
	Parameters
	Return Value
	Example

	Displaying the Contact Record of an Incoming Caller
	Parameters
	CallerID Parameters
	Return Values
	CallerID Return Values
	Example

	Running a Counter
	Parameters
	Return Value
	Example

	Returning GoldMine Record Data
	Record Selection
	Parameters
	Return Value
	Parameters
	Example 1
	Example 2
	Return Packet
	Performance
	Example 3
	Example 5

	Processing a Web Import Instruction File
	Reading an Xbase Expression Without Opening a File
	Parameters
	Return Value
	Example

	Adding Merge Fields to a Form
	Parameters
	Example

	Deleting Fields from a Form
	Parameters
	Return Value
	Example

	Closing a Form Profile
	Parameters
	Example

	Creating an Xbase File with Registered Fields
	Parameters
	Examples of WhichRec Parameter
	Return Value
	Example

	Returning a Field Name for an Expression
	Parameters

	Returning a Value for Unattached Fields
	Example

	Counting the Number of Exported Records
	Parameters
	Return Value
	Example

	Creating a History Record
	Parameters
	InsHistory Valid Values (2nd parameter)
	Return Value
	Example

	Creating or Updating a Document Link
	Parameters
	Return Value
	Example

	Displaying a Message Dialog Box
	Parameters
	Return Value
	Example

	Adding a Merge Form
	Parameters
	Return Value
	Example

	Creating a Group
	Parameters
	Return Value
	Example

	Adding a Group Member
	Parameters
	Example

	Creating a Macro
	Parameters
	Identifying a Macro by Number
	Identifying a Macro by File Name
	Return Value
	Example
	To Play a Macro from the Command Line

	Creating and Sending a Pager Message
	Return Value
	SendPage Return Values
	Example

	Displaying a Message in the GoldMine Status Bar
	Parameters
	Example

	Converting TLog Timestamps
	Parameter
	Return Values
	Example 1
	Example 2

	DDE Macros
	DDE Macros for Merge Forms
	&PARAM2 Parameters
	&PARAM4 Parameters
	&PARAM5 Parameters

	DDE Macros for the GoldMine License

	Using GMXS32.DLL for Database Access and Sync Log Updates
	Overview
	Passing Multiple Parameters to a Function
	Comparing Low Level/DDE Methodology to Business Logic Methodology
	Method 1: Updating a Contact Record using the low level functions or DDE
	Method 2: Updating a Contact Record using the Business Logic

	Loading GMXS32.DLL and Logging In
	For GoldMine Version 6.7 or Lower
	Setting the SQL Database Login Name and PasswordGoldMine 6.7 or lower only)
	Syntax
	Parameters
	Return Values
	Example

	Loading an API Session (GoldMine 7.0 or higher)
	Parameters
	Return Values
	Notes
	Example

	Loading a BDE Session (GoldMine 6.7 or lower)
	Syntax
	Parameters
	Return Values
	Notes
	Example

	Logging in a User
	Syntax
	Parameters
	Return Values
	Example

	Closing an API Session (GoldMine 7.0 or higher)
	Syntax
	Return Values
	Notes
	Example

	Closing a BDE Session (GoldMine 6.7 or lower)
	Syntax
	Return Values
	Notes
	Example

	Logging in Multiple Users through the API
	Logging In
	Syntax
	Parameters
	Return Values

	Logging Out
	Syntax
	Parameters
	Returns

	Switching Between Login Sessions
	Syntax
	Parameters
	Returns

	Special Consideration for Multi-Threaded Applications
	Syntax

	Working with Business Logic Functions using the Name/Value Pair Method
	Notes
	Creating an NV Container
	Syntax
	Example
	Return Value

	Creating an NV Container with Copied Values
	Syntax
	Example
	Return Value
	Syntax
	Parameters
	Example
	Return Value

	Deleting an NV Container
	Syntax
	Example
	Return Value
	Syntax
	Parameters
	Example
	Return Values

	Storing NV Pairs in a Container
	Syntax
	Parameters
	Example
	Return Value

	Searching for an NV Pair
	Syntax
	Parameters
	Example
	Return Values

	Removing one NV Pair
	Syntax
	Parameters
	Example
	Return Value

	Removing all NV Pairs from a Container
	Syntax
	Parameter
	Example
	Return Value

	Totaling NV Pairs in a Container
	Syntax
	Parameter
	Example
	Return Value

	Finding an NV Name
	Syntax
	Parameters
	Example
	Return Value

	Finding an NV Value
	Syntax
	Parameters
	Example
	Return Value
	Syntax
	Parameters
	Example
	Return Value

	Executing Business Logic Methods
	Syntax
	Parameters
	Example
	Return Values

	Working with Multi-Value Name/Value Pairs
	Determining the Type of a Name/Value Pair
	Syntax
	Parameters
	Return Values

	Determining the Position of an NV Container in an NV Hierarchy
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example

	Getting the Number of Values in a Multi-Value Pair
	Syntax
	Parameters
	Example

	Retrieving Containers from an NV Pair
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example

	Retrieving the Values in a Multi-Value Pair
	Syntax
	Parameters
	Example

	Deleting Values from a Multi-Value Pair
	Assigning a Container to a Parent
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example
	Syntax
	Parameters
	Example

	Appending String Values to a Multi-Value Pair
	Syntax
	Parameters
	Example

	Low-level Data Access & Manipulation
	Reading Security and Rights for a DLL User
	Syntax
	Parameters
	iOption values
	Return Values
	Syntax
	Parameters
	Return Values
	Syntax
	Parameters
	Return Values

	Returning GoldMine Licensing Information
	Syntax
	Parameters
	Return Values
	Notes
	GMW_GetLicenseInfo Structure
	Example

	Returning Calendar Data
	Syntax

	Retrieving Data with DataStream
	Advantages of Using DataStream
	DataStream Record Selection
	GMW_DS_Range
	Syntax
	Parameters
	Return Values
	GMW_DS_Range Field Selection

	GMW_DS_Query
	Syntax
	Parameters
	Return Values

	GMW_DS_Fetch
	Syntax
	GMW_DS_Fetch Return Packet

	GMW_DS_Close
	Syntax

	Accessing Low-Level Data Using Work Areas
	GMXS32.DLL Low-Level Access Functions
	Opening a Data File
	Syntax
	Parameter
	Return Values
	GMW_DB_Open Return Values

	Closing a Data File
	Syntax
	Parameters
	Return Values
	GMW_DB_Close Return Values
	Checking for an SQL Table
	Syntax
	Parameter
	Return Values
	GMW_DB_IsSQL Return Values

	Adding a Record
	Syntax
	Parameters
	Return Value

	Deleting the Current Record
	Syntax
	Parameter
	Return Values
	GMW_DB_Delete Return Values

	Querying for a Field Value
	Syntax
	Parameters

	Checking the Current Record Number or Record ID
	Syntax
	Parameters
	Return Value
	Changing a Field Value
	Syntax
	Parameters
	Return Values

	Unlocking a Record
	Syntax
	Parameter
	Return Values
	GMW_DB_Unlock Return Values

	Creating a Subset of Records
	Syntax
	Parameters
	Return Values
	Limiting Search Scope
	Syntax
	Parameters
	Return Values
	GMW_DB_Range Return Values

	Performing a Sequential Search
	Syntax
	Parameters
	Return Values

	Moving to the First Record Match
	Syntax
	Parameters
	Return Values
	GMW_DB_Seek Return Values

	Setting the Current Index Tag
	Syntax
	Parameters
	Return Values
	GMW_DB_SetOrder Return Values

	Positioning the Record Pointer
	Syntax
	Parameters
	GMW_DB_Move Commands and Function Equivalents
	Return Values
	GMW_DB_Move Return Values

	Moving to a Specified Record
	Syntax
	Parameters
	Return Values
	GMW_DB_Goto Return Values

	Moving to the First Record
	Syntax
	Parameter
	Return Values
	GMW_DB_TopReturn Values

	Moving to the Previous or Following Record
	Syntax
	Parameters
	Return Values
	GMW_DB_Skip Return Values

	Moving to the Last Record
	Syntax
	Parameter
	Return Values
	GMW_DB_Bottom Return Values

	Seeking a Record
	Syntax
	Parameters
	Return Values

	Reading a Field Value
	Syntax
	Parameters
	Return Values

	Replacing a Field Value
	Syntax
	Parameters
	Return Values

	Updating Sync Logs with GMXS32.DLL
	Updating the Sync Log File
	Syntax
	Parameters
	Return Values
	GMW_UpdateSyncLog Return Values
	Example

	Importing a Prepared TLog Import File
	Syntax
	Parameters
	Return Values
	Notes
	TLog Import Structure
	Example

	Getting a New Record ID
	Syntax
	Parameters
	Return Value
	Notes
	Example

	Converting the Sync Stamp
	Syntax
	Parameters
	Return Values
	GMW_SyncStamp Return Values
	Notes
	Example

	Working with the XML API
	Overview
	Executing Your XML Document
	Example

	Creating Your XML Document
	Loading the API (GoldMine 7.0 or higher)
	Parameters
	LoadAPI Return Values

	Loading BDE (GoldMine 6.7)
	Parameters
	LoadBDE Return Values

	Logging in Subsequent Users
	Parameters
	Login Return Values

	Logging Out
	Syntax
	Parameters
	Return

	Unloading the API (GoldMine 7.0 or higher)
	Unloading BDE (GoldMine 6.7)
	Accessing Data with Business Logic Functions
	Accessing Nested Nodes of Data
	Business Logic Function Return Values
	Input XML:
	Returned XML:

	Accessing Low-level Data Manipulation Functionality
	Retrieving Data with DataStream
	Advantages of Using DataStream
	DataStream Record Selection
	DS_Range
	Syntax
	Parameters
	Return Values
	GMW_DS_Range Return Values
	DS_Range Field Selection

	DS_Query
	Syntax
	Parameters
	Return Values

	DS_Fetch
	Syntax
	Parameters
	Optional Parameters
	The XML Return packet
	Return
	DS_Fetch Return Packet

	DS_Close
	Syntax

	Accessing Low-Level Data Using Work Areas
	GMXS32.DLL Low-Level Access Functions
	GMXS32.DLL Low-Level Access Functions
	Opening a Data File
	Syntax
	Parameter
	Return Values
	DB_Open Code Attribute Values

	Closing a Data File
	Syntax
	Parameters
	Return Values

	Checking for an SQL Table
	Syntax
	Parameter
	Return Value
	DB_IsSQL Code Attribute Values

	Adding a Record
	Syntax
	Parameters
	Return Value

	Deleting the Current Record
	Syntax
	Parameter
	Return Value
	DB_Delete Code Attribute Values

	Reading a Field Value
	Syntax
	Parameters
	Return Value
	DB_Range Code Attribute Values

	Checking the Current Record Number or Record ID
	Syntax
	Parameters
	Return Value

	Changing a Field Value
	Syntax
	Parameters
	Return Value

	Unlocking a Record
	Syntax
	Parameter
	Return Value

	Creating a Subset of Records
	Syntax
	Note
	Parameters
	Return Value
	DB_Filter Code Attribute Values

	Limiting Search Scope
	Syntax
	Parameters
	Return Value
	DB_Range Code Attribute Values

	Performing a Sequential Search
	Syntax
	Parameters
	Return Value
	DB_Search Code Attribute Values

	Moving to the First Record Match
	Syntax
	Parameters
	Return Value
	DB_Seek Return Values

	Setting the Current Index Tag
	Syntax
	Parameters
	Return Value
	DB_SetOrder Code Attribute Values

	Positioning the Record Pointer
	Syntax
	Parameters
	DB_Move Commands and Function Equivalents
	Return Value
	DB_Move Code Attribute Values

	Moving to a Specified Record
	Syntax
	Parameters
	Return Value
	DB_Goto Code Attribute Values

	Moving to the First Record
	Syntax
	Parameter
	Return Value
	DB_Top Code Attribute Values

	Moving to the Previous or Following Record
	Syntax
	Parameters
	Return Value
	DB_Skip Code Attribute Values

	Moving to the Last Record
	Syntax
	Parameter
	Return Value
	DB_Bottom Code Attribute Values

	Seeking a Record
	Syntax
	Parameters
	Return Value
	DB_QuickSeek Code Attribute Values

	Reading a Field Value
	Syntax
	Parameters
	Return Value
	 DB_QuickRead Code Attribute Values

	Replacing a Field Value
	Syntax
	Parameters
	Return Value
	DB_QuickReplace Code Attribute Values

	Returning Calendar Data
	Syntax
	Return Value

	Updating Sync Logs
	Updating the Sync Log File
	Syntax
	Parameters
	Return Value
	UpdateSyncLog Code Attribute Values

	Importing a Prepared TLog Import File
	Syntax
	Parameters
	Return Value
	ReadImpTLog Code Attribute Values
	Notes
	TLog Import Structure

	Getting a New Record ID
	Syntax
	Parameters
	Return Value
	Notes

	Converting the Sync Stamp
	Syntax
	Parameters
	Return Value
	SyncStamp Code Attribute Values
	Notes

	Using MSXML to Handle GoldMine API XML
	Getting Started
	Defining the Root Element
	Setting Attributes
	Referencing an Attribute

	Creating Child Elements
	Executing the XML Document
	Reading the Results
	Reading the Code Attribute
	Reading the Returned Data

	Accessing the Current GoldMine Instance with COM
	Overview
	Getting Started
	Executing Commands
	Logging In to GoldMine

	GoldMine.UI Class
	Accessing Data Files
	Adding an Empty Record
	Parameters
	Return Value
	Returned XML

	Closing an Opened File
	Parameters
	Return Value
	Returned XML

	Deleting the Current Record
	Parameters
	Returned XML

	Creating a Subset of Records
	Parameters

	Checking for an Xbase or SQL Table
	Parameters
	Return Value
	Returned XML

	Moving to a Specified Record
	Parameters
	Return Value
	Move Return Values
	Returned XML

	Opening a Data File
	Parameters
	Open Valid Parameters
	Return Value
	Returned XML

	Limiting GoldMine Search Range
	Parameters
	Returned XML
	Parameters
	Returned XML

	Reading a Field Value
	Parameters
	Return Value
	Returned XML

	Checking the Current Record Number or Record ID
	Parameters
	Return Value
	Returned XML

	Changing a Field Value
	Parameters
	Return Value

	Performing a Sequential Search
	Parameters
	Return Value
	Returned XML
	Parameters
	Return Value
	Returned XML

	Accessing Contact Records
	Differences in Accessing Contact Information
	Parameters
	Valid RecordObj Functions
	Return Value
	Returned XML

	Accessing Specialized GoldMine.UI Functions
	Retrieving a List of Active Plug-Ins (GoldMine 7.0 or higher)
	Returned XML

	Running a Plug-In (GoldMine 7.0 or higher)
	Returned XML

	Retrieving Login Credentials for Use with the GMXS32.DLL
	Returned XML

	Retrieving the RecID of the Current Opportunity
	Return Value
	Returned XML

	Completing a Calendar Activity
	Parameters
	Return Value
	Returned XML

	Displaying Edit Windows for Calendar and History Items
	General Messages
	Return Value

	Displaying the Contact Record of an Incoming Caller
	Parameters
	Return Value
	CallerID Return Values
	Returned XML

	Running a Counter
	Parameters
	Return Value
	Example

	Returning GoldMine Record Data
	Record Selection
	Datastream Range Parameters
	Datastream Query Parameters
	Datastream Fetch Parameters
	Datastream Close Parameters
	The XML Return Packet
	Returns
	Return Packet
	Performance

	Processing a Web Import Instruction File
	Reading an Xbase Expression Without Opening a File
	Parameters
	Return Value
	Returns:

	Adding Merge Fields to a Form
	Parameters

	Deleting Fields from a Form
	Parameters
	Return Value

	Closing a Form Profile
	Parameters

	Creating an Xbase File with Registered Fields
	Parameters
	WhichRec Values
	Return Value

	Returning a Field Name for an Expression
	Parameters

	Returning a Value for Unattached Fields
	Return Value

	Counting the Number of Exported Records
	Parameters
	FormQueryCreate Parameters
	Return Value

	FormPrintedDoc
	Parameters

	Creating a History Record
	Parameters
	Return Value
	Returned XML

	Creating or Updating a Document Link
	Parameters
	Sync Valid Values
	Return Value
	Returned XML

	Displaying a Message Dialog Box
	Parameters
	MsgBox Style Values
	Return Value
	Returned XML

	Adding a Merge Form
	Parameters
	Document Types
	Flag Values
	Return Value

	Playing a Toolbar Macro
	Parameters
	Identifying a Macro by Number
	Identifying a Macro by File Name
	Return Value
	PlayMacro Return Values
	Optional switches include:

	Creating and Sending a Pager Message
	Return Value

	Displaying a Message in the GoldMine Status Bar
	Parameters
	Returned XML

	Converting TLog Timestamps
	Parameter
	Return Value
	Returned XML

	Updating the Sync Log File
	Parameters
	Return Value
	UpdateSyncLog Code Attribute Values

	Importing a Prepared TLog Import File
	Syntax
	Parameters
	Return Value
	ReadImpTLog Code Attribute Values
	Notes
	TLog Import Structure

	Forcing Logout
	Syntax
	Parameters

	Reading Security and Rights
	Syntax
	Permissions Returned by UserAccess
	Returned XML
	Retrieving Calendar Permissions
	Syntax
	Parameters
	Return Value
	Retrieving History Access
	Syntax
	Parameters
	Return Value

	Macros
	Executing Macros
	Returned XML

	Available Data-Related Macros
	Macros for Merge Forms
	&PARAM2 Parameters
	&PARAM3 Parameters
	&PARAM4 Parameters
	&PARAM5 Parameters

	Macros for the GoldMine License

	Controlling the GoldMine User Interface
	Getting Window Information
	GetAvailableWindowsList
	Syntax
	Returned XML
	GetActiveWindowsList
	Syntax
	Returned XML

	Registering for Events
	RegisterVetoWindowLaunch
	Syntax
	Parameters
	Returned XML
	RegisterWindowUpDown
	Syntax
	Parameters
	REturned XML

	RegisterCommandExec
	Syntax
	Parameters
	Returned XML
	RegisterTabDetailsEvent
	Syntax
	Parameters

	AdditionalContactClick
	AdditionalContactClick
	Returned XML
	Parameters
	DetailsClick
	Returned XML
	Parameters
	PendingClick
	Returned XML
	Parameters
	HistoryClick
	Returned XML

	Parameters
	LinkedDocClick
	Returned XML
	Parameters

	Handling GoldMine.UI Events
	NotifyControlCommand
	Parameters
	VetoWindow
	Parameters
	Example
	WindowUpDown
	Parameters
	GMEvent
	Returns

	Manipulating Controls Programatically
	PressButton
	Syntax
	Parameters
	SetControlText
	Syntax
	Parameters
	SetCheckBox
	Syntax
	Parameters
	SelectRadio
	Syntax
	Parameters
	SetListBox/SetComboBox
	Syntax
	Parameters
	SelectTab
	Syntax
	Parameters
	EnableCtrl
	Syntax
	Parameters

	Executing a Menu Command
	Syntax
	Returned XML

	Opening a Mail Record
	Syntax
	Parameters
	Returned XML

	Setting a Selected Record in a GoldMine Grid (GoldMine 8.0 or higher)
	Parameters
	Returned XML

	Returning Selected Records in a GoldMine Grid (8.0.1 or higher)
	Syntax (Example)
	Parameters
	Returned XML

	GoldMine.RecObj Class
	RecordObjectHasChanged
	Parameters
	RecordFieldHasUpdated
	Parameters
	RecordTabHasChanged
	Parameters

	GoldMine.GMSystemEvents Class
	GoldMineshutDown

	Business Logic Methods
	Overview
	Business Logic Functions and Name/Value Pairs
	Controlling Database Session Handling
	Creating or Updating a Contact Record
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Special Name/Value Pairs
	Output Name/Value Pairs
	WriteCONTACT Error Codes

	Updating an E-mail Address
	Required Name/Value Pairs
	Optional Name/Value Pairs

	Updating a Web Site Record
	Name/Value Pairs

	Updating Notes of a Primary Contact Record
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Output Name/Value Pairs

	Creating or Updating a Note in a Table
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Output Name/Value Pairs
	WriteNote Error Codes

	Creating or Updating an Additional Contact Record
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Special Name/Value Pairs
	Error Codes
	Output Name/Value Pairs

	Creating or Updating a Detail Record
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Special Name/Value Pairs
	Output Name/Value Pairs
	Error Codes

	Creating or Updating a Linked Document
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Special Name/Value Pairs
	Output Name/Value Pairs
	Error Codes

	Creating or Updating a Referral
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Special Name/Value Pairs
	Output Name/Value Pairs

	Creating or Updating Activities
	Required Name/Value Pairs
	GoldMine 6.0 NV Pairs
	Optional WriteSchedule NV Pairs
	Output Name/Value Pairs
	Error Codes

	Creating or Updating a History Record
	Required Name/Value Pairs
	WriteHistory Optional Name/Value Pairs
	WRITE HISTORY Special Name/Value Pairs
	Output Name/Value Pairs

	Creating or Updating a Case Record (GoldMine 8.0 or higher)
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Error Codes
	Output Name/Value Pairs

	Creating or Updating a Case Attachment (GoldMine 8.0 or higher)
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Error Codes
	Output Name/Value Pairs

	Adding a GoldMine User as a Case Team Member (GoldMine 8.0 or higher)
	Required Name/Value Pairs
	Error Codes
	Output Name/Value Pairs

	Attaching an Automated Process
	ATTACHTRACK Required Name/Value Pairs
	Output Name/Value Pairs

	Executing an SQL Query
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Output Name/Value Pairs

	Creating a Cont act Group
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Output Name/Value Pairs
	Return Codes

	Adding Contacts to a Contact Group
	Required Name/Value Pairs
	Members NV Pair Child Container Name/Value Pairs
	Output Name/Value Pairs (parent container)
	Return Codes

	Using AddContactGrpMembers
	Reading a Record
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Special NVs
	Output Name/Value Pairs
	Return Codes

	Reading a Contact1 or Contact2 Record
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Special NVs
	Output Name/Value Pairs
	Return Codes

	Returning Alerts Attached to a Contact Record
	Required Name/Value Pairs
	Output Name/Value Pairs
	Return Codes

	Attaching an Alert
	Required Name/Value Pairs
	Output Name/Value Pairs

	Returning All Alerts
	Required Name/Value Pairs
	Output Name/Value Pairs
	Required Name/Value Pairs
	Output Name/Value Pairs

	Returning a User Group Member List
	Required Name/Value Pairs
	Output Name/Value Pairs

	Returning Group Memberships for a Specified User
	Required Name/Value Pair
	Output Name/Value Pairs

	Saving a User Group
	Required Name/Value Pairs
	Output Name/Value Pair

	Retrieving the Names of User Groups
	Required Name/Value Pairs
	Return Name/Value Pairs
	Example

	Evaluating an Xbase Expression on a Contact Record
	Name/Value Pairs
	Return Values

	Encrypting Text
	Required Name/Value Pairs
	Decrypting Encoded Text
	Required Name/Value Pairs
	Returned Name/Value Pairs

	Retrieving the Default Contact Automated Process
	Deleting Calendar Items
	Deleting History Items
	Required Name/Value Pairs
	Return Values

	Handling GoldMine Security
	Creating a New GoldMine Login
	Name/Value Pairs
	Return Values

	Reading a GoldMine Login
	Output Name/Value Pairs
	Return Values

	Retrieving Security Access
	Retrieving Field-Level Access Rights
	Required Name/Value Pairs
	Example NV Container Returned from FieldAccessRights

	Retrieving Visible Fields
	Checking for Record Curtaining
	Required Name/Value Pairs
	Output Name/Value Pair
	Name/Value Pairs
	Return Name/Value Pairs

	Removing a Remote License
	Name/Value Pairs
	Return Name/Value Pairs

	E-mail Name/Value Functions
	Reading a Mail Message
	Required Name/Value Pairs
	Optional Name/Value Pairs
	READMAIL Output Name/Value Pairs

	Queuing a Message for Delivery
	QueueMail Optional NV Pairs
	Return Name/Value Pairs
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Optional Name/Value Pairs
	Return Codes

	Deleting a Message
	Required Name/Value Pairs

	Filing a Message in History
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Return Codes

	Preparing the NV Container for a New Mail Message
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Return Name/Value Pairs

	Preparing the NV Container to Reply to a Mail Message
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Return Name/Value Pairs

	Preparing an NV Container to Forward a Mail Message
	Required Name/Value Pairs
	Optional Name/Value Pairs
	Return Name/Value Pairs

	Adding an E-mail Center Folder
	Name/Value Pairs

	Deleting an E-Mail Center Folder
	Name/Value Pairs

	Obtaining a List of E-Mail Center Folders
	Return Name/Value Pairs
	Return Name/Value Pairs

	Accessing E-mail Templates
	Optional Name/Value Pairs
	Return Name/Value Pairs

	Retrieving E-mail Account Information
	Return Name/Value Pairs

	Retrieving a List of Messages Waiting Online
	Required Name/Value Pairs
	Return Name/Value Pairs
	Return Values

	Retrieving Messages
	Required Name/Value Pairs
	Return Name/Value Pairs
	Return Values

	Deleting Online E-mail Messages
	Required Name/Value Pairs

	Return Name/Value Pairs
	Return Values

	Saving a Manual List of Recipients
	Retrieving a Manual List of Recipients
	Managing Internet E-mail Preferences
	Optional input (SetEmailPrefs) and Output (GetEmailPrefs) Name/Value Pairs
	Profiles child containers have the following NV Pairs.
	Required Name/Value Pairs
	Special Name/Value Pairs
	Output Name/Value Pairs
	Notes

	Manipulating User-Defined Fields and Views
	Reading All Field Views
	Output Name/Value Pairs
	VIEW Name/Value Pairs
	Field Name/Value Pairs
	GetContactViews Return Values

	Deleting a Contact View
	DeleteContactViews Return Values

	Creating or Modifying a Contact View
	input Name/Value Pairs
	Field Name/Value Pairs
	WriteContactView output NV pairs
	WriteContactView Return Values

	Reading Custom Fields
	ReadCustomFields input NV pairs
	Field NV Pair Container
	ReadCustomfields Return Values

	Modifying the Structure of Custom Fields
	EditCustomField Input NV pairs
	EditCustomField Return Values

	Reading Calendar Preferences
	READCALENDARPREFS Input NV pairs
	READCALENDARPREFS OUTPUT NV pairs
	READCALENDARPREFS RETURN VALUES

	Modifying Calendar Preferences
	WRITECALENDARPREFS Input NV pairs
	WRITECALENDARPREFS OUTPUT NV pairs
	WRITECALENDARPREFS RETURN VALUES

	Reading Personal Preferences
	READPERSONALPREFS Input NV pairs
	READPERSONALPREFS OUTPUT NV pairs
	READPERSONALPREFS RETURN CODES

	Updating Personal Preferences
	WRITEPERSONALPREFS Input NV pairs
	WRITEPERSONALPREFS OUTPUT NV pairs
	WRITEPERSONALPREFS RETURN CODES

	Reading Record Preferences
	READRECORDPREFS Input NV pairs
	READRECORDPREFS OUTPUT NV pairs
	READRECORDPREFS RETURN CODES

	Updating Record Preferences
	WRITERECORDPREFS Input NV pairs
	WRITERECORDPREFS RETURN CODES

	Reading Schedule Preferences
	READSCHEDULEPREFS Input NV pairs
	READSCHEDULEPREFS OUTPUT NV pairs
	READSCHEDULEPREFS RETURN CODES

	Updating Schedule Preferences
	WRITESCHEDULEPREFS Input NV pairs
	WRITESCHEDULEPREFS RETURN CODES

	Reading Alarm Preferences
	READALARMPREFS Input NV pairs
	READALARMPREFS OUTPUT NV pairs
	READALARMPREFS RETURN CODES

	Updating Alarm Preferences
	WRITEALARMPREFS Input NV pairs
	WRITEALARMPREFS RETURN CODES

	Reading Lookup Preferences
	READLOOKUPPREFS Input NV pairs
	READLOOKUPPREFS OUTPUT NV pairs
	READLOOKUPPREFS RETURN CODES

	Updating Alarm Preferences
	WRITELOOKUPPREFS Input NV pairs
	WRITELOOKUPPREFS Return Codes

	Reading Pager Preferences
	READPAGERPREFS Input NV pairs
	READPAGERPREFS OUTPUT NV pairs
	READPAGERPREFS Return Codes

	Updating Pager Preferences
	WRITEPAGERPREFS Input NV pairs
	WRITEPAGERPREFS Return Codes

	Reading Miscellaneous Preferences
	READMISCPREFS Input NV pairs
	READMISCPREFS OUTPUT NV pairs
	READMISCPREFS Return Codes

	Updating Miscellaneous Preferences
	WRITEMISCPREFS Input NV pairs
	WRITEMISCPREFS Return Codes

	Reading the Database Engine Type (7.0 or higher)
	GETDBENGINETYPE Return Codes

	Reading a List of GoldMine User Groups
	GETGMUSERGROUPS OUTput NV pairs
	GETGMUSERGROUPS Return Codes

	Creating or Updating GoldMine User Groups
	WRITEGMUSERGROUP Input NV pairs
	WRITEGMUSERGROUP Return Codes

	Adding a GoldMine User to a Group
	ADDGMGROUPUSER Input NV pairs
	ADDGMGROUPUSER Return Codes

	Removing a GoldMine User from a Group
	REMOVEGMGROUPUSER Input NV pairs
	REMOVEGMGROUPUSER Return Codes

	Creating or Updating an Opportunity or Project
	WRITEOPPROJ Input NV pairs
	WRITEOPPROJ Return Codes

	Working with GoldMine Plug-ins
	Overview
	Using ActiveX Plug-in Support
	Using HTML Plug-in Support
	Plug-In Description File
	HTML Plug-in Description File
	ActiveX Plug-in Description File

	Security and Plug-in Directories
	Security
	Adding a Local Plug-in Directory

	Sample Plug-ins
	gmail.gme
	External.gme
	gmplus.asp

	Using Xbase Expressions
	Overview
	Function/Parameter Types
	Conditionals, Operators, and Logical Evaluators
	Conditionals
	Operators
	Logical Evaluators

	Xbase Functions
	String Functions
	Date Functions
	Numeric Functions
	Miscellaneous Functions

	Xbase Database Structures
	Overview
	CAL.DBF
	CAL Indexes
	CAL Structure
	Rectype

	CONTACT1.DBF
	CONTACT1 Indexes
	CONTACT1 Relations
	CONTACT1 Structure
	Account Number
	Internal Status

	CONTACT2.DBF
	CONTACT2 Index
	 CONTACT2 Structure

	CONTGRPS.DBF
	CONTGRPS Indexes
	CONTGRPS Structure (header records)
	Header Info
	CONTGRPS Structure (member records)

	CONTHIST.DBF
	CONTHIST Indexes
	CONTHIST Structure
	Record Type

	CONTSUPP.DBF
	CONTSUPP Indexes
	CONTSUP Structure
	Record Type

	INFOMINE.DBF
	INFOMINE Indexes
	INFOMINE Structure

	LOOKUP.DBF
	LOOKUP Indexes
	LOOKUP Structure

	MAILBOX.DBF
	MAILBOX Indexes
	MAILBOX Structure
	Flags
	Folder

	OPMGR.DBF
	OPMGR Structure
	Record Type

	PERPHONE.DBF
	PERPHONE Indexes
	PERPHONE Structure

	RESITEMS.DBF
	RESITEMS Indexes
	RESITEMS Structure

	SPFILES.DBF
	SPFILES Index
	SPFILES Structure

	SQL Database Structures
	Overview
	CAL Table
	CAL Indexes
	CAL Structure
	Record Type

	CONTACT1 Table
	CONTACT1 Indexes
	 CONTACT1 Relations
	CONTACT1 Structure
	Account Number
	Internal Status

	CONTACT2 Table
	CONTACT2 Index
	CONTACT2 Structure

	CONTGRPS Table
	CONTGRPS Indexes
	CONTGRPS Structure (header records)
	Header Info
	CONTGRPS Structure (member records)

	CONTHIST Table
	CONTHIST Indexes
	CONTHIST Structure
	Record Type

	CONTSUPP Table
	CONTSUPP Indexes
	CONTSUPP Structure
	Record Type

	INFOMINE Table
	INFOMINE Indexes
	INFOMINE Structure

	LOOKUP Table
	LOOKUP Indexes
	LOOKUP Structure

	MAILBOX Table
	MAILBOX Indexes
	MAILBOX Structure
	Flags
	Folder

	OPMGR Table
	OPMGR Indexes
	OPMGR Structure
	Record Type

	PERPHONE Table
	PERPHONE Indexes
	PERPHONE Structure

	RESITEMS Table
	RESITEMS Indexes
	RESITEMS Structure

	SPFILES Table
	SPFILES Index
	SPFILES Structure

	Appendix: Code Examples
	Overview
	GMXS32.DLL Code Examples
	C++ Examples
	Function prototypes
	Logging In
	Creating a Contact with Business Logic/Enumerating a Name Value Container/DataStream
	Low-Level Work Area

	Visual Basic Examples
	Function prototypes
	Logging In
	Creating a Contact
	Enumerating a Container
	DataStream
	Low-Level WorkArea

	Delphi Examples
	Function prototypes
	Creating a Contact
	Enumerating a Container
	DataStream
	Low-Level Work Area

	Resources
	Additional Documentation
	Contact Us
	Support Site
	Contact Information

	Index

